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Nonequilibrium grand-canonical ensemble built from a physical particle reservoir
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We introduce a nonequilibrium grand-canonical ensemble defined by considering the stationary state of a
driven system of particles put in contact with a particle reservoir. When an additivity assumption holds for
the large deviation function of density, a chemical potential of the reservoir can be defined. The grand-canonical
distribution then takes a form similar to the equilibrium one. At variance with equilibrium, though, the probability
weight is “renormalized” by a contribution coming from the contact, with respect to the canonical probability
weight of the isolated system. A formal grand-canonical potential can be introduced in terms of a scaled cumulant
generating function, defined as the Legendre-Fenchel transform of the large deviation function of density. The
role of the formal Legendre parameter can be played, physically, by the chemical potential of the reservoir
when the latter can be defined, or by a potential energy difference applied between the system and the reservoir.
Static fluctuation-response relations naturally follow from the large deviation structure. Some of the results are
illustrated on two different explicit examples, a gas of noninteracting active particles and a lattice model of
interacting particles.
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I. INTRODUCTION

Ensemble equivalence plays a key role in equilibrium sta-
tistical physics [1–3], and knowing whether such a concept
can be extended to nonequilibrium situations is an important
issue in view of building a nonequilibrium thermodynamics
for steady states [4–10]. For instance, it would be valuable
to know whether a driven stationary system behaves in the
same way when its number of particles is fixed, or when it is
allowed to exchange particles with a reservoir, corresponding,
respectively, to the nonequilibrium extensions of the canonical
and grand-canonical ensembles. When attempting to build a
grand-canonical ensemble for driven steady-state systems, a
first issue may be the ability to define a nonequilibrium chemi-
cal potential in a thermodynamically consistent way [6,11,12].
In particular, the study of phase separation in steady-state
driven systems has shown that equilibrium concepts need to
be generalized [13–18]. Contrary to the case of temperature,
for which the lack of energy conservation out of equilibrium
hinders a thermodynamically consistent definition in nonequi-
librium steady states [19–23], a notion of nonequilibrium
chemical potential based on the conservation of the number of
particles has been proposed some time ago [24,25], and tested
in numerical simulations of stochastic lattice gases [26,27].
This approach relies on the assumption that the large deviation
function of particle density is additive when the system is split
into subsystems [24,25,28]. Recently, the validity conditions
of this assumption have been clarified, by a careful analysis of
the coarse-grained dynamics describing the contact between
subsystems [29,30]. It has been found in particular that if the
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coarse-grained contact dynamics satisfies both a factorization
property and a macroscopic detailed balance property, the
large deviation function is additive and a chemical potential
can be defined. However, this chemical potential does not
satisfy in general an equation of state [29–31], meaning that it
does not depend only on bulk quantities like the density, but
also on the contact dynamics itself, at odds with equilibrium
situations. A similar lack of an equation of state has also
generically been reported for the mechanical pressure in gases
of active particles, unless specific symmetries are satisfied
[14,32–39].

Having introduced a proper nonequilibrium framework
to define chemical potentials for systems in contact, one
can try to define a nonequilibrium grand-canonical ensem-
ble and study whether its properties are equivalent to that
of the nonequilibrium canonical (fixed particle number) sys-
tem. The theoretical framework allowing for the definition
of nonequilibrium chemical potentials consists in consider-
ing two systems in contact, in the weak exchange rate limit
[28–30,40] (however, note that interesting phenomena also
appear for nonvanishing exchange rates [41]). While the two
systems have previously been assumed to have comparable
sizes, it is of interest to discuss the case when one of the
systems is much larger than the other and plays the role of
a particle reservoir. A natural and important question is then
to know whether the standard equilibrium thermodynamic
structure of the grand canonical ensemble remains essentially
valid, or if a different structure emerges in this case. This is the
question we explore in this paper. We point out that, contrary
to equilibrium where the reservoir of particle is naturally itself
at equilibrium, both equilibrium and out-of-equilibrium con-
ditions for the reservoir can be considered here. We also argue
that it is important to derive the grand-canonical ensemble by
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explicitly connecting the system to a reservoir, because the
contact dynamics between the system and the reservoir plays a
role in the statistics of configurations that cannot be neglected
in a nonequilibrium context.

The paper is organized as follows. In Sec. II, we briefly
review the framework introduced in [29,30,40] to describe the
steady state of driven systems in contact exchanging particles
at a vanishing rate. Then in Sec. III, we build the nonequilib-
rium grand-canonical distribution obtained by putting a driven
system in contact with a particle reservoir, which may itself
be in a nonequilibrium steady state. Under the assumption of
additivity (see Sec. II below and [29,30]), the grand-canonical
distribution takes a form similar to the equilibrium one, with
in particular the usual exponential factor in the chemical po-
tential of the reservoir times the number of particles. However,
at odds with equilibrium, the probability weight multiplying
this exponential factor is “renormalized” by a contribution
coming from the nonequilibrium character of the contact
between the system and the reservoir, as compared to the prob-
ability weight of the isolated system. The chemical potential
of the reservoir plays, as in equilibrium, the role of a Legendre
parameter generating all the cumulants by derivation of the
associated scaled cumulant generating function. We show that
this formal grand-canonical structure is also present even in
the absence of additivity, when a chemical potential of the
reservoir cannot be defined. This structure leads to a generic
static fluctuation-response relation, which can be realized in
practice (under some assumptions on the contact dynamics)
by using a potential energy difference as a control parameter.
Finally we discuss in Sec. IV two different explicit examples
of grand-canonical ensembles, a gas of noninteracting active
particles, and a lattice model of interacting particles.

II. GENERAL FRAMEWORK FOR SYSTEMS IN CONTACT

Before dealing with the grand-canonical situation of a sys-
tem in contact with a reservoir, we first review in this section
the general case of two systems in (weak) contact. The grand-
canonical ensemble will be derived in Sec. III as a limit case,
where one of the systems becomes much larger than the other
and acts as a reservoir.

A. Two systems in weak contact

In line with our previous works [29–31,40], we consider
the following general framework of two systems in contact
in the weak exchange rate limit, that we call for short weak
contact. Our general setup consists in two driven particle
systems A and B with stochastic dynamics, as sketched on
Fig. 1. Particles are assumed to interact between themselves
and can be subject to external forces. Also, both systems are
assumed to be in contact with the same heat bath at a uniform
temperature. The systems exchange particles at a low rate
as compared to the characteristic frequency of the internal
dynamics of each system. For instance, two lattice gases [30]
are in a weak contact if the rates to exchange one particle
between them stay very small compared to the rates to move
the particles within the bulks of each system.

Both systems are subject to driving forces fA and fB,
respectively, that break global microscopic detailed balance.

FIG. 1. Systems A and B in weak contact. The global densities
are ρA and ρB and the volumes are VA and VB. The driving forces are
fA and fB, respectively.

The number of particles, volume, and density of system k =
A, B are, respectively, denoted as Nk , Vk , and ρk = Nk/Vk .
The total number of particles NT = NA + NB is fixed. The
microscopic contact dynamics between the two systems is
assumed to be orthogonal to the driving force, in the sense
of the classification of contacts proposed by Sasa and Tasaki
[6]. As a consequence, the contact dynamics does not depend
on the driving forces [26,27,29,30] and satisfies the local
detailed balance with respect to the equilibrium distribution.
However, the contact dynamics does not satisfy in general
the microscopic detailed balance relation with respect to the
steady-state distributions at nonzero drives. We emphasize
that the driving forces are not considered to be small: the
systems can be arbitrarily away from equilibrium as long as
the weak contact limit holds.

