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Evaluation of memory effects at phase transitions and during relaxation processes
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We propose to describe the dynamics of phase transitions in terms of a nonstationary generalized Langevin
equation for the order parameter. By construction, this equation is nonlocal in time, i.e., it involves memory
effects whose intensity is governed by a memory kernel. In general, it is a hard task to determine the physical
origin and the extent of the memory effects based on the underlying microscopic equations of motion. Therefore
we propose to relate the extent of the memory kernel to quantities that are experimentally observed such as the
induction time and the duration of the phase transformation process. Using a simple kinematic model, we show
that the extent of the memory kernel is positively correlated with the duration of the transition, and that it is of
the same order of magnitude, while the distribution of induction times does not have an effect on the memory
kernel. This observation is tested at the example of several model systems, for which we have run computer
simulations: a modified Potts model, a dipole gas, an anharmonic spring in a bath, and a nucleation problem. All
these cases are shown to be consistent with the simple theoretical model.
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I. INTRODUCTION

Phase transitions are characterized by order parameters,
such as an averaged local density that distinguishes a gas from
a liquid, a magnetization that distinguishes a paramagnetic
phase from a ferromagnetic phase, or a degree of local po-
sitional order that distinguishes a crystal from a liquid. For
complex systems out of thermal equilibrium, it is in general
not possible to compute the evolution of such coarse-grained
observables exactly based on the underlying microscopic dy-
namics. (This would require to integrate out a large number
of degrees of freedom from a time-dependent distribution of
microstates, which is a hard problem.) Therefore, the dy-
namics of order parameters is often modelled by means of
approximative theories [1] such as phase field models [2],
dynamic density functional theory [3], Cahn-Hilliard theory
[4], or classical nucleation theory [5–7]. In these approaches
the equation of motion for the evolution of the order parameter
is usually assumed to be time-local. However, if one derives
the evolution equation of a coarse-grained observable from
the underlying microscopic dynamics of a nonequilibrium
system, in general, one obtains an equation of motion with
memory [8–11]. We therefore discuss the question: What is
the temporal extent of memory during the evolution of an or-
der parameter at a phase transition and under which conditions
can it be neglected?

As the physical interpretation of memory effects—and of
their origin—is in general not straightforward, we draw a
connection between simple phenomenological observations of

*Tanja.Schilling@physik.uni-freiburg.de

the dynamics of phase transitions and the quantification of
memory kernels of an exact nonequilibrium coarse-grained
model. We first present a theoretical estimate and then com-
pare the estimate to the results of four computer simulation
studies.

II. AVERAGES OVER BUNDLES OF TRAJECTORIES

We begin by recalling how an equation of motion for a
coarse-grained observable can be derived. Consider a system
of a large number of microscopic degrees of freedom {�i},
i = 1 . . . N , that evolve according to Hamilton’s equations of
motion, and a phase-space observable A(�) (e.g., an order pa-
rameter of a phase transition) which is a well-defined function
at any point in phase space � = (�1, . . . , �N ). Then prepare a
nonequilibrium ensemble, i.e., a large number of copies of this
system initialized according to any phase-space distribution
ρ0 of interest. By means of projection operator formalism,
we showed in Refs. [11,12] that for any such observable,
any initial ensemble, and any dynamical process, there exist
functions ω(t ), K (t ′, t ), and ηt such that the time-evolution At

of the observable obeys the following equation of motion:

dAt

dt
= ω(t )At +

∫ t

0
dτK (τ, t )Aτ + ηt . (1)

The letter t as a subscript denotes here the time-dependence
on a single trajectory, whereas the time-dependence between
parentheses indicates a function of time independent of the
trajectory, which is determined by the choice of the initial
ensemble. The form of the equation is thus a nonstationary
version of the generalized Langevin equation, and K (τ, t ) is
the so-called memory kernel. In this context, time-dependent
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averages are defined as sums over all possible trajectories
initiated from the initial phase-space density ρ0, i.e., for any
phase-space observable X (�) we have

〈X (t )〉 =
∫

d�ρ0(�)U0,t X (�), (2)

where Ut ′,t is the propagator of the system (e.g., Ut ′,t =
eiL(t ′−t ) for Hamiltonian systems, where iL is the Liouville
operator). Similarly, nonstationary correlation functions are
defined as 〈X (t ′)Y (t )〉 = ∫

d�ρ0(�)(U0,t ′X (�))(U0,tY (�))
for any pair of observables X and Y . Specifically, the equa-
tion of motion for the autocorrelation function C(t ′, t ) =
〈A∗(t ′)A(t )〉 is shown to read

