
PHYSICAL REVIEW E 103, 022106 (2021)

Stochastic fractal and Noether’s theorem
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We consider the binary fragmentation problem in which, at any breakup event, one of the daughter segments
either survives with probability p or disappears with probability 1−p. It describes a stochastic dyadic Cantor
set that evolves in time, and eventually becomes a fractal. We investigate this phenomenon, through analytical
methods and Monte Carlo simulation, for a generic class of models, where segment breakup points follow a
symmetric beta distribution with shape parameter α, which also determines the fragmentation rate. For a fractal
dimension df , we find that the df th moment Md f is a conserved quantity, independent of p and α. While the
scaling exponents do not depend on p, the self-similar distribution shows a weak p dependence. We use the idea
of data collapse—a consequence of dynamical scaling symmetry—to demonstrate that the system exhibits self-
similarity. In an attempt to connect the symmetry with the conserved quantity, we reinterpret the fragmentation
equation as the continuity equation of a Euclidean quantum-mechanical system. Surprisingly, the Noether charge
corresponding to dynamical scaling is trivial, while Md f relates to a purely mathematical symmetry: Quantum-
mechanical phase rotation in Euclidean time.
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I. INTRODUCTION

Natural objects rarely have regular shapes and smooth
edges: They most often come with sparsely distributed con-
stituents, badly twisted tips, or wildly folded surfaces. Similar
features appear in a variety of seemingly disparate systems
across many branches of science. Objects with such irreg-
ularities have traditionally been considered as geometrical
monsters, since Euclidean geometry confines us only to in-
teger dimensions. It was not until 1975, when Mandelbrot
introduced the notion of fractals [1,2], that proper appre-
ciation was given to objects other than integer-dimensional
Euclidean ones. Unlike an Euclidean object, a fractal lacks
uniform density; its degree of inhomogeneity is measured by
the fractal dimension. Still, the two kinds of objects have an
important feature in common, and that is self-similarity. In
textbooks, what we usually see are fractals that arise after
applying some deterministic rules to simple Euclidean ob-
jects. In nature, however, fractals come into existence through
random processes and time evolution. In order to incorporate
randomness (or, stochasticity) and the notion of time, one
may instead apply probabilistic rules in a sequential manner.
This results in the so-called stochastic fractals (see [3] for a
detailed exposition). Fractals that appear in natural sciences
are generally stochastic in character. Self-similarity in such
fractals manifests, only statistically, through dynamical scal-
ing symmetry [3].

The role of randomness and time in the formation of frac-
tals could be understood by considering a stochastic version
of the dyadic Cantor set (DCS) [4]. Note that in the DCS
problem, at each step, every segment splits into equal halves,

followed by the likely disappearance of a daughter segment
with probability 1 − p. In its stochastic counterpart, on the
other hand, only one segment may split into two at any step; it
splits preferentially with respect to its size, at a random point.
We will see that, for 0 < p < 1, the stochastic system evolves
in time to become a fractal. The system is self-similar in the
sense that its snapshot at a given time is similar to that at
any other time. Moreover, the dynamics of the process brings
along a conservation law—quite nontrivial for p �= 1.

In this article, we explore the stochastic DCS problem for
a generic class of models, where a shape parameter α encodes
in a symmetric beta distribution the degree of randomness in
choosing the fragment breakup points, and tunes the fragmen-
tation rate as well. Finding analytical solutions and algorithms
for numerical simulation, with a perfect matching between
the two, has always been a formidable task for nonuniform
distributions (α �= 1). Our present work achieves this feat.
Apart from demonstrating the fractal nature of the system, we
prove that the d f th moment of the size distribution, Md f , is a
conserved quantity and independent of p and α, where d f is
the fractal dimension. Using the idea of data collapse, we also
show that the snapshot of the system at a given time resembles
exactly that at any other time; this is the hallmark of contin-
uous self-similarity symmetry. We notice that the self-similar
size distribution shows a surprisingly weak dependence on the
survival probability p. We investigate whether self-similarity
and the conserved quantity Md f are connected via Noether’s
theorem. Interestingly, Md f relates as a Noether’s charge not to
self-similarity, but to a quantum-mechanical phase rotation in
Euclidean time. On the other hand, the charge corresponding
to self-similarity turns out to be zero.

2470-0045/2021/103(2)/022106(12) 022106-1 ©2021 American Physical Society

https://orcid.org/0000-0003-3864-6440
https://orcid.org/0000-0003-1498-3469
https://orcid.org/0000-0001-5152-8276
https://orcid.org/0000-0002-6490-1938
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.103.022106&domain=pdf&date_stamp=2021-02-04
https://doi.org/10.1103/PhysRevE.103.022106


RAKIBUR RAHMAN et al. PHYSICAL REVIEW E 103, 022106 (2021)

The rest of this article is organized as follows. Section II
formulates the problem in its continuum version: A variant
of the binary fragmentation equation [5,6]. In Sec. III, we
discuss scaling theory and give analytical solutions for α =
1, 2, 3. Section IV contains an exact algorithm to simulate the
model for generic values of α and p. Extensive Monte Carlo
simulations corroborate all our analytical results: A fractal
dimension, a conserved moment, and dynamical scaling sym-
metry. Noether’s theorem is invoked in Sec. V in order to
explore the symmetry origin of the conserved quantity. In
Sec. VI, we make concluding remarks and leave some open
questions.

II. FORMULATION OF THE PROBLEM

Analytical studies of the stochastic DCS problem can be
made by considering the following variant of the well-known
binary fragmentation equation [5,6]:

∂t c(x, t ) = −c(x, t )
∫ x

0
dy F (x − y, y)

+ (1 + p)
∫ ∞

x
dy c(y, t )F (x, y − x), (1)

where c(x, t ) is the distribution function at time t of segment
size x. The first term on the right-hand side of Eq. (1) de-
scribes the loss of size-x segments due to their splitting into
smaller ones, while the second term describes the gain from
the splitting of larger segments. The function F (x, y), called
the fragmentation kernel, captures the details of how a size-
(x + y) parent segment splits into two segments of sizes x and
y. In particular, its integral gives the fragmentation rate [5]:

a(x) ≡
∫ x

0
dy F (x − y, y), (2)

which itself depends on the size x of the parent segment.
Moreover, the kernel furnishes a probability distribution of
location of the breakup-point along a given segment length.
Last but not least, the factor 1 + p in the gain term of Eq. (1)
implies that, at each breakup event, the probability of survival
is unity for one of the daughter segments, while that for the
other one is p (i.e., the other segment may disappear with
probability 1 − p). It is the latter factor in which Eq. (1)
differs, rather crucially, from the usual fragmentation equa-
tion [5]. As we will see, the stochastic system (1) evolves
in time, and eventually becomes a fractal, only when p �= 1.
On physical grounds, the fragmentation kernel ought to be
symmetric with respect to exchange of its arguments as well
as a homogeneous function, i.e.,