B. Large deviations of particle densities and definition of
chemical potentials

We are specifically interested in determining the joint dis-
tribution P(ρA, ρB) of the global particle densities ρA and
ρB within each system. We note that this does not preclude
the local density field to not be perfectly uniform, especially
close to the edges of the systems, as for equilibrium systems
in the absence of drive. It has been argued in [29,30,40]
that in the weak exchange rate limit, the contact dynamics
can be conveniently encoded into a coarse-grained exchange
rate ϕ(�NA; ρA, ρB) with �NA = N ′

A − NA the number of ex-
changed particles during a single transition, and ρA and ρB the
densities in each system. These coarse-grained rates rule in
particular the time evolution of the joint probability Pt (ρA, ρB)
through a coarse-grained master equation [29,30,40]. Roughly
speaking, the coarse-grained exchange rates (evaluated as
functions of the global particle densities ρA, ρB within each
system) are obtained by averaging out the microscopic ex-
change rates with respect to the joint probability distributions
of configurations conditioned on the densities ρA, ρB. In a
general setting, one expects the systems to be highly cou-
pled. However, if the microscopic exchange rates between
the systems are very weak compared to the bulk dynamics of
each system, both systems have the time to relax into their
own stationary states between exchanges of particles. The
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coarse-grained exchange rate ϕ(�NA; ρA, ρB) thus becomes
an average of the microscopic rates with respect to the prod-
uct of the stationary probability distributions at densities ρA

and ρB, respectively. In the thermodynamic limit, the joint
stationary distribution P(ρA, ρB) of the number of particles in
systems A and B takes the large deviation form

P(ρA, ρB) � e−VT I (ρA,ρB ) , (1)

where the symbol � denotes logarithmic equivalence, VT =
VA + VB. From the master equation obeyed by the joint distri-
bution P(ρA, ρB) and the large deviation scaling (1), one can
show [29,30] that the large deviation function I (ρA, ρB) obeys
the so-called Hamilton-Jacobi equation∑
�NA �=0

[ϕ(�NA; ρA, ρB) eI ′(ρA,ρB )�NA − ϕ(−�NA; ρA, ρB)] = 0.

(2)
The derivative I ′ in Eq. (2) is defined as

I ′ ≡ 1

γ

d

dρA
I (ρA, ρB(ρA)) = 1

γ

∂I

∂ρA
− 1

1 − γ

∂I

∂ρB
(3)

having taken into account the conservation law

γ ρA + (1 − γ )ρB = ρ ≡ NT/VT , (4)

where γ = VA/VT is a geometric factor. A situation of spe-
cific interest is when the large deviation function is additive,
namely,

I (ρA, ρB) = γ IA(ρA) + (1 − γ )IB(ρB) . (5)

In terms of the derivative I ′, the additivity condition takes the
simple form

I ′(ρA, ρB) = I ′
A(ρA) − I ′

B(ρB) , (6)

which allows for the definition of a dimensionless nonequi-
librium chemical potential for the systems in contact [24–31]:

μcont
k (ρk ) = I ′

k (ρk ) (k = A, B) . (7)

The superscript “cont” aims at highlighting that these chem-
ical potentials are defined for the systems in contact and do
not necessarily coincide with chemical potentials that could
be defined locally in the bulk of both systems, or even from
equilibrium statistical mechanics, if one of the systems is
at equilibrium. In the present framework, the validity or not
of the additivity condition is a consequence of the contact
dynamics, and it is determined by solving Eq. (2). The latter
equation can easily be solved in the particular case when
the coarse-grained contact dynamics satisfies the macroscopic
detailed balance property defined as

ϕ(�NA; ρA, ρB) eI ′(ρA,ρB )�NA − ϕ(−�NA; ρA, ρB) = 0 , (8)

for all �NA. Macroscopic detailed balance is obeyed for
instance when the stochastic exchange dynamics at contact
allows only for single particle exchange. Macroscopic de-
tailed balance is a formal property of the coarse-grained
master equation, defined by analogy with the usual micro-
scopic detailed balance property that may be satisfied by the
microscopic master equation. However, let us emphasize that
the nonequilibrium character of the system is defined by the
breaking of microscopic detailed balance. While microscopic

detailed balance implies its macroscopic counterpart, the re-
verse is not true, and macroscopic detailed balance may hold
in nonequilibrium systems in contact [29,30,40].

It follows from Eq. (8) that

I ′(ρA, ρB) = 1

�NA
ln

ϕ(−�NA; ρA, ρB)

ϕ(�NA; ρA, ρB)
, (9)

the resulting expression being independent of �NA. This ex-
plicit expression of I ′ allows for a simple characterization
of the additivity property of the large deviation function, as
defined by Eq. (6). In this framework, additivity is satisfied
when the contact dynamics is factorized between the two
systems [29,30]. When the contact dynamics is not factorized,
or when the macroscopic detailed balance relation (8) is not
obeyed, the large deviation function I (ρA, ρB) is generically
nonadditive [40]. Let us briefly explain why the additivity
property is lost. We consider a reference situation for which
macroscopic detailed balance is obeyed, characterized by a
factorized coarse-grained rate ϕ0. The corresponding large
deviation function I0(ρA, ρB) is thus additive. Let us now
introduce a small perturbation of the contact dynamics such
that the coarse-grained transition rate reads

ϕ = ϕ0 + εϕ1, (10)

with ε � 1. We assume that with this perturbed coarse-
grained rate, the solution I ′ of the coarse-grained master
Eq. (2) no longer obeys macroscopic detailed balance, thereby
making I ′ more difficult to evaluate. However, it is possible
to determine I ′ perturbatively, to first order in ε, as I ′ =
I ′
0 + εI ′

1 + O(ε2).
While the leading contribution I ′

0 is additive if ϕ0 takes
a factorized form, the subleading contribution I ′

1 breaks the
additivity property, as seen from its expression [40]

I ′
1 =

∑
�NA �=0 ϕ1(�NA; ρA, ρB)(eI ′

0(ρA,ρB )�NA − 1)∑
�NA �=0 �NAϕ0(�NA; ρA, ρB)

. (11)

Having determined the large deviation function I (ρA, ρB), a
multiscale analysis in the slow exchange limit shows that
the joint distribution of configurations P(CA, CB) is given to
leading order in the small exchange rate by [40]

P(CA, CB) ∝ PA(CA|ρAVA) PB(CB|ρBVB) e−VTI (ρA,ρB ) (12)

where PA(CA|NA) and PB(CB|NB) are the steady-state config-
uration distributions in systems A and B when isolated, with
fixed particle numbers NA = ρAVA and NB = ρBVB. The densi-
ties ρA and ρB are related by the conservation law γ ρA + (1 −
γ )ρB = ρ̄.

We now briefly comment on the interpretation of the pa-
rameter ε. As mentioned above, this parameter characterizes
the deviation from the macroscopic detailed balance property.
As a result, it is not a measure of the distance to equilibrium.
Indeed, ε can vanish even far from equilibrium, if macro-
scopic detailed balance is satisfied. On specific examples, like
the lattice gas model of Sec. IV B below, ε can be expressed
in terms of the drives in both systems. Note that since the first
nonzero out-of-equilibrium term of the stationary probability
distributions of driven systems is quadratic in the forcing
[42–44], the parameter ε is a combination of the square of
the driving forces.
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FIG. 2. System of interest in (weak) contact with a reservoir R.
The global densities are ρ and ρR, respectively.

III. BUILDING A GRAND-CANONICAL ENSEMBLE

A. System in contact with a reservoir

In the following, we consider system A as the system of
interest, and system B is a reservoir the degrees of freedom
of which are integrated over, as illustrated in Fig. 2. To em-
phasize these different roles of the two systems, we slightly
change notations and drop the subindex A for quantities char-
acterizing system A (which we simply call “the system” in
what follows), while we use from now on the subindex R for
the reservoir (system B). The reservoir being by definition
much larger than the system of interest, we take the limit
VR → ∞ keeping fixed the volume V of the system of inter-
est, which implies that the ratio γ = V/(V + VR) → 0. Note
that we choose here to consider a general reservoir that is not
necessarily at equilibrium and can be driven by nonconserva-
tive forces.