∂C(t ′, t )

∂t
= ω(t )C(t ′, t ) +

∫ t

t ′
dτC(t ′, τ )K (τ, t ). (3)

By means of the projection operator formalism it can also be
shown that ω(t ) = d ln

√
C(t, t )/dt , however the evaluation

of the memory kernel K (t ′, t ) is much less straightforward and
requires more advanced techniques, as shown in Refs. [13,14].

In the case of phase transitions, the observable has a
time-dependent average. For such observables Eq. (1) can be
inconvenient, because the contributions of ω and K to the
average 〈A(t )〉 and to the fluctuations around the average are
coupled. To resolve these contributions, we consider instead
the equation of motion of a shifted and normalized quantity

�Ãt := At − 〈A(t )〉√
〈A(t )2〉 − 〈A(t )〉2

. (4)

�Ãt fulfills an equation of the same form as Eq. (1) with
a memory kernel �K̃ (τ, t ) and a fluctuating term �η̃t . The
equation of motion for At can then be rewritten as

dAt

dt
= d

dt
〈A(t )〉 + �ω(t )�At

+
∫ t

0
dτ�K̃ (τ, t )w(τ, t )�Aτ + 〈�A(t )2〉�η̃t (5)

with �At = At − 〈A(t )〉, w(t ′, t ) =
√

〈�A(t )2〉/〈�A(t ′)2〉,
and �ω(t ) = d

dt ln
√

〈�A(t )2〉. The first term on the right side
of Eq. (5) describes the evolution of the mean of the observ-
able, the other terms describe how much a single trajectory
deviates from the mean trajectory.

Now let us assume we had observed the dynamics of a
phase transition in an experiment or a simulation by recording
an order parameter A, the value of which is close to zero in the
initial phase, and �1 in the final phase. Phenomenologically,
the trajectory At will often be of the form

At = 1

1 + e− t−T
�

+ ξt , (6)

where T is different for each trajectory, i.e., it is randomly
drawn from a distribution pT (T ) which characterizes a spe-
cific transition. This time corresponds to the time at which the
transition occurs—in the case of a first order transition, this
would be the induction time, while in the case of a contin-
uous transition, T would be close to zero on all trajectories.
Here, we will not yet impose any conditions on the distribu-
tions pT (T ), hence allowing all types of transitions. � is the
timescale needed by the system to undergo the transition, we

will therefore refer to it as the duration of the transition. We
set it to a constant value in this model, but we should note
that its distribution p�(�) in realistic systems is actually not
infinitely narrow. Our model will be consistent as long as the
width of p� is much smaller than the one of pT . Finally, ξt

are the fluctuations around the transition, whose amplitude we
assume to be small and whose average 〈ξ (t )〉 = 0 we assume
to vanish.

A. The case � → 0

We first consider the unrealistic, but analytically tractable
limit case of a discontinuous transition, which corresponds to
� → 0 and

At =
{
ξt if t � T
1 + ξt if t > T

. (7)

The average 〈A(t )〉 can be computed in terms of the probabil-
ity distribution pT (T ) as

〈A(t )〉 =
∫ t

0
dτ pT (τ ). (8)

Here, we have used the fact that the average of the noise ξ

vanishes, and that the main contribution of a trajectory to
the average is 0 if t � T . Similarly, for each trajectory, the
quantity (At − ξt )(At ′ − ξt ′ ) is equal to 1 if both t and t ′ are
greater than T , but vanishes otherwise. We thus have

〈A(t ′)A(t )〉 =
⎧⎨
⎩

∫ t ′

0 dτ pT (τ ) + 〈ξ (t ′)ξ (t )〉 if t ′ � t∫ t
0 dτ pT (τ ) + 〈ξ (t ′)ξ (t )〉 if t � t ′

. (9)