F (x, y) = F (y, x), F (λx, λy) = λ�F (x, y), (3)

for some scaling dimension � ∈ R. The fragmentation
rate (2) scales as a(λx) = λ�+1a(x); the corresponding scal-
ing dimension � + 1 is assumed to be positive:

� > −1. (4)

If this condition does not hold, there occurs a cascading pro-
cess in which smaller segments break up at increasingly rapid
rates, a.k.a. the shattering transition, resulting in length being
lost to a phase of zero-size fragments [7]. We instead would

like to consider the case where the segment size approaches
zero asymptotically in time, respecting the scaling limit:

t → ∞, x → 0, such that x�+1t = fixed. (5)

Because x�+1t is a dimensionless quantity, such a limit always
exists as long as inequality (4) holds.

The limit (5) is defined, however, up to a dynamical scal-
ing; it leaves room for transformations of the following kind:

x → x′ = λx, t → t ′ = λzt, (6)

for some λ ∈ R+, with a negative dynamical exponent:

z = −(� + 1) < 0. (7)

In the long-time limit, what happens if the transforma-
tions (6)–(7) comprise a symmetry of the binary fragmenta-
tion problem (1)? Because symmetry transformations of an
equation maps one solution to another, the size distribution
c(x, t ) should exhibit a scaling behavior:

c(λx, λzt ) = λzθc(x, t ), (8)

for some θ ∈ R, in the long-time limit. The existence of
scaling solutions can be revealed through data collapse: The
hallmark of self-similarity in stochastic processes. In this arti-
cle, we will focus on the generalized product kernel, of scaling
dimension � = 2(α − 1), given by

F (x − y, y) = (x − y)α−1yα−1

B(α, α)
, α >

1

2
, (9)

where the normalization factor B(α, α) is an Euler beta func-
tion. One can rewrite the kernel (9) as

F (x − y, y) = x2(α−1) f (y/x; α, α), (10)

to find that f (y/x; α, α) is nothing but the probability density
function of the symmetric beta distribution, for y/x ∈ [0, 1],
with the shape parameter α. With the kernel (9), the fragmen-
tation rate (2) takes the simple form

a(x) = x2α−1, (11)

while the dynamical exponent z takes the value

z = −(2α − 1) < 0. (12)

Apart from determining the power law for the fragmentation
rate with respect to segment size, the shape parameter, as
the name suggests, spells out the shape of the probability
distribution with which segments split preferentially in the
center. For example, α = 1 gives a uniform probability dis-
tribution for the breakup point on a given segment length,
α = 2 corresponds to a parabolic distribution, while the α = 3
distribution curve takes the shape of a Mexican hat, and so
on. The distribution becomes sharper and sharper around the
midpoint as α grows, approaching the delta-function kernel in
the limit α → ∞. Previous studies of the generalized product
kernel include the uniform [5] and the parabolic distribu-
tions [8] in the context of the classical binary fragmentation
problem with p = 1. For 0 < p < 1, the uniform distribution
has already been investigated in [4], where it was shown, both
analytically and through simulation, that the stochastic DCS
exhibits dynamical scaling and possesses a fractal dimension
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(a) (b)

FIG. 1. Illustration of the dependency of n∗ on α and p.

equal to p. This article aims, among other things, at a non-
trivial generalization of the latter work to an arbitrary shape
parameter α > 1

2 .

III. ANALYTICAL STUDIES

In this section, we take an analytical approach to the
stochastic DCS problem. We start with noting that the ker-
nel (9) reduces the fragmentation equation (1) to

∂t c(x, t ) = −x2α−1c(x, t )

+ 1 + p

B(α, α)
xα−1

∫ ∞

x
dy (y − x)α−1c(y, t ).

(13)

With any given initial size distribution c(x, 0), solving this
equation for c(x, t ) is a formidable task for generic values of
α > 1

2 . The scaling behavior in the long-time limit comes in
handy in this regard. It is instructive to consider the nth mo-
ment of the size-distribution function, defined as the following
Mellin transform:

Mn(t ) ≡
∫ ∞

0
dx xnc(x, t ), (14)

and find the solution for Mn(t ) [9,10]. Below we will obtain a
power-law behavior of Mn(t ) for large time.

A. Power-law exponents

In order to incorporate the definition of Mn(t ), we take a
Mellin transform of Eq. (13), and obtain

d

dt
Mn(t ) = γnMn+2α−1(t ), (15)

where γn = γn(α, p) has been defined as

γn(α, p) ≡ (1 + p)B(α, α + n)

B(α, α)
− 1. (16)

The transcendental equation γn(α, p) = 0 will have a unique
positive real root n = n∗ ∈ (0, 1) for p ∈ (0, 1). To see this,
we note that in the open interval (0,1), the transcendental
function γn starts with a positive value γn=0 = p > 0, and
then decreases monotonically to end up with a negative value
γn=1 = − 1

2 (1 − p) < 0. Therefore, γn vanishes at one and

only one point in the interval:

∃ n∗ ∈ (0, 1) such that γn∗ (α, p) = 0. (17)

Then, Eq. (15) tells us that there exists a unique moment of
the size distribution that is conserved in time [9–12]:

d

dt
Mn∗ (t ) = 0, (18)

for some n∗ ∈ (0, 1), whose value can be determined by solv-
ing the transcendental equation (17), i.e.,

�(n∗ + α) �(2α)

�(n∗ + 2α) �(α)
= 1

1 + p
. (19)

While Eq. (19) reduces, for integer values of α, to a polyno-
mial equation that could be solved algebraically, the value of
n∗ in the generic case could be obtained numerically. Figure 1
illustrates the behavior of n∗ as a function of α and p. For a
given p, as α grows, n∗ increases to reach the asymptotic value
of log2(1 + p). With α given, n∗ increases monotonically with
p towards unity. The rate equation (15) can help in finding
an expression for Mn(t ) [13]. Consider the Taylor expansion
of Mn(t ) around t = 0; each term in the expansion can be
computed by iterating Eq. (15). With a monodisperse initial
condition, c(x, 0) = δ(x − l ), for example, one arrives at

Mn(t ) = ln

[
1 + γnt + 1

2!
γnγn+(2α−1)t

2 + · · ·
]
. (20)