The case when the reservoir is an equilibrium system is cer-
tainly natural and will be considered henceforth as a particular
case. However, note that the case when the reservoir is driven
is also a natural situation, for instance when considering self-
propelled colloids which are very far from equilibrium (e.g.,
with a high Péclet number) [45–50].

Generally speaking, the notion of grand-canonical ensem-
ble we consider for the system of interest is the same as in
equilibrium, namely, the probability distribution of the mi-
crostates of the system of interest when the latter is allowed
to exchange particles with a reservoir. In order to derive such
a grand-canonical distribution, the joint distribution P(C, CR)
given in Eq. (12) can be integrated over CR to give the distri-
bution of configurations P(C) of the system:

P(C) ∝ P(C|ρV ) e−VTIγ (ρ,ρR ) (13)

with ρR = (ρ̄ − γ ρ)/(1 − γ ), and where we have empha-
sized the γ dependence of the large deviation function
Iγ (ρ, ρR) [see Eq. (5) for the explicit dependence of
Iγ (ρ, ρR) on γ in the additive case]. The proportionality
symbol ∝ in Eq. (13) indicates that the normalization factor
is not included explicitly.

B. General form of the grand-canonical distribution

To derive the general form of the grand-canonical dis-
tribution, we now consider the limit where the reservoir is

infinitely larger than the system of interest. We thus take the
limit VR → ∞ at fixed V , implying γ = V/(V + VR) → 0 in
Eq. (13). The distribution P(C|ρV ) of the system considered
as isolated does not depend on γ , since we have fixed the vol-
ume V . In contrast, the large deviation Iγ (ρ, ρR) generically
depends on γ . Introducing the most probable value ρ∗ such
that Iγ (ρ∗, ρR(ρ∗)) = 0 [we assume here that Iγ (ρ, ρR) is a
convex function of ρ, so that ρ∗ is unique], we can write, using
the definition of I ′ given in Eq. (3),

VTIγ (ρ, ρR) = V
∫ ρ

ρ∗
I ′
(

ρ1,
ρ̄ − γ ρ1

1 − γ

)
dρ1 . (14)

It is important to note at this stage that the derivative I ′(ρ, ρR)
of the large deviation function does not depend on γ when
considered as a function of two independent arguments ρ and
ρR, because the Hamilton-Jacobi Eq. (2) does not depend
explicitly on γ . This is why we write I ′(ρ, ρR) instead of
I ′
γ (ρ, ρR). It is only when explicitly considering the conser-

vation law ρR = (ρ̄ − γ ρ)/(1 − γ ) that γ comes into play.
Taking the limit γ → 0 in Eq. (14), we have that ρR → ρ̄.
Since in this limit ρ̄ is also the average density of the reservoir,
we will use in the following the notation ρ̄R instead of ρ̄,
to avoid possible confusion with the average density of the
system. We thus obtain

VTIγ (ρ, ρR) −−→
γ→0

V J (ρ|ρ̄R) , (15)

where we have defined

J (ρ|ρ̄R) =
∫ ρ

ρ∗
I ′(ρ1, ρ̄R)dρ1 . (16)

Note that for finite γ , ρ∗ may depend on γ if γ is varied
while keeping ρ̄R fixed. In what follows, we assume that the
limit γ → 0 has been taken, and we define ρ∗ by the relation

J ′(ρ∗|ρ̄R) = I ′(ρ∗, ρ̄R) = 0, (17)

where J ′(ρ|ρ̄R) is the derivative of J (ρ|ρ̄R) with respect to
ρ. We can now rewrite Eq. (13) more explicitly in the limit
γ → 0 as

PGC(C) ∝ P(C|ρV ) e−V J (ρ|ρ̄R ) . (18)

As indicated by the symbol ∝, Eq. (18) is not a strict equality
as it does not include subleading order terms �V (ρ|ρ̄R) [such
that limV →∞ V −1 ln �V (ρ|ρ̄R) = 0] that would contribute to
the density distribution for small finite volume V [PV (ρ) =
�V (ρ|ρ̄R)e−V J (ρ|ρ̄R )]. The expression Eq. (18) is only rele-
vant in the thermodynamic limit.

Equation (18) is the most general form of the grand-
canonical distribution in the present nonequilibrium setting.
By grand-canonical distribution, we mean the distribution
PGC(C) of the configurations C of the system, in the limit
γ → 0 where the reservoir is infinitely larger than the system
of interest. To better understand the interpretation of the large
deviation function J (ρ|ρ̄R), let us mention its expression in
the equilibrium case, anticipating the results below:

Jeq(ρ|ρ̄R) = β[ f (ρ) − f (ρ∗) − μeq(ρ̄R) (ρ − ρ∗)] (19)

where f (ρ) = limV →∞ −βV −1 ln Zcan(ρV ) is the equilibrium
free energy defined from the canonical partition function
Zcan(ρV ) and μeq(ρ̄R) is the equilibrium (dimensionful)
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chemical potential characterizing the reservoir. At equilib-
rium, P(C|ρV ) is the canonical distribution:

P(C|ρV ) = F (C)

Zcan(ρV )
∝ F (C) eV β f (ρ) (20)

where F (C) is the probability weight, simply given at equilib-
rium by the Boltzmann weight e−βE (C), with E (C) the energy
of configuration C. It follows that the equilibrium grand-
canonical distribution can be reexpressed in its standard form,
using Eq. (18), as

PGC(C) ∝ F (C)

ZGC
eμeq (ρ̄R )V ρ , (21)

where ZGC ∝ e−V [β f (ρ∗ )+μeq (ρ̄R ) ρ∗] is the grand-canonical par-
tition function. We try below to follow a similar path in order
to express the nonequilibrium grand-canonical distribution in
a form analogous to the equilibrium one, when this is possible.

C. Formal grand-canonical structure

The existence of the grand-canonical large deviation
function J (ρ|ρ̄R) guarantees a formal grand-canonical ther-
modynamic structure, analogous to the equilibrium one. We
briefly discuss in this subsection three main features of this
grand-canonical thermodynamic structure, namely, ensemble
equivalence, the existence of a generalized partition function,
and a fluctuation-response relation.

First of all, the large deviation form of the density dis-
tribution in Eq. (18) ensures macrostate equivalence [3] in
the absence of phase transition. The average of any generic
observable O(C) with respect to the grand-canonical ensemble
converges to the same limit as the canonical average at density
ρ∗ in the limit V → ∞, namely,

lim
V →∞

〈O(C)〉GC = lim
V →∞

〈O(C)〉ρ∗ (22)

with 〈·〉ρ the canonical average for a fixed density ρ. We
recall that the density ρ∗ is the one at which J ′(ρ∗|ρ̄R) [or
equivalently I ′(ρ∗, ρ̄R)] vanishes.

Another main feature of a thermodynamic ensemble is the
existence of a scaled cumulant generating function, played at
equilibrium by the (intensive) Helmholtz free energy for the
canonical ensemble or the (intensive) grand potential for the
grand-canonical ensemble. A grand potential for the nonequi-
librium grand-canonical ensemble defined by Eq. (18) is thus
naturally provided by the scaled cumulant generating func-
tion of Eq. (18), noted G(θ ) ≡ limV →∞ V −1 ln 〈eV θρ〉, which
reads as

G(θ ) = sup
ρ

[θρ − J (ρ|ρ̄R)]. (23)

This function G(θ ) is the Legendre-Fenchel transform of
J (ρ|ρ̄R), with θ the conjugated variable to the density. In the
absence of metastability and phase transition (see the Gärtner-
Ellis theorem [2]), J (ρ|ρ̄R) is convex. Hence, there exists a
single density ρ∗(θ ) that realizes the supremum in Eq. (23):

G(θ ) = θρ∗(θ ) − J (ρ∗(θ )|ρ̄R) , (24)

with

J ′(ρ∗(θ )|ρ̄R) = θ . (25)

One recovers naturally that G′(0) ≡ 〈ρ〉 = ρ∗ with
J ′(ρ∗|ρ̄R) = 0. The Legendre-Fenchel transform G(θ )
allows one, by definition, to compute all the cumulants of
the density in the thermodynamic limit. This is the case in
particular for the second cumulant:

G′′(0) ≡ lim
V →∞

1

V
VarV (N ) , (26)

where VarV (N ) is the variance of the total number of particles
N = V ρ at a fixed volume V . Using Eqs. (24) and (25), we
have G′(θ ) = ρ∗(θ ). By differentiating again with respect to
θ we get, using also Eq. (26),

G′′(0) = dρ∗(θ )

dθ

∣∣∣∣
θ=0

= lim
V →∞

1

V
VarV (N ) . (27)

The generalized fluctuation-response relation Eq. (27) is
thus a consequence of the Legendre-Fenchel duality between
J (ρ|ρ̄R) and G(θ ). More generally, one has for any θ that
G′′(θ ) = 1/J ′′(ρ∗(θ )|ρ̄R) = dρ∗/dθ .