We show in the Supplemental Material [SM], [15] Appendix
A that the overall effect of the noise term 〈ξ (t ′)ξ (t )〉 on
the memory kernel results in a time-local contribution in the
form of a Dirac δ-distribution and a global rescaling prefactor
close to 1 for |t − t ′| > 0. We thus discard the autocorrelation
function of ξ in the next lines, because we intend to focus
on nonlocal contributions and the global prefactor will not
impact the evaluation of the timescale of the memory effects.
We consider

〈A(t ′)A(t )〉 =
⎧⎨
⎩

∫ t ′

0 dτ pT (τ ) if t ′ � t∫ t
0 dτ pT (τ ) if t � t ′

. (10)

To simplify the expressions in the next lines we define

fT (t ) :=
∫ t

0
dτ pT (τ )

hT (t ) := fT (t )(1 − fT (t )). (11)

The shifted and modified time autocorrelation function
�C̃(t ′, t ) = 〈�Ã(t ′)�Ã(t )〉 evolves as

�C̃(t ′, t ) =
⎧⎨
⎩

fT (t ′ )(1− fT (t ))√
hT (t ′ )hT (t )

if t ′ � t

fT (t )(1− fT (t ′ ))√
hT (t ′ )hT (t )

ift � t ′
. (12)
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We note that for any triplet of times t ′ < s < t

�C̃(t ′, s)�C̃(s, t ) = fT (t ′)(1 − fT (s))√
hT (t ′)hT (s)

fT (s)(1 − fT (t ))√
hT (s)hT (t )

(13)

= fT (t ′)(1 − fT (t ))√
hT (t ′)hT (t )

(14)

= �C̃(t ′, t ). (15)

This implies that �C̃(t ′, t ) = exp (
∫ t

t ′ dτγ (τ )), and that the
memory kernel is of the form �K̃ (t ′, t ) ∝ δ(t − t ′), i.e., there
is no memory and the evolution equation of the order param-
eter is local in time. More precisely, we show in, see [SM],
Appendix B that

�K̃ (t ′, t ) = − pT (t )

hT (t )
δ(t ′ − t ). (16)

B. The case � > 0

Let us now turn to the general case, in which the transition
from 0 to 1 is not instantaneous but takes a nonzero duration
of time � > 0. An analytic derivation of the memory kernel
is no longer possible here, therefore we use here and in the
analysis of the following computer simulations a numerical
method that we introduced in Refs. [13,14].

Given a passage time distribution pT (T ) we compute the
average 〈A(t )〉 and correlation function 〈A(t ′)A(t )〉

〈A(t )〉 =
∫ ∞

0

pT (τ )dτ

1 + e− t−τ
�

, (17)

〈A(t ′)A(t )〉 =
∫ ∞

0

pT (τ )dτ(
1 + e− t ′−τ

�

)(
1 + e− t−τ

�

) . (18)

Again, the autocorrelation of the noise 〈ξ (t )ξ (t ′)〉 is discarded
here because its overall contribution to the timescale of the
memory kernel is negligible (see Appendix A). We then define
the shifted and normalized autocorrelation function �C̃(t ′, t )
as before and numerically compute the corresponding mem-
ory kernel �K̃ (t ′, t ). We analyze three types of distributions:
an exponential distribution pT (T ) = λe−λT , a Lévy distri-
bution pT (T ) = 1√

2πλ
e− 1

2λT T −3/2, and a Weibull distribution

pT (T ) = 2λ2Te−(λT )2
. For all of these distributions, we use

λ−1 as the unit of time. We show �K̃ for the exponential
distribution and various values of � in Fig. 1. The extent
(“width”) of the memory kernel increases with increasing val-
ues of �. In order to quantify this observation, we locate the
time t ′ < λ−1 for which �K̃ (t ′, t ) = �K̃ (t, t )/2 at t = λ−1.
We then define TK = λ−1 − t ′, which is a measure of the ex-
tent of the memory kernel. In Fig. 2 we show TK as a function
of � for the three tested distributions. We conclude that the
extent of the memory is determined mostly by the duration of
the transition �, i.e., the speed with which the phase trans-
formation happens, rather than the details of the passage time
distribution pT : the slower the transition, the longer the mem-
ory. As the data in Fig. 2 lies close to the bisecting line, we
note that the extent of the memory kernel is of the same order
of magnitude as the duration of the transition.

FIG. 1. Memory kernel �K̃ (t ′, t ) (in units of λ−2) as a function
of both t and t ′ for � ∈ {0.05, 0.1, 0.2, 0.5} (in units of λ−1, from top
to bottom, left to right). Brightness indicates the value of �K̃ (t ′, t ).