As expected, if n = n∗, the corresponding moment will not
depend on time, since γn∗ vanishes. Moreover, if n is of the
form n = n∗ − k(2α − 1), for k ∈ N, the corresponding series
will stop at t k . In other words, in the long-time limit, one can
write

Mn(t ) ∼ t−[(n−n∗ )/(2α−1)]. (21)

Although this result has been obtained only for n being less
than n∗ by integer multiples of (2α − 1), it actually holds good
for any real value of n. This can be seen as recourse to the
scaling behavior that we consider next. Given the large-time
scaling behaviors (6)–(8), it follows from the Buckingham 


theorem that the scaling form of the size distribution can be
written as

c(x, t ) ∼ t θφ(xt−1/z ), (22)
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for some θ ∈ R, such that c(x, t )/t θ is dimensionless, just
as xt−1/z is [14–16]. The physical significance of the scaling
form is as follows. If snapshots of the system are taken at
different time points to collect data for c(x, t ) as a function of
x, then the resulting plots will be distinct for each time point.
However, plots of the corresponding dimensionless quantities,
c(x, t )/t θ versus xt−1/z, must collapse into one universal curve
φ(xt−1/z ), known as the scaling function. This phenomenon
of data collapse is the hallmark of self-similarity in stochastic
processes. Self-similarity in this case means that the snapshots
of the same system taken at different times, although differ-
ent, will look indistinguishable when appropriate temporal
rescalings (with exponents z and θ ) are made. To determine
the exponent θ , let us plug the scaling form (22) into the
definition (14), and obtain

Mn(t ) ∼ t θ+(n+1)/z
∫ ∞

0
dξ ξ nφ(ξ ), (23)

where we have introduced the following denotation:

ξ ≡ xt−1/z. (24)

Because ξ is dimensionless, the integral in Eq. (23) is just
an irrelevant numerical factor. Now, we recall that the n∗th
moment does not depend on time. Then, it follows that

θ = −n∗ + 1

z
= n∗ + 1

2α − 1
. (25)

Finally, we substitute this expression for θ back into Eq. (23).
The result is nothing but our old equation (21), now proved
for an arbitrary real value of n. The moments of the size
distribution correspond to various physical quantities: The
zeroth moment M0(t ) gives the total number of segments at
time t , the first moment M1(t ) measures the total length of the
segments, the second moment M2(t ) is related to variance of
segment size, etc. The mean or typical segment size will be
given by the ratio δ(t ) ≡ M1(t )/M0(t ). According to Eq. (21),
the latter quantity decays in time as

δ(t ) ∼ t−1/(2α−1). (26)

In the expression for the zeroth moment resulting from
Eq. (21), if we eliminate t in favor of δ, we would obtain

M0(δ) ∼ δ−n∗
. (27)

As is well known, the exponent of such a power-law relation is
to be interpreted as the Hausdorff dimension d f of the system
(see, e.g., [3]). Therefore, we have

d f = n∗ ∈ (0, 1) for 0 < p < 1. (28)

Because it takes a noninteger value less than the dimension
of the embedding Euclidean space, we would identify the
Hausdorff dimension d f = n∗ as the fractal dimension of the
binary fragmentation problem. On the other hand, as already
discussed, self-similarity is ensured by the very existence of
the scaling limit (5), with � = 2(α − 1) > −1. These two—
self-similarity and fractal dimensionality—confirm the fractal
nature of the system.

TABLE I. Parameter values for the special cases α = 1, 2, 3.

α b(α) [Eq. (30)] p [Eq. (19)] θ [Eq. (25)]

1 1 n∗ n∗ + 1

2 18 1
6 n∗(n∗ + 5) 1

3 (n∗ + 1)

3 150 1
60 n∗(n∗2 + 12n∗ + 47) 1

5 (n∗ + 1)

B. Scaling functions

The scaling form (22) of the size distribution contains a
universal scaling function φ(ξ ) of the dimensionless variable
ξ , defined in Eq. (24). Now we would like to elaborate on the
nature of the scaling function. Finding an analytical solution
for φ(ξ ) is very difficult in general. In our modest attempt, we
would restrict the analyses to some convenient (small integer)
values of the shape parameter α. With the end in view, let us
substitute the scaling form (22) into Eq. (13). This leads to the
following integrodifferential equation:

0 = ξφ′(ξ ) + (2α − 1)(ξ 2α−1 + θ )φ(ξ )

− (1 + p) b(α) ξα−1
∫ ∞

η=ξ

dη (η − ξ )α−1φ(η), (29)

where a “prime” denotes a derivative with respect to ξ , and

b(α) ≡ 2α − 1

B(α, α)
. (30)

Note that all the time dependencies have been dropped in
Eq. (29) since they contribute to an overall factor, thanks to
the explicit values of the parameters z and θ .

For integer values of α, we already noted that Eq. (19)
reduces to a polynomial equation in n∗. In this case, p =
p(n∗) will be a polynomial function, so that φ(ξ ) could have
closed-form solutions in terms of generalized hypergeometric
functions, as we will see. For given α, it is more convenient to
leave n∗ as the free parameter in Eq. (29). It is also useful to
introduce a new function:

�(ξ ) ≡
∫ ∞

η=ξ

dη φ(η), φ(ξ ) = −�′(ξ ), (31)

which satisfies the following boundary conditions:

�(ξ = 0) = 1, �(ξ → ∞) = 0. (32)

While the first boundary condition is just a choice of normal-
ization, the second one follows from the definition of �(ξ ).
We now present analytical solutions for the scaling function
in the cases of α = 1, 2, 3. Necessary expressions for the
relevant parameters are summarized in Table I.

1. Uniform distribution: α = 1

Already studied in [4], this case is included here for the
sake of completeness. Using Table I, Eq. (29) can be simpli-
fied to the following form:

ξφ′(ξ ) + (ξ + n∗ + 1)φ(ξ ) − (n∗ + 1)
∫ ∞

η=ξ

dη φ(η) = 0.

(33)
In terms of �(ξ ), this reduces to a differential equation:

ξ�′′(ξ ) + (ξ + n∗ + 1)�′(ξ ) + (n∗ + 1)�(ξ ) = 0, (34)
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whose general solution is given by

�(ξ ) = C1e−ξ + C2e−ξ+iπn∗
�(−n∗,−ξ ), (35)

where �(−n∗,−ξ ) is an upper incomplete gamma func-
tion [17]. Then, the boundary conditions (32) impose C1 =
1,C2 = 0. Finally, a differentiation with respect to ξ gives

φ(ξ ) = e−ξ , (36)

which, rather remarkably, is independent of p.