The existence of such a grand-canonical structure remains
nevertheless purely theoretical, as long as the conjugated vari-
able θ does not gain any physical significance. Can the latter
be played by a nonequilibrium chemical potential attached to
a reservoir, as in equilibrium? Or, if such a nonequilibrium
chemical potential does not exist, could an external potential
play this role? We aim at answering these issues in the next
section.

D. Nonequilibrium grand-canonical chemical potential under
the additivity condition

Within the weak contact limit, we have seen in Sec. II B
that the large deviation function I (ρA, ρB) defined in Eq. (1)
for two systems brought into contact could be additive under
certain circumstances. Sufficient conditions for additivity are
the existence of a macroscopic detailed balance relation for
the density dynamics (9) as well as a factorization property of
the contact that itself relies on the very definition of the micro-
scopic dynamics at contact. We refer the reader to [29,30,40]
for a more detailed analysis on this point.

In the limit γ → 0 where one of the systems plays the role
of a reservoir, the additivity condition (6) leads to

J (ρ|ρ̄R) = I (ρ) − I (ρ∗) − μR(ρ − ρ∗) , (28)

with, from Eq. (7),

I (ρ) =
∫ ρ

μcont (ρ1)dρ1 , (29)

and μR ≡ μR(ρ̄R). Note that I (ρ∗) �= 0 a priori. As seen
by comparing the expressions (19) and (28) of the large
deviation function J (ρ|ρ̄R), the function I (ρ) appears as a
natural generalization of the dimensionless equilibrium free
energy β f (ρ). By analogy with the equilibrium form of (20)
of P(C|ρV ), it is natural to define

Fcont (C) ∝ P(C|ρV )e−V I (ρ) (30)

as a canonical weight of a configuration C, such that Eq. (18)
can be recast into

PGC(C) ∝ Fcont (C)

ZGC(μR)
eμRV ρ , (31)
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with ZGC a nonequilibrium grand-canonical partition func-
tion. Note that Eq. (31) precisely mirrors the equilibrium form
(21) of the grand-canonical distribution. However, as dis-
cussed in more detail below, the probability weight Fcont (C) is
now “dressed” with a contribution coming from the nonequi-
librium character of the contact dynamics, at odds with the
equilibrium case.

Here again, Eqs. (30) and (31) become valid in the ther-
modynamic limit only: some subleading order terms in V
are missing [see comment after Eq. (18)]. This last equation
Eq. (31) shares the exact same structure as the equilibrium
grand-canonical distribution. In particular, the chemical po-
tential of the reservoir μR also appears as the conjugated
variable to ρ, in the very same way as θ in Sec. III C. This
connection can be made even more specific by considering
the nonequilibrium grand-canonical potential

GGC(μR) ≡ lim
V →∞

1

V
lnZGC(μR) . (32)

This nonequilibrium grand potential is the Legendre-Fenchel
transform of I (ρ) (with μR as the conjugated variable) (23)
and corresponds to its associated scaled cumulant generating
function. Note that Eqs. (23) and (32) contain the exact same
information: when the additivity assumption holds, G(θ ) =
GGC(θ + μR) + C, with C a constant. It follows that θ and
μR play a similar role, in the sense that differentiating G(θ )
or GGC(μR) yields the successive cumulants of the density. In
particular, the fluctuation-response relation (27) reads

G′′
GC(μR) = dρ∗

dμR
= lim

V →∞
1

V
VarV (N ) , (33)

which clearly shows that the role of the formal parameter θ is
played here by the chemical potential μR of the reservoir, as
in equilibrium.

E. Influence of the contact dynamics on the probability
weight Fcont (C)

Although the nonequilibrium grand-canonical ensemble
Eq. (18) shares the very same structure as its equilibrium
analog when additivity of the joint large deviation function (6)
holds, an important difference remains: as the subscript “cont”
in Fcont suggests, all the quantities coming from J (ρ, ρ̄R),
namely, the chemical potential of the reservoir μR and the
large deviation function I (ρ), are in general affected by the
microscopic dynamics at contact.

We leave aside the contact dependence of μR: although
the dynamics at contact may not be completely controlled by
the experimenter, we assume that the latter can easily vary
the bulk density of the reservoir to set any value of μR.
In addition, the dependence of the chemical potential of the
reservoir on the contact dynamics vanishes when the reservoir
is at equilibrium, which is a specific case of interest. However,
even if one may disregard for practical purposes the effect of
the contact dynamics on the reservoir, the contact still has an
essential influence on the system itself. We would like in this
subsection to discuss the effect of the contact dynamics on the
canonical weight Fcont (C) introduced in Eq. (30).

From nonequilibrium exactly solvable models (see, e.g.,
[51–55]) and general perturbative formula of nonequilibrium

steady states [42,44], the canonical probability distribution of
the system of interest is indeed found to break down into

P(C|ρV ) = Fiso(C)

Z (ρ,V )
, (34)

for a configuration C with N = ρV particles, and P(C|ρV ) =
0 otherwise. The quantity Fiso(C) is the probability weight
of configuration C; at equilibrium it would correspond to the
Boltzmann-Gibbs factor e−βE (C). Z (ρ,V ) is a normalization
constant, similar to the partition function at equilibrium, with

ψ (ρ) = − lim
V →∞

1

V
ln Z (ρ,V ) (35)

its associated rate function that can be thought of as an ef-
fective, dimensionless nonequilibrium free energy density [at
equilibrium, we would have ψ (ρ) = β f (ρ), with f (ρ) the
free energy].

As further discussed below, it is important to distinguish
the probability weight Fiso(C) defined in Eq. (34) for an iso-
lated system, from the probability weight Fcont (C) introduced
in Eq. (30) for a system in contact with a reservoir. While both
weights would be identical at equilibrium, nonequilibrium
effects resulting from the contact dynamics yield a distinc-
tion between these two probability weights. Accordingly, the
nonequilibrium effective free energy ψ (ρ) of the isolated sys-
tem also differs from its counterpart I (ρ) defined in Eq. (29)
for a system in contact with a reservoir.

Following [24,25], one can associate with ψ (ρ) a nonequi-
librium chemical potential μiso(ρ) such that

ψ (ρ) =
∫ ρ

μiso(ρ1)dρ1 . (36)

This nonequilibrium chemical potential μiso of the isolated
system is the direct analog of an equilibrium chemical poten-
tial. First, it would appear naturally as the chemical potential
ruling the exchange of mass with a reservoir if the micro-
scopic exchange dynamics would obey a microscopic local
detailed balance relation with respect to the weight Fiso(C)
(see Appendix B for more detail on this point). On the other
hand, for the nonequilibrium systems considered in [51–55],
the chemical potential μiso thus defined becomes uniform at
stationarity when the isolated systems are partitioned into
virtual subsystems.