This simple semianalytic approach indicates that the dura-
tion of the transition � is strongly correlated with the extent of
the memory kernel, while the distribution of induction times
is irrelevant. However, the model used here is very simplistic.
We thus need to corroborate the claim by data from more
complex processes, in which the sigmoidal form for the evo-
lution of the order parameters is not necessarily observed. We
will therefore measure the memory kernels for four different
computer simulation data sets.

III. MODIFIED POTTS-MODEL

As a first example model we study a two-dimensional mod-
ified Potts-model (MPM) with deterministic dynamics. The

FIG. 2. Time extent of the memory kernel as a function of the
duration of the transition � for three passage time distributions
pT (T ). The extent of the kernel and � are of the same order of
magnitude.
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FIG. 3. Exemplary snapshots of relaxation process of the modi-
fied Potts model for a = 3. Brightness indicates spin values.

idea is to generate a simple relaxation process. The system is
composed of spins on a N × N square lattice, each of which
has M possible states. Each spin has eight neighbors (those
with contact at the corners included). At t = 0 the system is
initialized by assigning all spins random values drawn from
a uniform distribution. The system is then let free to evolve
according to the following deterministic update rule:

si(t + δt ) =
[

1

8

(
a +

∑
j

s j (t )

)]
. (19)

Here, the sum runs over all neighbors of si and a is a bias.
This rule ensures the spins to always be in one of the M
states. At the boundaries of the lattice, missing neighbors are
treated as spins in the 0 state, i.e., s j = 0. This ensures that
the system becomes completely ordered in the long-time limit.
We choose δt = 1 as the unit of time because the evolution of
the system is only defined on discrete time steps.

As the order parameter we compute a scaled and shifted
average off all spins:

S(t ) = c1

∑
si(t ) + c2. (20)

Here, c1 and c2 are chosen such that the averages over
trajectories 〈S(0)〉 = 0 and limt→∞〈S(t )〉 = 1. On the level
of individual trajectories, we get a sharp distribution of
the observable around S = 0 with a standard deviation
of σS = 0.003 at t = 0. Two parameter sets are tested:
{M = 11, N = 200, a = 2} and {M = 11, N = 200, a = 3},
and at least 1000 trajectories are sampled for each of them.
Exemplary snapshots of a system with a = 3 are shown in
Fig. 3. The time-evolution of the order parameter is shown in
Fig. 4 (MPM, dotted and solid lines).

Since the shape of the order parameter curve deviates no-
ticeably from the sigmoid function used before, we evaluate
the extent of the kernel TK at the time t where the observable
averaged over all trajectories is 0.5. (Note that the distribution
of the times where the transitions occur is very sharp here.
Thus, calculating the time where the transitions occur for
every trajectory individually and averaging afterwards yields
a result that deviates from the former value by no more than
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FIG. 4. Scaled and shifted observables during relaxation pro-
cesses: Average magnetization in the Potts model (dotted and solid
line), averaged dipole moment along z axis in the dipole model
(dashed and dash-dotted lines).

a single time step.) The kernels evaluated at those times are
depicted in Fig. 5. As before, the time t ′ for which �K̃ (t ′, t ) =
�K̃ (t, t )/2 is determined and used to calculate the extent of
the kernel TK = t − t ′. Then, the duration of the transition �

is obtained by taking half of the time difference between the
points where the observable intersects 1/(1 + e) � 0.27 and
1/(1 + e−1) � 0.73.

The ratios of the extents of the kernels and the durations of
the transition are given in Table I. The kernel extent and the
transition duration are of similar magnitude, as predicted in
Sec. II.
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(t − t′)/δt

0.0
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MPM with a = 2
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FIG. 5. Kernels of different relaxation processes for times t
where the averaged observable is 0.5. Potts model (dashed and dotted
lines) and dipole model (dash-dotted line).
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TABLE I. Ratio of the extent of the memory kernel to the dura-
tion of the transition for different types of relaxation processes and
phase transitions.