2. Parabolic distribution: α = 2

In this case, given Table I, Eq. (29) reduces to

0 = ξφ′(ξ ) + (3ξ 3 + n∗ + 1)φ(ξ )

− 3(n∗ + 2)(n∗ + 3) ξ

∫ ∞

η=ξ

dη (η − ξ )φ(η). (37)

Now, let us take a logarithmic derivative of the above
equation, i.e., operate it by ξ d

dξ
. From the resulting equation,

when Eq. (37) is subtracted, there will be some cancellation
among the integral terms. Thus, we end up with a third-order
differential equation for �(ξ ); it reads

0 = ξ 2�′′′(ξ ) + (3ξ 3 + n∗ + 1)ξ�′′(ξ )

+ (6ξ 3 − n∗ − 1)�′(ξ )

− 3(n∗ + 2)(n∗ + 3)ξ 2�(ξ ), (38)

whose general solution takes the following form

�(ξ ) = C1�1(ξ ) + C2�2(ξ ) + C3�3(ξ ), (39)

where the three different components are generalized hyper-
geometric functions (see, e.g., [18]):

�1 = 1F1

(
−n∗ + 2

3
,

1

3
; −ξ 3

)
,

�2 = ξ 2
1F1

(
−n∗

3
,

5

3
; −ξ 3

)
,

�3 = ξ−n∗
2F2

(
1,−2(n∗ + 1)

3
;

3 − n∗

3
,

1 − n∗

3
; −ξ 3

)
.

(40)

Given the asymptotic forms of the generalized hypergeometric
functions for large ξ , the vanishing of �(ξ → ∞) leaves us
with a unique linear combination of the component solutions
(40). In addition to that, the normalization condition fixes the
overall constant, giving

C1 = 1, C2 = −�
(

1
3

)
�

(
n∗+5

3

)
�

(
5
3

)
�

(
n∗+3

3

) , C3 = 0. (41)

The explicit solution for φ(ξ ) is then obtained by differen-
tiating Eq. (39) with respect to ξ ; the result is

φ(ξ ) = −3(n∗ + 2)ξ 2
1F1

(
−n∗ − 1

3
,

4

3
; −ξ 3

)

− 3

5
C2n∗ξ 4

1F1

(
−n∗ − 3

3
,

8

3
; −ξ 3

)

− 2C2ξ 1F1

(
−n∗

3
,

5

3
; −ξ 3

)
, (42)

with C2 given in Eq. (41). It would be instructive to explore the
asymptotic behavior of the scaling function. For small values
ξ � 1, it grows linearly: φ ∼ ξ . For large values ξ � 1, on
the other hand, there is an exponential decay with a power-law
prefactor: φ ∼ ξ−(n∗+1)e−ξ 3

. The solution (42) nontrivially de-
pends on p, through the relation p = 1

6 n∗(n∗ + 5). However,
this dependency is rather weak, as we find in Fig. 2(a), where
we plot the scaling function (42) for the cases of p = 0.1, 0.5,
and 0.9. Therefore, one would not expect this p dependency
to be clearly noticeable in numerical simulations.

3. Mexican-hat distribution: α = 3

In the case α = 3, the data from Table I enables the simpli-
fication of Eq. (29) to

0 = ξφ′(ξ ) + (5ξ 5 + n∗ + 1)φ(ξ )

− 5(n∗ + 5)!

2(n∗ + 2)!
ξ 2

∫ ∞

η=ξ

dη(η − ξ )2φ(η). (43)

One can operate this equation by (ξ 2 d
dξ 2 − 4ξ d

dξ
+ 6) to ob-

tain a fourth-order differential equation for �(ξ ):

0 = ξ 3�′′′′(ξ ) + (5ξ 5 + n∗ − 1)ξ 2�′′′(ξ )

+ (30ξ 5 − 4n∗ − 2)ξ�′′(ξ ) + 6(5ξ 5 + n∗ + 1)�′(ξ )

+ 5(n∗ + 3)(n∗ + 4)(n∗ + 5)ξ 4�(ξ ). (44)

This equation has a general solution of the form

�(ξ ) = C1�1(ξ ) + C2�2(ξ ) + C3�3(ξ ) + C4�4(ξ ), (45)

with the four components given by

�1 = 2F2

(
−2 + ν

10
,−2 + ν̄

10
;

1

5
,

2

5
; −ξ 5

)
,

�2 = ξ 3
2F2

(
4 − ν

10
,

4 − ν̄

10
;

4

5
,

8

5
; −ξ 5

)
,

(46)

�3 = ξ 4
2F2

(
6 − ν

10
,

6 − ν̄

10
;

6

5
,

9

5
; −ξ 5

)
,

�4 = ξ−n∗
3F3

(
1,

ν̃

10
,

¯̃ν

10
;

1 − n∗

5
,

2 − n∗

5
,

5 − n∗

5
; −ξ 5

)
,

where ν ≡ n∗ + i
√

3n∗2 + 24n∗ + 44 is a complex number,
so is ν̃ ≡ −ν − 2(n∗ + 1), and a “bar” denotes a complex
conjugation. Again, there is a unique linear combination of
the components compatible with the vanishing of �(ξ → ∞),
while the overall factor is fixed by �(ξ = 0) being unity. The
coefficients are thus determined to be

C1 = 1, C2 = a3b1 − a1b3

a2b3 − a3b2
,

(47)
C3 = a1b2 − a2b1

a2b3 − a3b2
, C4 = 0,
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(a) (b)

FIG. 2. Plots of the scaling function φ(ξ ) for (a) parabolic distribution: α = 2, and (b) Mexican-hat distribution: α = 3.

with the constants ai, bi (i = 1, 2, 3) given as

a1 = �
(

1
5

)
�

(
2
5

)
�

(
n∗−ν

5

)
�

(−2−ν
10

)
�

(
2n∗+4−ν

10

)
�

(
2n∗+6−ν

10

) ,

b1 = �
(

1
5

)
�

(
2
5

)
�

(
ν−n∗

5

)
�

(
4+ν
10

)
�

(
6+ν
10

)
�

(
ν−2n∗−2

10

) ,

a2 = �
(

4
5

)
�

(
8
5

)
�

(
n∗−ν

5

)
�

(
4−ν
10

)
�

(
2n∗+4−ν

10

)
�

(
2n∗+12−ν

10

) ,

(48)

b2 = �
(

4
5

)
�

(
8
5

)
�

(
ν−n∗

5

)
�

(
4+ν
10

)
�

(
12+ν

10

)
�

(
ν−2n∗+4

10

) ,

a3 = �
(

6
5

)
�

(
9
5

)
�

(
n∗−ν

5

)
�

(
6−ν
10

)
�

(
2n∗+6−ν

10

)
�

(
2n∗+12−ν

10

) ,

b3 = �
(

6
5

)
�

(
9
5

)
�

(
ν−n∗

5

)
�

(
6+ν
10

)
�

(
12+ν

10

)
�

(
ν−2n∗+6

10

) .