Injecting (34) into (30) yields

Fcont (C) ∝ Fiso(C)e−V ζ (ρ) (37)

with

ζ (ρ) = I (ρ) − ψ (ρ) =
∫ ρ

[μcont (ρ1) − μiso(ρ1)]dρ1. (38)

In Eq. (37), ρ is the density associated with configuration
C. Here again, the subleading terms in V have been dropped
out. In this expression, the canonical weight Fiso thus appears
to be renormalized [in the grand-canonical distribution (31)]
at the leading order in V by a term e−V ζ (ρ) that generally
depends on ρ, as long as μiso �= μcont. The ρ dependence of
the factor e−V ζ (ρ) precisely encodes the effect resulting from
the nonequilibrium character of the contact.

The reason for this discrepancy between μiso and μcont is
the breaking of the microscopic detailed balance at contact,
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as discussed in detail in [29,30]. Indeed, the exchange rates
at contact are not perturbed by the driving forces (driving
forces being orthogonal to the contact) and are thus the same
as in equilibrium. Nonetheless, the density fluctuations at
contact are generally different from that in equilibrium: the
microscopic local detailed balance at contact, which holds
with respect to the equilibrium distributions, is generally
broken in the presence of drives in the systems which mod-
ify the steady-state distributions of configurations. A new
macroscopic balance between thermodynamic forces then set-
tles at contact. The chemical potentials μcont are precisely
the chemical potentials associated with these thermodynamic
forces, whereas the chemical potentials of the isolated systems
μiso(ρ) are those attached to the thermodynamic forces that
would be observed if the microscopic exchange rates at con-
tact would satisfy a local detailed balance with respect to the
weight Fiso(C) of the nonequilibrium systems (see Appendix
B).

In addition to this generic nonequilibrium effect, the sta-
tionary density fluctuations at the contact region may differ
from the bulk if the contact is located near a wall for
instance, so that the density field is not uniform. This position-
dependent effect may add to the generic discrepancy due to the
breaking of microscopic detailed balance at contact. Note that
at equilibrium, such boundary effects on the density field may
also be present, but they have no consequence on the chemical
potentials because of the global microscopic detailed balance.

Finally, let us emphasize that the existence of μcont (or even
μiso) is not granted for nonequilibrium systems. In particu-
lar, the definition of μcont relies on properties of the contact
dynamics (like a factorization property of the coarse-grained
exchange rates [29,30]) that may not be met for certain sys-
tems. A more detailed discussion can be found in [40]. We
discuss this issue further below in the context of the nonequi-
librium grand-canonical ensemble.

F. Lack of additivity and effect of an external potential

In the above subsections, we have assumed that the ad-
ditivity condition is satisfied, allowing for the definition of
nonequilibrium chemical potentials for systems in contact.
When the additivity property does not hold, the chemical
potential of the reservoir cannot be defined. In this case, the
grand-canonical distribution can be written, using (18) and
(34), as

PGC(C) = Fiso(C)

NGC(V )
eV λ(ρ) (39)

with

λ(ρ) = ψ (ρ) − ψ (ρ∗) − J (ρ|ρ̄R) . (40)

In Eq. (39), NGC(V ) is a normalization constant. An explicit
example is provided in Sec. IV B 2. Note that the function
λ(ρ) introduced in Eq. (39) is not uniquely defined and can be
shifted by a constant, depending on NGC(V ). We have chosen
for convenience to define λ(ρ) such that λ(ρ∗) = 0. Using the
definition (16) of J (ρ|ρ̄R) and the expression (36) of ψ (ρ),
the function λ(ρ) may be rewritten as

λ(ρ) =
∫ ρ

ρ∗
[μiso(ρ1) − I ′(ρ1, ρ̄R)] dρ1 . (41)

The major drawback of the absence of a chemical potential for
the reservoir is that a fluctuation-response relation as the one
given in Eq. (33) is a priori lacking. However, we may look
for another instantiation of the formal Legendre parameter θ

introduced in Sec. III C. We assume here that macroscopic
detailed balance holds, but that the factorization property of
the coarse-grained dynamics is not met (see Sec. II B), im-
plying that the additivity property does not hold. In this case,
one can introduce another control parameter, which plays a
role similar to the chemical potential, by applying a potential
difference U between the system and the reservoir, through
a modification of the contact dynamics. By an appropriate
choice of the contact dynamics, the thermodynamic force can
be made linear in the applied potential difference U [40].
Then, the large deviation function J (ρ|ρ̄R) is biased by a
linear term as

JU (ρ|ρ̄R) = J (ρ|ρ̄R) + βUρ , (42)

where β is the inverse temperature of the heat bath. Therefore,
in a situation where no chemical potentials can be defined,
an external potential difference between the system and the
reservoir may appear as the conjugated variable to the density,
leading to a grand-canonical structure with θ = −βU (see
Sec. III C). In particular, the fluctuation-response relation (27)
can be conveniently reformulated in terms of the potential
difference U , as

dρ∗
U

dU

∣∣∣∣
U=0

= − lim
V →∞

β

V
VarV (N ) , (43)

where ρ∗
U is the average stationary density of the system once

a potential difference U is applied between the system and the
reservoir.

IV. APPLICATION TO SPECIFIC MODELS

A. Gas of noninteracting active particles

We start by the simple example of a gas of noninter-
acting active particles, considering either active Brownian
particles (ABPs) or run-and-tumble particles (RTPs) [56].
ABPs model experiments on active colloids [45–50] or self-
propelled grains [57–59], while RTPs describe the behavior
of some type of bacteria [60,61]. As discussed in [31] and
sketched in Fig. 3, such a gas can be split into two compart-
ments in contact through a potential energy barrier U (r) (see
also [62,63]). We take the second compartment to be much
larger than the first one, so that it plays the role of a reservoir
R of particles.

In two dimensions, the overdamped dynamics of the posi-
tion r = (x, y) of an active particle reads

ṙ = v0 e(θ ) − κ∇U (44)

where v0 is the self-propulsion speed, θ is the polarity angle
of the particle along which the self-propulsion force is ap-
plied, and κ is a mobility coefficient. Different models for the
dynamics of the angle can be used, for instance a diffusive dy-
namics θ̇ = ξ (t ) for ABPs, with ξ (t ) a white noise of diffusion
coefficient Dr, or a jump dynamics with rate α for RTPs [56].
It is convenient to assume that the potential U (r) depends only
on x, and is invariant along the y direction. We set the origin
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FIG. 3. Two gases of noninteracting active particles in con-
tact. The barrier potential U (x) that forms the contact is typically
asymmetric.

x = 0 at the maximum of the potential barrier, and define the
system of interest to be on the positive part of the x axis,
while the reservoir is on the negative part of the axis. Taking
the limit of a fast angular dynamics, corresponding to a large
Dr or a large α, one finds that the large deviation function
I (ρA, ρB) is additive, and one can compute the chemical po-
tential of the two systems in contact. One obtains (see [31] and
Appendix A)

μcont (ρ) = μiso(ρ) + η , μcont
R (ρ̄R) = μiso(ρ̄R) + ηR

(45)
where μiso(ρ) = ln ρ is the chemical potential of the isolated
ideal gas, whereas η and ηR are the nonequilibrium correc-
tions due to the contact. To leading order in 1/Dr or 1/α, the
correction ηk is given by

η = −η0

∫ 0

x∗
dx [U ′(x)]3 , ηR = −η0

∫ 0

x∗
R

dx [U ′(x)]3 ,

(46)
with η0 = 7

2κ3Dr/v
4
0 for active Brownian particles and η0 =

2κ3α/v4
0 for run-and-tumble particles [31] (note that the

large Dr or large α limit is taken by fixing the effective
positional diffusion coefficient DABP = v2

0/2Dr or DRTP =
v2

0/2α). Here, x∗ > 0 and x∗
R < 0 are arbitrary points in the

bulk of the system and of the reservoir, respectively, where
the smooth potential U (x) vanishes. The parameters η and
ηR depend explicitly on the shape of the barrier, that is, on
the details of the contact dynamics. However, η and ηR do
not depend on density, which results from the assumption of
noninteracting particles.