Process TK/�

MPM with a = 2 0.33
MPM with a = 3 0.54
Dipoles 0.45
Nucleation 1.8

IV. DIPOLE GAS

As a second example we consider the relaxation process in
a gas of dipoles, in which the particles align in the direction
of an external homogeneous field. Here, 125 particles are ini-
tialized on a three-dimensional simple cubic lattice, all spins
aligned along the positive z direction. Then the constraint to
the lattice is removed and the particles are free to move in
the entire simulation box. The system has periodic boundary
conditions. The external field is set such that dipoles pointing
along the negative z direction minimize the energy. To break
the symmetry of the initial state and prevent the system from
being stuck in an unstable stationary state, the particles are
assigned some initial random momenta and angular velocities
that are small in comparison to their values later along the
trajectories. The interaction of the particles is modeled via a
purely repulsive Weeks-Chandler-Anderson interaction (spec-
ified by the corresponding Lennard-Jones parameters ε and
σ ) and an exact magnetic dipole-dipole interaction [16] using
the nearest image convention. Explicitly, the Weeks-Chandler-
Anderson interaction potential is

VWCA(r) =
{

4ε
[(

σ
r

)12 − (
σ
r

)6 + 1
]

if r < 21/6σ

0 else
, (21)

and the dipole force Fi j and torque Gi j on particle j due to
particle i is given by

�Fi j = 3μ0

4πr4
((�n × �mi ) × �mj + (�n × �mj ) × �mi

−2�n( �mi �mj ) + 5�n(�n × �mi )(�n × �mj )) (22)

�Gi j = μ0

4πr3
(3( �mi�n) �mj × �n + �mi × �mj ), (23)

where r is the distance of the dipoles, �n is the normalized
vector pointing from the position of particle i to j, μ0 is the
permeability of free space, and �mi, j are the dipole moments
of the particles. The propagation of the system is done using
the velocity-Verlet integrator. The particles with a mass m and
moment of inertia I = mσ 2/4 are placed in a box of volume
(6σ )3. The dipole moment of the individual particles �m is
chosen such that ε = 2μ0‖ �m‖2/(πσ 3). As a final remark, it
should be mentioned that the timescale δt used in Figs. 4 and
5 is arbitrary because it can be trivially scaled by the particle
masses and moments of inertia or the energies and dipole
moments.

As an observable for this transition, we compute the to-
tal dipole moment along the z axis (scaled and shifted as
explained before). The averaged observable of 1000 trajec-
tories is depicted in Fig. 4 (dipoles, dash-dotted line). The

r

FIG. 6. Sketch of anharmonic spring system. Here, all particles
interact via a repulsive short range interaction. Additionally, two
particles with distance r are coupled via an anharmonic spring.

dipole moment shows a strong overshoot such that the naively
determined duration of the transition, as done for the Potts
model, is not a good indicator for the relaxation time. To gen-
erate an observable that indicates the progress of relaxation,
we integrated the modulus of the derivative of this curve.
Rescaling and shifting as before yields the dashed red curve in
Fig. 4 (dipoles: monotonic). We determine the duration of the
transition as well as the time at which the extent of the kernel
is evaluated from this curve as before for the Potts model.
The kernel of the unmodified dipole moment is also shown
in Fig. 5 and the ratio of the duration of the transition and the
extent of the kernel is given in Table I. Again, the ratio is of
order one.

V. ANHARMONIC SPRING SYSTEM

In this section, we test the dependence of the mem-
ory kernel on the passage time distribution pT (T ). We
consider a system of particles interacting via the Weeks-
Chandler-Anderson potential (without dipoles). Additionally,
two particles are coupled by an anharmonic spring with an
interaction potential V (r), where r denotes their distance
(compare with Fig. 6). This interaction potential has a barrier
separating two wells, one global minimum at short distances
and a shallow one at larger distances. We initialize the coupled
particles in the minimum at large distances and then observe
the relaxation of their distance into the deeper minimum.
The distance is a “coarse-grained observable”, because the
remaining particles form an effective bath. A suitable choice
of the form of the anharmonicity then allows us to tune pT (T )
independently from �. Here, we intend to leave � unchanged
for different pT (T ). As pT (T ) depends sensitively on the
potential barrier, this can be achieved by small changes of the
shallow well at large distances.