Having found the explicit solution for �(ξ ), we can easily
obtain the scaling function by taking a ξ derivative of the
former. We prefer not to present the rather unwieldy expres-
sion for φ(ξ ). Instead, it is more instructive to visualize its
functional behavior. In Fig. 2(b), we plot the scaling function
for p = 0.1, 0.5, and 0.9. In comparison with lower-α values,
φ(ξ ) in this case takes a more symmetric shape, with the
persistent weak p dependency. It is also useful to see how
the scaling function behaves asymptotically. For small values
of the argument ξ � 1, it has a quadratic growth, φ ∼ ξ 2,
whereas for large values ξ � 1, it decays as an exponential
function dressed by a power-law prefactor, φ ∼ ξ−(n∗+1)e−ξ 5

.
For larger integer values of the shape function (α > 3), exact
solutions for φ(ξ ) could be obtained in principle in a similar
fashion. However, the generalized hypergeometric functions
would become increasingly complicated as α grows. So, we
would not go further in this direction.

IV. NUMERICAL SIMULATION

In this section, we analyze the stochastic DCS problem
by Monte Carlo simulation. Given the generalized product
kernel (9)–(10), we develop an algorithm to simulate the
binary fragmentation process. Then, we generate simulated

data in order to verify the fractal nature of the system. Our
numerical results match impressively with those predicted by
analytical studies. The simulation studies have been carried
out independently in two different programming languages:
Python [19] and C++ [20]. What would be an algorithm for
simulating the stochastic binary fragmentation process? For
simplicity, we can choose the monodisperse initial condition

c(x, 0) = δ(x − l ), with l = 1. (49)

After all, we are interested in the long-time scaling behavior,
which ought to be independent of the initial distribution [8].
Now, the fragmentation rate formula (11) suggests that the
splitting probability of a size-x segment at any given time
should go as x2α−1, where α is the shape parameter of the sym-
metric beta distribution that governs the position of breakup
points in accordance with Eq. (10). Then, the following algo-
rithm makes sense.

(1) At any iteration step, consider the tuple of surviving
fragment lengths: (x1, x2, . . . , xM0 ), where M0 is the
number of surviving daughter segments. Construct, for
1 � j � M0, the partial sums

σ j =
j∑

i=1

(xi )
2α−1. (50)

The total sum σM0 , identified as the (2α − 1)th mo-
ment M2α−1 of size distribution, never exceeds unity
for α > 1

2 , thanks to the initial condition (49).
(2) Generate a random number r1 with a uniform distribu-

tion in the unit interval [0,1], and compare it with the
(2α − 1)th moment, M2α−1 � 1.

(3) (a) r1 � M2α−1: Pick the segment on which r falls,
i.e., pick the jth segment such that σ j � r1, but σ j−1 <

r1, and move on to step (4).
(b) r1 > M2α−1: Increase the iteration step by one
unit, and go back to step (2).

(4) Generate another random number r2 ∈ [0, 1] with a
symmetric beta distribution of shape parameter α.
Break up the length x j picked in step 3(a) into two
parts: r2x j and (1 − r2)x j .

(5) Generate yet another random number r3 with a uni-
form distribution in [0,1]. If r3 < p, keep both the
daughter segments produced in step (4). Otherwise,
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(a) (b)

FIG. 3. Temporal behavior of the mean segment size δ at large time for (a) α = 2 and (b) α = 3.

remove one of the daughters, say the one of length
(1 − r2)x j , from the system.

(6) Increase the iteration step by one unit.
(7) Repeat steps (1)–(6) ad infinitum.

Steps (1)–(3a) describe, in accordance with the fragmentation
rate (11), how a segment is randomly picked for splitting. Step
(4) spells out where to split the chosen segment; this random
event is modeled by a symmetric beta distribution of shape
parameter α, as the fragmentation kernel (10) specifies. Step
(5) implements with probability 1 − p the possible removal
of a daughter segment at any iteration step. Steps (3b) and (6)
tell us how to count the number of iteration steps: It is given
by the number of attempts taken to pick up and subsequently
split a segment, regardless of success or failure. In a stochastic
simulation, the measure of time is furnished by the number of
iteration steps:

t = number of iteration steps. (51)

Note that the upper bound on the pseudorandom number r1 ∈
[0, 1], considered in step (3), is set by the initial and maximum
value of the (2α − 1)th moment: M2α−1(t = 0) = 1. This en-
sures that the very first attempt splits the initial segment in
accordance with the fragmentation rate (11), thereby starting
the flow of time. Because M2α−1 decays in time (for α > 1

2 ),
at later times, r1 may fall outside the interval [0, M2α−1].
Therefore, step (3) will sometimes end up in failure to pick
up a segment. The inclusion of such failure events is essential
for capturing time as described in Eq. (51). As we will see, our

simulation results will provide a clear testament to it. Because
of the statistical nature of the problem [3], it only makes sense
to talk in terms of ensemble averages, which we denote with
a pair of angular brackets as 〈 · 〉. For a given realization in
an ensemble, M0(t ) denotes the total number of segments,
whereas M1(t ) = ∑M0

i=1 xi gives the total fragment length at
time t . Their respective ensemble averages are denoted as

N (t ) = 〈M0(t )〉, M(t ) = 〈M1(t )〉, (52)

while the mean segment size is given by

δ(t ) = M(t )/N (t ). (53)

In what follows, we work with a 50k ensemble size. We
start by showing that our counting of the iteration steps cap-
tures time correctly, in agreement with the identification (51).
To this end, we investigate the long-time behavior of the mean
segment size δ(t ). In Fig. 3, we plot − ln δ versus ln t , at some
large time values, t ∈ [105, 106], for α = 2, 3. In each case,
our data nicely fits a straight line, whose slope does not seem
to change for different values of probability p. In fact, the
slope matches very well with the value 1/(2α − 1). This is
in total agreement with the analytical formulation presented
in Sec II. Because our simulations exhibit the correct scaling
behavior (5), we must have identified time t correctly.

Next, we plot ln N versus − ln δ for given values of α and p,
as shown in Fig. 4. Again, each plot exhibits linear behavior,
and the corresponding slope is interpreted as the Hausdorff
dimension d f of the system. For different values of α and

(a) (b)

FIG. 4. Power-law behavior of the total segment number N with respect to the mean segment size δ for (a) α = 2 and (b) α = 3.