For the gas of N noninteracting particles, the canonical
probability weight Fiso(C) is a constant and can be chosen
equal to Fiso(C) = 1, having defined the configuration C =
(r1, θ1, . . . , rN , θN ) as the list of positions and orientations of
all particles. Following the results of Sec. III D, this probabil-
ity weight is renormalized by the contact into

Fcont (C) = e−V ζ (ρ) (47)

with here

ζ (ρ) =
∫ ρ

[μcont (ρ ′) − μiso(ρ ′)] dρ ′ = ηρ . (48)

FIG. 4. One-dimensional model of interacting particles in a lat-
tice. (a) Sketch of the update rule on a link (i, i + 1) through the
transition rate T [Eq. (50)]. (b) Sketch of the full one-dimensional
system. Partition P1 is denoted in blue and partition P2 is denoted
in red.

The grand-canonical distribution thus reads

PGC(C) ∝ e(μcont
R −η)ρ (49)

and the contribution η coming from the contact simply shifts,
in practice, the chemical potential of the reservoir. We will see
below other examples where the nonequilibrium character of
the contact has a more drastic effect.

B. Lattice model of interacting particles

We now turn to an example of a model where the large
deviation function is not additive, which can be realized
for instance in interacting lattice particle models. Such lat-
tice models are useful benchmarks to test nonequilibrium
concepts, as exemplified by the paradigmatic Katz-Lebowitz-
Spohn model [64]. Following [30,40], we consider here the
particle version of the continuous mass lattice model in-
troduced in [55] as a driven generalization of the model
originally defined in [65]. The present model has the advan-
tage that the probability distribution of configurations depends
on the drive, at variance with more standard particle [54] or
mass transport models [52,66].

The model is defined as follows (see Fig. 4 for a graphical
illustration): on each site i = 1, . . . , 2L of a one-dimensional
lattice with periodic boundary conditions (2L + 1 ≡ 1), a
number ni � 0 of particles is defined. The dynamics of
ni proceeds by sublattice parallel updates, where one of
the two partitions of links P1 = {(2k − 1, 2k), k = 1, . . . , L}
and P2 = {(2k, 2k + 1), k = 1, . . . , L} is randomly chosen at
each step with equal probabilities. Having chosen a partition
Pa (a = 1 or 2), numbers of particles (ni, ni+1) on each link
(i, i + 1) of the chosen partition are updated in parallel to
(n′

i, n′
i+1) according to the probability

T (n′
i|ni, ni+1) = e−[ε̄(ni )+ε̄(ni+1 )]+ 1

2 f (n′
i+1−n′

i )

Q(ni + ni+1)
(50)

where n′
i+1 = ni + ni+1 − n′

i is given by the local conser-
vation of the number of particles. The function ε̄(n) can
be interpreted as the effective energy of n interacting par-
ticles, whereas the parameter f is a driving force breaking
microscopic detailed balance. The function Q ensures a nor-
malization condition

∑
n′

i
T (n′

i|ni, ni+1) = 1 (important to
make the model exactly soluble). We focus here on the sim-
plest yet nontrivial model in this class, for which ε̄(n) = +∞
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for n > 2, which amounts to having a maximal number of
particles nmax = 2 on each site.

We now consider two copies of the model, possibly with
different parameters (e.g., different drives), and put them in
weak contact by allowing them to exchange particles at a slow
rate. The second model is assumed to be much larger than
the first one, and plays the role of a reservoir of particles.
Quantities characterizing the reservoir are labeled by an index
R. We discuss separately the additive and nonadditive cases.

1. Additive case

To illustrate the additive case, we choose the so-called
Sasa-Tasaki (ST) contact dynamics [6], which depends only
on the configuration of the system from which particles are
transferred. The transition rate at contact is defined as [30]

Tc(n′
i, n′

jR |ni, n jR )

∝
{

exp{−[ε̄(n′
i ) − ε̄(ni )]} if n′

i < ni

exp{−[ε̄R(n′
jR ) − ε̄R(n jR )]} if n′

i > ni

(51)

where i and j are two sites of the contact, with i belonging to
the system and j to the reservoir. The ST contact dynamics
ensures that additivity applies, and hence that a chemical
potential μR of the reservoir can be defined. In this model, the
probability weight Fiso(C) of the isolated system associated
with a configuration C = (n1, . . . , n2L ) is given by [30,55]

Fiso(C) = exp

(
2L∑
i=1

ε̄(ni )

)
cosh

(
2L∑
i=1

(−1)i f ni

)
. (52)

Once connected to a reservoir with the ST contact dynamics,
this probability weight is renormalized into

Fcont (C) = Fiso(C) e−2Lζ (ρ) (53)

with ζ (ρ) = ∫ ρ
η(ρ ′) dρ ′ and η(ρ) = μcont (ρ) − μiso(ρ).

The grand-canonical distribution is then given by

PGC(C) ∝ Fcont (C) e2LμR ρ. (54)

The function η(ρ) is known in terms of a function η(μ), where
μ = μiso is the chemical potential of the isolated system,
which is known only implicitly through a function ρ(μ). The
simplest case is the linear one according to which ε̄(n) = ε̄1n
for n � 2 [we recall that ε̄(n) = +∞ for n > 2]. One can
absorb the energy parameter ε̄1 into a redefinition of μiso,
introducing μ = μiso − ε̄1. The explicit expressions of the
functions η(μ) and ρ(μ) then read

η(μ) = ln
c1 + (1 + c2)eμ + 2c1e2μ + e3μ

1 + 2c1eμ + (1 + c2)e2μ + c1e3μ
, (55)

ρ(μ) = c1eμ + (1 + 2c2)e2μ + 3c1e3μ + 2e4μ

1 + 2c1eμ + (1 + 2c2)e2μ + 2c1e3μ + e4μ
(56)

with c1 = cosh f and c2 = cosh(2 f ). For f = 0, η(μ) = 0 as
expected, since at equilibrium μcont = μiso. Equations (55)
and (56) provide a parametric representation of the func-
tion η(ρ), which can then be plotted easily (see Fig. 5).
The observed symmetry η(ρ) = −η(2 − ρ) is a consequence
of the microscopic particle-hole symmetry [({ni}, f , ρ) ↔
({τi},− f , 2 − ρ), with τi = 2 − ni the number of holes at site

FIG. 5. Plot of the function η(ρ ) from Eqs. (55) and (56) for
the lattice particle model. Parameters are f = 0, 0.5, 1, 2. The model
settings are nmax = 2 and ε̄(n) = ε̄1n.

i] that exists for the present version of our model. This holds
for μiso and μcont as well. The function ζ (ρ) may then be
readily obtained by numerical integration of η(ρ) (not shown).

Note that in the small f limit, the expression of η(μ)
simplifies to

η(μ) = 1 + 2eμ − 2e2μ + e3μ

1 + 2eμ + 2e2μ + e3μ

f 2

2
+ O( f 4). (57)

However, the expression of the function ρ(μ) remains com-
plicated even in this limit.

2. Nonadditive case

This model can also be used to illustrate the case when the
additivity property of the large deviation function I ′(ρ, ρ̄R )
breaks down, so that no chemical potential can be defined for
the reservoir. This is achieved for instance by using a different
contact dynamics, like the Kawasaki dynamics which does not
factorize [30,40]. In this case, the grand-canonical distribution
takes the general form given in Eq. (39):

PGC(C) = Fiso(C)

NGC
e2Lλ(ρ) (58)

with λ(ρ) defined in Eq. (41). Note that even if no chemical
potential of the reservoir appears in the expression of the
grand-canonical distribution (58), it is convenient for practical
purposes to use the chemical potential μ = μiso of the iso-
lated system to determine parametrically the ρ dependence of
quantities of interest, as done in Sec. IV B 1. Let us emphasize
again that the chemical potential μiso does not play the role of
a genuine chemical potential for the systems in contact. It only
acts as a useful parameter here.