The interaction potential is defined piecewise by two poly-
nomials of degree three. These two polynomials are chosen
such that the interaction potential and its derivative are con-
tinuous. The interaction changes from one polynomial to
the other in a double zero at r = 7σ (see Fig. 7), where
the potential barrier is located. Both polynomials are com-
pletely determined by the position of their remaining zero
and their potential depth. For the short range part, we always
set V (2σ ) = 0 and the potential depth is −10kBT . The form
of the long range potential is varied and takes one of the
following forms:

In three cases we choose V (8σ ) = 0 and potential depths
{0.2kBT, 0.8kBT, 1.0kBT } corresponding to the black lines
in Fig. 7. The fourth case, corresponding to the gray line in
Fig. 7, has V (8.5σ ) = 0 and a potential depth of 0.8kBT .
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FIG. 7. Interaction potentials of the anharmonic spring. The in-
teraction potentials are piecewise defined for 0 � r � 7σ and 7σ <

r. Only the long-range part of the interaction potential is varied.

For each of these interaction potentials the simulations are
done as follows. All particles are placed in the simulation
box without any overlap. The distance of the two particles
connected via the anharmonic spring is set to the location of
the local minimum of V (r) around r = 7.6σ . Then, velocities
according to the temperature T are assigned to all particles
except the ones connected by the spring. Note that this is the
temperature used to specify other system parameters such as
the depths of the spring potential. This is important because
the temperature may slightly vary during the simulation due
to a systematic increase in the Weeks-Chandler-Anderson in-
teraction energy and a decrease in the spring energy when
the spring gets contracted towards its global minimum of the
potential V (r). At the beginning, the two particles connected
via the spring are kept at fixed positions to ensure that the
remaining system is equilibrated before releasing them. Once
the particles are released, their distance is tracked as the order
parameter of the relaxation process.

A simulation box of size (20σ )3 containing 4000 particles
is used. The interaction strength of the Weeks-Chandler-
Anderson is set to ε = kBT . As before, the simulation box
is assumed to have periodic boundaries and the particles are
propagated using the velocity-Verlet integrator. Again, the
particle masses affect the dynamics only by rescaling the
timescale δt . For each of the four spring potentials 600 simu-
lations are carried out.

As can be seen in Fig. 8, the distance as a function of
time shows the desired behavior. These trajectories are well
described with the sigmoid defined in Eq. (6) if one adds an
additional offset, scales the transition width with a prefactor
and removes the first minus in the exponent in the denom-
inator. (The last point is due to the fact that the distance
relaxes from bigger values in the beginning to smaller ones in
the end.) Fitting the individual trajectories to such sigmoidal
functions where only the induction time T and the duration
of the transition � are left as free fit parameters, we obtain
good agreement between the original data and the fits (see

0 2 4 6 8 10
t/δt

3

4

5

6

7

8

r/
σ

FIG. 8. Three exemplary trajectories (black curves) obtained
from an interaction potential with a potential depth of 1.0 kBT and
fits of the sigmoidal form (gray lines).

gray lines in Fig. 8). From these fits, we obtain the averaged
induction time 〈T 〉 of the transitions as well as the averaged
duration 〈�〉 of the transitions. When regarding the kernels
of the four processes at their respective averaged induction
times (see Fig. 9), one can see that they differ only slightly.
Especially, the kernel extents vary only weakly (maximum rel-
ative deviation ∼14%) whereas the averaged induction times
deviates drastically (maximum relative deviation ∼76%). The
explicit values are given in Table II where also the ratio of
kernel extents to the duration of the transitions TK/〈�〉 is
given. Again, these ratios are of order one.
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FIG. 9. Normalized memory kernels at their respective averaged
transition time for the four spring systems, i.e., for different pT (T ).
The line styles for the different spring potentials correspond to the
ones used in Fig. 7.
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TABLE II. Averaged induction time, kernel extent, and ratio of
kernel extent to duration of transition for different spring potentials.
As before, the spring potential is determined by the depth of the
second minimum and the third zero point of the interaction potential.