022106-7



RAKIBUR RAHMAN et al. PHYSICAL REVIEW E 103, 022106 (2021)

(a) (b)

FIG. 5. Illustration of the constancy of the ensemble average of Md f with p = 0.75 for (a) α = 2 and (b) α = 3.

p, the slope values match impressively with the respective n∗
values given by Eq. (19). This validates the equality of d f and
n∗ asserted in Eq. (28). The noninteger value d f quantifies the
fractal dimension.

We also compute the d f th moment of size distribution over
the time range t ∈ [105, 106], for α = 2 and 3. For a given
realization at a given time, this quantity is obtained by the
sum of the d f th power of all the surviving fragment lengths:

Md f = ∑M0
i=1 x

d f

i . We plot its ensemble average 〈Md f 〉 as a
function of time t , and the results are shown in Fig. 5. In
each case, the data points have an excellent fit to a horizontal
straight line. This demonstrates that 〈Md f 〉 is a conserved
quantity. Moreover, for any α, the fitted values of 〈Md f 〉 equal
the theoretical value of unity [21] with a good accuracy.

Last but not the least, we demonstrate the existence of
self-similarity by using the idea of data collapse. With suitably
chosen bin widths for α = 2 and 3, we generate ensemble-
averaged histogram data that represents the size distribution
c(x, t ) as a function of segment size x at time values t =
100k, 200k, 300k, with p = 0.75. As already discussed in
Sec. III A, for given α and p, the plots of c(x, t )/t θ versus
xt−1/z at different t values ought to collapse into a universal
curve. Up to a normalization factor, this curve should coincide
with the scaling function φ(xt−1/z ). As depicted in Fig. 6, we
indeed observe the phenomenon of data collapse by plotting
c(x, t )/t θ against xt−1/z, for the chosen values of α and p.
Therein, we have normalized all the data points by an over-
all factor in order to fit them with the analytical solutions
obtained in Sec. III B. The fitting to the analytical curves
(represented by solid lines) is excellent, as one can see. This
is a strong confirmation of the existence of scaling solutions,
which in turn corroborates that the system exhibits dynamical
scaling symmetry—the manifestation of self-similarity in a
stochastic process.

V. SYMMETRY AND CONSERVED QUANTITY

In the binary fragmentation problem studied in the previous
sections, we came across two notions that could be intercon-
nected by Noether’s theorem: A continuous global symmetry
and a conserved quantity. On the one hand, the system en-
joys dynamical scaling symmetry that manifests itself through
data collapse. On the other hand, the d f th moment of the

system turns out to be conserved in time. It is then natural
to ask whether the two phenomena are related via Noether’s
theorem. In what follows we will resort to the intimate re-
lation between stochastic processes and Euclidean quantum
mechanics (see, e.g., [22,23], and references therein). As we
will see, one can reinterpret the fragmentation equation (1)
as the continuity equation in Euclidean time of a nonlinear
quantum-mechanical system describing an infinitely heavy
particle with nonlocal self-interactions.

A. Quantum-mechanical description

In order to find the Schrödinger equation of the corre-
sponding quantum-mechanical system, let us note that the
particle size “x” appearing in Eq. (1) is a positive semidefinite
quantity; we would like to rename this as “r,” which is to
be interpreted as a radial coordinate describing the quantum-
mechanical system. Then, the fragmentation equation (1)
reads

[∂t + a(r)]c(r, t ) −
∫ ∞

0
dr′G(r, r′)c(r′, t ) = 0, (54)

where a(r) is the fragmentation rate defined in Eq. (2), and the
integral corresponds to the gain term, so that

G(r, r′) = (1 + p)θ (r′ − r)F (r′ − r, r), (55)

with θ (r − r′) being the Heaviside step function:

θ (r − r′) =
{

0, r < r′;
1, r � r′. (56)

Because the particle number density is real and positive
semidefinite, c(r, t ) � 0, it can be expressed as

c(r, t ) = |�(r, t )|2, (57)

where �(r, t ) is some complex function to be determined. To
proceed, we make the following ansatz for the equation that
governs the latter function:

[∂t + V (r, t )]�(r, t ) = 0, (58)

where the function V (r, t ) is assumed to be real valued. To
see that the ansatz (58) qualifies, let us multiply it by �∗(r, t )
and also take complex conjugate of the resulting equation. The
sum of the two gives

[∂t + 2V (r, t )]|�(r, t )|2 = 0. (59)
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(a) (b)

(c) (d)

FIG. 6. Data collapse plot, with p = 0.75, on linear scale for (a) α = 2 and (b) α = 3, and on log-log scale for (c) α = 2 and (d) α = 3.
The solid line represents analytical solution.

In view of the identification (57), one can compare Eqs. (54)
and (59) to obtain the following result:

V (r, t ) = 1

2
a(r) − 1

2

∫ ∞

0
dr′G(r, r′)

∣∣∣∣�(r′, t )

�(r, t )

∣∣∣∣2

. (60)

Let us make an analytic continuation in time:

t = iτ. (61)

Then, using the notation ψ (r, τ ) = �(r, iτ ), one finds that
Eq. (58) gives rise to the following form:

i∂τψ (r, τ ) = Ĥ (r, τ )ψ (r, τ ), (62)

for some Ĥ (r, τ ) to be specified shortly. With h̄ = 1, we would
like to interpret Eq. (62) as a Schrödinger equation in the
radial coordinate. The “Hamiltonian” Ĥ (r, τ ) pertains to an
infinitely heavy particle, say in dimensions D, with nonlocal
self-interactions (see [24] for a systematic study of nonlinear
quantum mechanics). Explicitly,

Ĥ (r, τ ) = lim
m→∞

[
− 1

2m

(
∂2

r + D − 1

r
∂r

)]
+ V̂ (r, τ ), (63)

where the potential V̂ (r, τ ) = V (r, iτ ) is real valued; it con-
sists of two parts: A local potential V̂0(r) and a nonlocal
self-interaction term V̂1(r, τ ), given as

V̂ (r, τ ) = V̂0(r) + V̂1(r, τ ), V̂0 = 1

2
a(r),

(64)

V̂1 = −1

2

∫ ∞

0
dr′G(r, r′)

∣∣∣∣ψ (r′, τ )

ψ (r, τ )

∣∣∣∣2

.

Upon inspection, it is clear that the local potential V̂0 corre-
sponds to the loss term in the fragmentation equation (54),
whereas the nonlocal self-interaction V̂1 corresponds to the
gain term. The nonlinear Schrödinger equation described by
Eqs. (62)–(64) respects the “homogeneity” property [24], ac-
cording to which if ψ is a solution, then so is Zψ for an
arbitrary complex constant Z . This fact will play an important
role in your subsequent analysis.