To evaluate λ(ρ), one can take advantage of the fact that
the expression of I ′(ρ, ρ̄R) is known explicitly in terms of μ,
I ′(ρ, ρ̄R ) = Ĩ ′(μ, ρ̄R) [30]. One then gets for λ, in terms of the
variable μ,

λ(μ) =
∫ μ

[μ1 − Ĩ ′(μ1, ρ̄R )]
dρ

dμ
(μ1) dμ1 . (59)

From this relation it is possible to obtain λ(ρ) parametrically
in terms of μ, using the expression of ρ(μ) given in Eq. (56).
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V. CONCLUSION

As in equilibrium, the grand-canonical setting is expected
to be an important physical situation in nonequilibrium ther-
modynamics. Here, we have followed a physically motivated
path by explicitly considering that the system of interest is
in contact with a much larger system playing the role of a
reservoir, which may be either at or out of equilibrium. Our
approach is based on the formalism developed in [29,30]
to define nonequilibrium chemical potentials for systems in
contact, through the study of the large deviation function
of the densities of the two systems when this large devia-
tion function satisfies an additivity property. When additivity
holds, a chemical potential of the reservoir can be defined, and
the grand-canonical distribution takes a form similar to the
equilibrium one, but with a probability weight renormalized
by a nonequilibrium contribution of the contact as compared
to the probability weight of the isolated system. A formal
Legendre grand-canonical structure follows from the large
deviation form of the density distribution. The role of the cor-
responding formal Legendre parameter is played, at a physical
level, either by the chemical potential of the reservoir or by
a potential energy difference imposed between the system
and the reservoir, resulting in several equivalent forms of a
static fluctuation-response relation. We have also given the
generic expression of the grand-canonical distribution when
additivity does not hold, implying that no chemical poten-
tial can be defined for the reservoir. Explicit models have
also been considered to illustrate on concrete examples the
form taken by the grand-canonical distribution. These results
provide a firm ground for the definition of a grand-canonical
ensemble, and constitute a significant step forward in the quest
for a nonequilibrium thermodynamics. They also show that
equilibrium thermodynamic notions may not generalize far
from equilibrium, since some simplifications resulting from
the microscopic detailed balance property are lost, leading
to a possibly strong influence of the microscopic contact
dynamics.

Regarding future work, it would be of interest to investigate
how this grand-canonical ensemble construction is modified
when considering a nonvanishing exchange rate with the
reservoir. The problem of a finite exchange rate is certainly
difficult to address in a general framework, but the further
assumption that one system is an ideal reservoir with fast
relaxation might bring some simplifications to the problem.
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APPENDIX A: CHEMICAL POTENTIAL OF A GAS OF
NONINTERACTING ACTIVE PARTICLES

For the sake of completeness, we provide in this Appendix
some more details about the calculations that lead to Eq. (45).
A detailed and complete discussion of this system is available
in [31].

We focus here for definiteness on the case of ABPs in a
potential, but calculations are very similar for other models of

active particles like RTPs [31]. The dynamics of the position
r = (x, y) of an ABP in a potential U (r) is defined by

ṙ = v0 e(θ ) − κ∇U , (A1)

where the angle θ diffuses with angular diffusion coefficient
Dr; κ is a mobility coefficient. The probability density P(r, θ )
is governed by the Fokker-Planck equation

∂P

∂t
(r, θ ) = −∇ · {[v0e(θ ) − κ∇U (r)]P(r, θ )} + Dr

∂2P

∂θ2
.

(A2)

Expanding this equation onto angular Fourier modes

fk (r, t ) =
∫ 2π

0
dθ P(r, θ, t ) eikθ , (A3)

we get

∂ fk

∂t
= −v0

2
[(∂x + i∂y) fk−1 + (∂x − i∂y) fk+1]

+ κ∇ · ( fk∇U ) − k2Dr fk . (A4)

The mode k = 0 corresponds to the density field ρ(r, t ),
which is a conserved quantity and thus a slow mode. We aim at
determining a closed equation on this density field. With this
goal in mind, we consider a diffusive limit by taking Dr → ∞,
keeping the effective spatial diffusion coefficient D = v2

0/2Dr

fixed. In this limit, modes fk for k � 1 have a fast relaxation,
and their time derivative can be neglected, which allows one
to reexpress these modes in terms of the density field ρ (see
[31] for details). One eventually finds the following closed
equation on the density field ρ(r):

∂ρ

∂t
= D∇ ·

[
∇

(
ρ + D

8Dr
�ρ

)]

+ κD

Dr
∇ · [�ρ∇U + (∇ρ · ∇)∇U ]

+ κ∇ · (ρ∇U ). (A5)

We look for a steady-state solution of Eq. (A5) in the form

ρ(r) ∝ exp

(
−φ0(r) − 1

Dr
φ1(r)

)
. (A6)

Under the assumption that the potential energy depends only
on the coordinate x, U (r) = U (x), one obtains

φ0(x) = κ

D
U (x), (A7a)

φ1(x) = −κ

8
U ′′(x) − 13κ2

16D
U ′(x)2 + 7κ3

8D2

∫ x

0
dz U ′(z)3.

(A7b)

We interpret the potential U (x) as forming a potential en-
ergy barrier separating two compartments A and B, centered
at x = 0. The smooth potential U (x) vanishes in the bulk of
each compartment. By continuity of the density profile ρ(x)
at x = 0, the steady-state densities ρA and ρB are related by

ρ∗
Aeφ(x∗

A ) = ρ∗
Beφ(x∗

B ) , (A8)

where x∗
k (k = A, B) are two points in the bulks of com-

partments A and B, far from the potential barrier. Since the
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potential U (x) and its derivatives vanish in the bulk of each
compartment, one has

φ(x∗
k ) = 7κ3

8D2Dr

∫ x

0
dz U ′(z)3. (A9)

The densities ρA and ρB are thus found to depend on the shape
of the potential barrier.

Given that particles are noninteracting, a simple combina-
torial reasoning [31] shows that the large deviation function
I (ρA, ρB) defined in Eq. (1) is given by

I (ρA, ρB) = γAρA ln
ρA

ρ∗
A

+ γBρB ln
ρB

ρ∗
B

(A10)

with the constraint γAρA + γBρB = ρ̄, where ρ̄ is the total
average density, and γk (k = A, B) is the relative volume
of compartment k. The large deviation function given in
Eq. (A10) is thus additive. Given that the transfer dynamics
between compartments proceeds by single particle exchange,
macroscopic detailed balance holds. Transition rates have the
Sasa-Tasaki form [6], and thus obey a factorization property
between systems and reservoir [29,30]. One can thus define
a nonequilibrium chemical potential [31]. After rearranging
the terms in the expression of the derivative of the large
deviation function, and using Eqs. (A8) and (A9), one obtains
the expression of the chemical potential in compartment k:

μcont
k (ρ) = ln ρ + ηk (k = A, B), (A11)

where ln ρ describes the ideal gas contribution, while ηk is
the nonequilibrium correction resulting from the contact. To
leading order in 1/Dr , the nonequilibrium correction ηk reads

ηk = −η0

∫ 0

x∗
k

dx [U ′(x)]3 (k = A, B), (A12)

with η0 = 7
2κ2Dr/v

4
0 for ABPs. Similar results hold for related

models like RTPs, or ABPs in an external field [31].

APPENDIX B: EQUILIBRIUMLIKE CONTACT DYNAMICS
AND ISOLATED CHEMICAL POTENTIAL μiso

In this Appendix, we briefly sketch the proof that an ideal,
equilibriumlike, contact dynamics which obeys a microscopic
detailed balance relation with respect to the weights Fiso(C)
[as defined in (34)] would lead to μcont = μiso, in a similar
way as equilibrium.