Spring potential 〈T 〉/δt TK/δt TK/〈�〉
{0.2kBT, 8.0σ } 6.6 0.16 0.33
{0.8kBT, 8.0σ } 8.1 0.14 0.28
{1.0kBT, 8.0σ } 9.9 0.15 0.31
{0.8kBT, 8.5σ } 11.6 0.14 0.26

VI. HARD-SPHERE NUCLEATION

As a more complex example, we study the crystal nu-
cleation and growth process in a compressed liquid of hard
spheres. The simulation employs an event driven molecular
dynamics (EDMD) algorithm, following mostly the method
proposed by Bannermann, due to its robustness regarding
overlaps [17]. The system consists of 16384 particles and is
enclosed by cubic periodic boundary conditions at an initial
volume fraction of ηsim = 0.45, corresponding to the stable
liquid phase. The particles’ diameter σ and mass m as well as
the thermal energy kBT are chosen as units of the simulation
resulting in a time scale of δt = √

m/(kBT ) σ .
The particles are initially placed on a fcc lattice and the

amplitude of their starting velocities is determined by the
equipartition theorem to be |�v| = √

3 σ
δt . The directions are

chosen at random, under the constraint to keep the center of
mass at rest. This initial configuration is equilibrated for about
Tequi/δt = 250, after which the system has formed a stable
liquid.

The system is then rapidly compressed to a volume fraction
of η = 0.54 in about Tcomp/δt = 0.3. The compression is im-
plemented by rescaling all positions as well as the box length,
and afterwards resolving all overlaps by the dynamics of the
system.

We monitor the crystallinity of the system in terms of
the q6q6-bond-order parameters [18,19]. The local structure
around a particle i with Nb neighbors is characterized by the
quantity

q̄lm(i) = 1

Nb

Nb(i)∑
j=1

Ylm(r̂i j ), (24)

where Ylm(r̂i j ) are the spherical harmonics evaluated in the
direction of the relative position of particles i and j in a given
coordinate system.

q̄6m(i) suffices to indicate the local fcc structure of hard-
sphere crystals. Based on q̄6m(i) a normalized vector �q6(i) is
defined with elements for m = −6 to m = 6 given by

q6m(i) = q̄6m(i)√∑6
m′=−6 |q̄6m′ (i))|

. (25)

As a minimum threshold for the scalar product �q6(i)�q6( j)
we choose 0.6 to identify a pair of particles i and j as “ori-
entationally bonded”. To define a solid particle we set the
minimum number of bonded neighbours to be nB > 8, similar
to, e.g., [19,20].
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FIG. 10. Example trajectories of the solid fraction in the hard-
sphere system. The dashed line represents the sigmoidal best fit to the
colored data points, while the gray data points have been excluded.

As an observable we measure the fraction of solid particles
in the system. A total number of 580 trajectories are simulated
of which 562 pass through the phase transition within the
simulation time. By performing a least square fit using the
sigmoid function equation (6) to the individual solid fraction
trajectories and averaging the optimal values, we obtain the
mean duration of the transition as well as the time at which
the extent of the kernel is evaluated.

Figure 10 shows a subset of the simulated trajectories.
Some trajectories reach an intermediate plateau crystallizing
in more than one step. In those cases the growing clusters
contain defects. For the fit only data points from the first
step are used, corresponding to the actual crystal nucleation
event, and not to the stage of healing defects. This choice
introduces a bias on the transition times, however, the effect
on the estimate of � is of about 10% which seems acceptable
for the comparison of magnitudes we carry out here.

For the calculation of the kernel (see Fig. 11) we use all
trajectories. The ratio of the extent of the kernel to the duration
of the transition is given in Table I and is again of similar order
of magnitude.

VII. CONCLUSION

We have shown in this paper that the memory effects in
the order parameter dynamics at a phase-transition can be
robustly correlated to the duration of the transition, i.e., the
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FIG. 11. Kernel of crystal nucleation and growth in hard spheres.
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timescale needed for a system to go from the initial phase to
the final one. In contrast, the distribution of induction times
has no significant impact on the extent of memory. This result
was first theoretically predicted and then backed up by simu-
lations of different systems.

The correlation can be seen as a useful practical tool for
anyone interested in modeling the dynamics of a phase tran-
sition, who has some phenomenological knowledge (based
on experimental observations or numerical data). In fact, one
could then use a nonstationary generalized Langevin equation
of the form (1) for which the characteristics of the memory
kernel would be guided by the phenomenological knowledge
one has of the process under study. This is, to our opinion,
a novel approach to describe quantitatively the dynamics of

phase-transitions, that allows to overcome the inaccuracies
of Markovian quasiequilibrium models by using an exactly
derived generalized Langevin equation, whose parameters can
be chosen using the experimental knowledge one has of the
problem.
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