The wave function ψ (r, τ ) appearing in Eq. (62) is a com-
plex Schrödinger field. Its complex conjugate ψ∗(r, τ ) obeys
the equation of motion

−i∂τψ
∗(r, τ ) = Ĥ (r, τ )ψ∗(r, τ ). (65)

Can Eqs. (62) and (65) be derived from an action through
variational principle? The answer is no; the equations as such
are non-Lagrangian [25]. However, an action exists if the
self-interactions are excluded. Assuming spherical symmetry,
upon integrating out the angular coordinate(s), the action can
be written, up to a factor, as

S =
∫ ∞

0
dτ

∫ ∞

0
dr L[ψ0, ψ

∗
0 ], (66)

where the subscript “0” indicates the exclusion of self-
interactions, and L is the Lagrangian density:

L = rD0−1
[ i

2
(ψ∗

0 ψ̇0 − ψ̇∗
0 ψ0) − V̂0(r)ψ∗

0 ψ0

]
, (67)

with a “dot” denoting a derivative with respect to time τ . Note
that the dimension seen by the quantum-mechanical system
in the absence of self-interactions is denoted by D0, instead
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of D; this distinction can be justified a posteriori. While the
action (66)–(67) does not correspond to our original prob-
lem, it will still provide valuable guidance on constructing
conserved charges of the self-interacting quantum-mechanical
system we are interested in.

B. Global symmetries and Noether charges

In this section, we will explore continuous global symme-
tries of the equations of motion (62) and (65). Conventionally,
Noether’s theorem is presented in the context of symme-
tries of an action. However, as noted in [26], the Lagrangian
formulation of a system is not essential in order for
connecting continuous global symmetries with conserved
quantities. The latter point is particularly important given the
non-Lagrangian nature of our quantum-mechanical system.
Moreover, Noether’s theorem can aptly be generalized for
nonlocal theories [27].

To find the desired Noether charges, we proceed as follows.
For a given symmetry, we first consider the system without
self-interactions V̂1, which enjoys the Lagrangian formula-
tion (66)–(67). This enables us to compute the Noether charge
from the textbook formula

Q0 =
∫ ∞

0
dr

(
∂L
∂ψ̇0

δεψ0 + ∂L
∂ψ̇∗

0

δεψ
∗
0 + L∂ετ

)
, (68)

where δε denotes variation with respect to an infinitesimal
symmetry transformation parameter ε. With the knowledge
of Q0, we make an educated guess at the conserved charge
Q when the self-interactions are included back. For any trial
charge Q, we can use the equations of motion (62) and (65) to
check if it is indeed conserved.

Because constants of motion do not depend on time, they
continue to be conserved even if time is analytically continued
to imaginary values. This seemingly naive fact actually plays
a crucial role. As we will see, the symmetries and conserved
charges of the binary fragmentation problem (1) may be con-
nected only in Euclidean time.

1. Phase rotation

The equations of motion (62) and (65) are invariant under
the global phase rotation:

ψ → e−ĩαψ, ψ∗ → e+ĩαψ∗, (69)

where α̃ is a constant phase angle. This symmetry simply
reflects the homogeneity property of these equations noted
earlier. With self-interactions excluded, the infinitesimal vari-
ations read δεψ0 = −iψ0, δεψ

∗
0 = +iψ∗, and δετ = 0. The

corresponding Noether charge is given by formula (68) as

Q0,p =
∫ ∞

0
dr rD0−1|ψ0(r, τ )|2. (70)

In the context of quantum mechanics, the charge Q0,p reflects
nothing but the conservation of probability. Upon including
self-interactions, let us try with the charge

Qp =
∫ ∞

0
dr rD−1|ψ (r, τ )|2. (71)

Its time derivative is given by the integral

Q̇p =
∫ ∞

0
dr rD−1(ψ∗ψ̇ + ψψ̇∗), (72)

which clearly vanishes on account of the equations of mo-
tion (62) and (65). Therefore, the Qp given in Eq. (71) is the
correct conserved charge.

Now, because Qp is time independent, we can Wick rotate
τ back to t to get a charge conservation

Qp =
∫ ∞

0
dr rD−1 c(r, t ), with

d

dt
Qp = 0. (73)

Therefore, the (D − 1)th moment of the system undergoing
binary fragmentation must be conserved in time. The results
of Sec. III, then lead us to the identification

D = d f + 1. (74)

The d f th moment, as a conserved charge, has therefore noth-
ing to do with dynamical scaling. Moreover, quite remarkably,
the symmetry associated with this conservation does not even
“exist” in real time.

One can turn the logic around to make nontrivial conclu-
sions for the quantum-mechanical system. The presence of
nonlocal self-interactions in Eqs. (62)–(64), for 0 < p < 1,
invokes fractional dimension. This is reminiscent of the inter-
play between nonlocality and fractional dimension observed
for the fractional Schrödinger equation [28–30]. In the def-
inition (71) of Qp, if one identifies the dimension D with
the integer dimension D0 that appears in the absence of self-
interactions, one ends up with probability nonconservation.
However, this conclusion is naive. As Eq. (74) suggests, the
fractional nature of space dimensions must be taken into due
account. Then, probability conservation indeed holds.

Is it possible to further specify the dimension D0, seen
by the quantum-mechanical system in the absence of self-
interactions, through the connection with a stochastic process?
To see this, we analytically continue the fragmentation prob-
lem (13) to the unphysical case of p = −1. The resulting
system is exactly solvable, with its nth moment behaving
as Mn(t ) ∼ �[−(n + 1)/z]t (n+1)/z, where z = −(2α − 1). By
considering the limit n → −1, it becomes clear that the mo-
ment M−1 will be conserved in time [31]. Upon comparing
with the quantum-mechanical probability conservation re-
flected in Eq. (70), one could make the formal identification,
D0 = 0.

2. Dynamical scaling

The d f th moment conservation, as we have already under-
stood, is not connected with dynamical scaling. Then, what
is the conserved quantity corresponding to this continuous
global symmetry? To answer this question, let us first recall
from Eqs. (6) and (7) that the symmetry transformations are
implemented as

r → λ r, τ → λzτ ; z = −(� + 1), (75)

for some λ ∈ R+. Indeed, Eqs. (62) and (65) are invariant
under the transformation (75) given that the wave function ψ

and its complex conjugate ψ∗ scale as

ψ → λzθ/2ψ, ψ∗ → λzθ/2ψ∗. (76)
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The value of the exponent θ can be reconfirmed by noting
that a Noether charge should have a zero scaling dimension.
For example, the conserved charge Qp, given in Eq. (71), by
definition does not depend on time. Neither can it be a func-
tion of the space coordinate, which is integrated out. Then,
invariance of Qp gives

θ = D

� + 1
. (77)

Given the identification (74), this is of course in complete
agreement with the results obtained Sec. III by assuming the
existence of scaling solutions for z < 0.