To do so, one must come back to the generic situation of the
contact between two systems A and B in the weak exchange
limit, as described in Sec. II (we refer to [29,30,40] for a more
detailed analysis). The microscopic dynamics of exchange is
defined by the microscopic transition rates Tc(CA,B → C ′

A,B)
with CA,B = (CA, CB) the pair of the microscopic configura-
tions of systems A and B, respectively. The joint configuration
C ′

A,B is obtained from CA,B by a transfer of particles between
A and B. We assume the following microscopic local detailed
balance relation to hold, for all configurations:

Tc(CA,B → C ′
A,B)

Tc(C ′
A,B → CA,B)

= FA(C ′
A)

FA(CA)

FB(C ′
B)

FB(CB)
, (B1)

with FA,B the respective weights [in the sense of the proba-
bility weights Fiso(C) defined for the isolated systems A and
B] associated with the canonical distributions (34). Note that
such a microscopic dynamics might remain purely theoretical,
contrary to the physically motivated dynamics described in
Sec. II A which could in principle be implemented experimen-
tally. From the microscopic detailed balance (B1), one directly
shows that the coarse-grained transition rates ϕ(�NA; ρA, ρB)
defined as

ϕ(�NA; ρA, ρB)

=
∑
C′

A,B

∑
CA,B

Tc(CA,B → C ′
A,B)PA(CA|ρA)PB(CB|ρB) (B2)

satisfy the macroscopic detailed balance relation (9), that
yields

I ′(ρA, ρB) = μiso
A (ρA) − μiso

B (ρB) , (B3)

with μiso
A,B associated with the nonequilibrium free energy

(35), for any transition rate Tc obeying the microscopic de-
tailed balance relation (B1). Equation (B3) naturally yields
μiso

A (ρ∗
A) = μiso

B (ρ∗
B) at stationarity.
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[42] C. Maes and K. Netočný, J. Math. Phys. 51, 015219 (2010).
[43] M. Colangeli, C. Maes, and B. Wynants, J. Phys. A: Math.

Theor. 44, 095001 (2011).
[44] J. A. McLennan Jr., Phys. Rev. 115, 1405 (1959).

[45] J. Palacci, C. Cottin-Bizonne, C. Ybert, and L. Bocquet, Phys.
Rev. Lett. 105, 088304 (2010).

[46] I. Theurkauff, C. Cottin-Bizonne, J. Palacci, C. Ybert, and L.
Bocquet, Phys. Rev. Lett. 108, 268303 (2012).

[47] I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger,
and T. Speck, Phys. Rev. Lett. 110, 238301 (2013).

[48] J. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine, and P. M.
Chaikin, Science 339, 936 (2013).

[49] A. Bricard, J.-B. Caussin, N. Desreumaux, O. Dauchot, and D.
Bartolo, Nature (London) 503, 95 (2013).

[50] J. R. Gomez-Solano, A. Blokhuis, and C. Bechinger, Phys. Rev.
Lett. 116, 138301 (2016).

[51] B. Derrida, Phys. Rep. 301, 65 (1998).
[52] M. R. Evans, S. N. Majumdar, and R. K. P. Zia, J. Phys. A:

Math. Gen. 37, L275 (2004).
[53] M. R. Evans, S. N. Majumdar, and R. K. P. Zia, J. Phys. A:

Math. Gen. 39, 4859 (2006).
[54] M. R. Evans and T. Hanney, J. Phys. A: Math. Gen. 38, R195

(2005).
[55] J. Guioth and E. Bertin, J. Stat. Mech.: Theor. Exp. (2017)

063201.
[56] M. E. Cates and J. Tailleur, Europhysics Letters (EPL) 101,

20010 (2013).
[57] J. Deseigne, O. Dauchot, and H. Chaté, Phys. Rev. Lett. 105,

098001 (2010).
[58] V. Narayan, N. Menon, and S. Ramaswamy, J. Stat. Mech.

(2006) P01005.
[59] A. Kudrolli, G. Lumay, D. Volfson, and L. S. Tsimring, Phys.

Rev. Lett. 100, 058001 (2008).
[60] F. Peruani, J. Starruss, V. Jakovljevic, L. Søgaard-Andersen, A.

Deutsch, and M. Bär, Phys. Rev. Lett. 108, 098102 (2012).
[61] S. Zhou, A. Sokolov, O. D. Lavrentovich, and I. S. Aranson,

Proc. Natl. Acad. Sci. USA 111, 1265 (2014).
[62] J. Rodenburg, S. Paliwal, M. de Jager, B. G. Bolhuis, M.

Dijkstra, and R. van Roij, J. Chem. Phys. 149, 174910 (2018).
[63] E. Woillez, Y. Kafri, and V. Lecomte, J. Stat. Mech.: Theor. Exp.

(2020) 063204.
[64] S. Katz, J. L. Lebowitz, and H. Spohn, J. Stat. Phys. 34, 497

(1984).
[65] E. Bertin, J.-P. Bouchaud, and F. Lequeux, Phys. Rev. Lett. 95,

015702 (2005).
[66] M. R. Evans, S. N. Majumdar, and R. K. P. Zia, J. Stat. Phys.

123, 357 (2006).

022107-12

https://doi.org/10.1088/0034-4885/66/11/R03
https://doi.org/10.1088/1751-8113/44/48/483001
https://doi.org/10.1103/PhysRevE.76.030101
https://doi.org/10.1103/PhysRevLett.93.230601
https://doi.org/10.1103/PhysRevLett.103.260602
https://doi.org/10.1103/PhysRevLett.96.120601
https://doi.org/10.1103/PhysRevE.75.031120
https://doi.org/10.1103/PhysRevLett.105.150601
https://doi.org/10.1103/PhysRevE.84.041104
https://doi.org/10.1103/PhysRevE.91.062136
https://doi.org/10.1209/0295-5075/123/10002
https://doi.org/10.1103/PhysRevE.100.052125
https://doi.org/10.1063/1.5085740
https://doi.org/10.1038/nphys3377
https://doi.org/10.1103/PhysRevLett.114.198301
https://doi.org/10.1039/C5SM01412C
https://doi.org/10.1103/PhysRevLett.113.028103
https://doi.org/10.1103/PhysRevE.91.032117
https://doi.org/10.1103/PhysRevE.93.062605
https://doi.org/10.1103/PhysRevE.93.032605
https://doi.org/10.1088/1751-8121/aa99b6
https://doi.org/10.1088/1742-5468/ab8555
https://doi.org/10.1088/1742-5468/ab2902
https://doi.org/10.1063/1.3274819
https://doi.org/10.1088/1751-8113/44/9/095001
https://doi.org/10.1103/PhysRev.115.1405
https://doi.org/10.1103/PhysRevLett.105.088304
https://doi.org/10.1103/PhysRevLett.108.268303
https://doi.org/10.1103/PhysRevLett.110.238301
https://doi.org/10.1126/science.1230020
https://doi.org/10.1038/nature12673
https://doi.org/10.1103/PhysRevLett.116.138301
https://doi.org/10.1016/S0370-1573(98)00006-4
https://doi.org/10.1088/0305-4470/37/25/L02
https://doi.org/10.1088/0305-4470/39/18/006
https://doi.org/10.1088/0305-4470/38/19/R01
https://doi.org/10.1088/1742-5468/aa6de2
https://doi.org/10.1209/0295-5075/101/20010
https://doi.org/10.1103/PhysRevLett.105.098001
https://doi.org/10.1088/1742-5468/2006/01/P01005
https://doi.org/10.1103/PhysRevLett.100.058001
https://doi.org/10.1103/PhysRevLett.108.098102
https://doi.org/10.1073/pnas.1321926111
https://doi.org/10.1063/1.5048698
https://doi.org/10.1088/1742-5468/ab7e2e
https://doi.org/10.1007/BF01018556
https://doi.org/10.1103/PhysRevLett.95.015702
https://doi.org/10.1007/s10955-006-9046-6