When self-interactions are excluded, one may consider the
invariance of the action (66)–(67) under dynamical scaling.
This gives a similar expression for θ , with the substitution
D → D0 in Eq. (77). In this case, an infinitesimal transfor-
mation with λ = 1 + ε gives

δετ = zτ, δεr = r, δεψ = 1
2 zθ0ψ, δεψ

∗
0 = 1

2 zθ0ψ
∗
0 .

(78)

Upon using formula (68), and the fact that the Lagrangian
vanishes on the equations of motion, the corresponding charge
is found to be trivial:

Q0,s = 0. (79)

Now, we will show that the Noether charge remains trivial
even in the presence of self-interactions. Note that a nontrivial
charge would be an integral of the form

Q(trial)
s =

∫ ∞

0
dr f (r)

∫ ∞

0
dr′G(r, r′)|ψ (r′, τ )|2, (80)

with some yet-unspecified function f (r) �= 0. It is clear from
Eqs. (64) that the trial charge (80) vanishes in the absence
of self-interaction terms, as it should. Moreover, its time
derivative is zero: Q̇(trial)

s = 0, irrespective of f (r). This is
because d

dτ
|ψ (r′, τ )|2 itself vanishes on the equations of mo-

tion (62) and (65). In congruence with the invariance under
dynamical scaling of the charge (80) itself, we can choose
f (r) = rD−�−2 �= 0.

Again, because Q(trial)
s is time independent, we can Wick

rotate τ back to t , and still get a charge:

Q(trial)
s =

∫ ∞

0
dr rD−�−2

∫ ∞

0
dr′G(r, r′)c(r′, t ), (81)

which is conserved in time t . The charge appearing in Eq. (81)
is just a Mellin transform of the gain term appearing in
the fragmentation equation (54). To get a better insight into
this quantity, let us take an appropriate Mellin transform of
Eq. (54) to obtain

d

dt
Md f −�−1(t ) = −Qp + Q(trial)

s , (82)

where we have made use of the identification (74) and the
choice a(r) = r�+1. The left-hand side of Eq. (82) is, how-
ever, proportional to Qp itself. This can be seen from the
rate equation (15) obtained for a generalized product kernel
with shape parameter α = 1 + �/2. The upshot is the linear
dependency of two charges:

Q(trial)
s = (1 + γd f −2α+1)Qp. (83)

This means that, for f (r) �= 0, the proposed charge (80) cor-
responds instead to phase rotation. The conclusion is that
f (r) cannot be nontrivial if the charge (80) has to do with
dynamical scaling. This means

Qs = 0. (84)
In other words, there is no nontrivial Noether charge corre-
sponding to dynamical scaling.

VI. REMARKS

In this article, we have studied the formation of a stochastic
fractal by invoking a stochastic version of the dyadic Cantor
set problem. The process entails that, at any step, only one
segment may split, at a random point, preferentially with
respect to its size, into two fragments. One of the daughter
segments may immediately disappear from the system with
probability 1 − p. For a continuous system, such kinetics can
be captured by a variant of the well-known binary fragmenta-
tion equation. We have considered a fragmentation kernel, for
which segment breakup points follow a symmetric beta distri-
bution with shape parameter α > 1

2 , while the fragmentation
rate goes like the (2α − 1)th power of segment size. We have
demonstrated, both analytically and through extensive Monte
Carlo simulations, that the system exhibits fractal properties
in the long-time limit. This was established by two impor-
tant observations: The emergence of a fractal dimension, and
the manifestation of self-similarity through dynamical scaling
symmetry.

The shape parameter α encodes randomness in breaking
segments preferentially in the center. The present work gener-
alizes the study [4] of the completely random case (α = 1). As
the degree of this randomness decreases, the fractal dimension
is found to increase, reaching the maximum value log2(1 + p)
in the no-randomness limit, α → ∞. Our analytical results in-
clude the prediction of a conserved moment for generic values
of α and p. We have also presented analytical expressions for
the scaling forms of size distribution in the cases of α = 2
and 3. On the other hand, our algorithm for simulating the
stochastic process works nicely for arbitrary α and p. This is a
nontrivial feat to achieve, especially because it is a priori not
obvious at all how to correctly incorporate time in simulation
studies for a nonuniform distribution (α �= 1). It is reassuring
to find excellent agreement between the analytical and the
simulation-based results.

Intuitively, one might find it surprising that the parameter
p, which determines the probability of removing a fragment,
affects the resulting size distribution since either the longer or
the shorter fragment may be removed with equal probability.
However, in any particular fragmentation event, the rate p
influences the relative numbers of shorter postfragmentation
segments to longer prefragmentation segments occurring in
the total population. Since p appears in both the govern-
ing equation (13) and consequently in the equation for the
self-similar distribution (29), it is natural that the resulting
distribution also depends on p. Even so, the dependence of
the shape of the distribution on the survival probability p is
very weak.

The deep connection between stochastic processes and
Euclidean quantum mechanics can hardly be overstated.
Indeed, our exploration of the symmetry origin of the
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conserved quantity relies on it. Corresponding to the binary
fragmentation process, there appears in Euclidean time a
quantum-mechanical system of an infinitely heavy particle
with nonlocal self-interactions. We have thereby revealed that
dynamical scaling symmetry does not give rise to any nontriv-
ial conservation law. Remarkably, the symmetry associated
with the conserved moment turns out to be purely mathe-
matical in nature: Phase rotation in the quantum-mechanical
system, which does not even “exist” in real time [32].
Therefore, the nontrivial conservation law in the binary
fragmentation problem parallels probability conservation in
quantum mechanics. This connection could have important
implications for quantum-mechanical systems in the presence
of nonlocality.

It would be interesting to consider the opposite phe-
nomenon of fragmentation, namely, kinetics of aggregation.
Fractal behavior and conservation laws have been noticed
in such processes by including stochastic self-replication
with certain probability and constant kernel [33]. One could
explore this direction further, for generalized kernels, and
study the corresponding Euclidean quantum-mechanical sys-
tems. Another avenue to pursue is the generalization of
the present work to dimensions larger than one. For p =
1, higher-dimensional fragmentation processes exhibit multi-
scaling with infinitely many conserved quantities [34], which
in turn give rise to multifractality [35–37]. It is a priori unclear
what could furnish the corresponding infinitude of continuous
global symmetries. We leave these as future work.
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