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Comment on “Validity of path thermodynamics in reactive systems”
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The paper by Malek Mansour and Garcia [Phys. Rev. E 101, 052135 (2020)] is shown to be based on
misconceptions in the stochastic formulation of chemical thermodynamics in reactive systems. Their erroneous
claims, asserting that entropy production cannot be correctly evaluated using path probabilities whenever the
reactive system involves more than one elementary reaction leading to the same composition changes, are
refuted.
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I. REFUTATION

In Ref. [1], Malek Mansour et al. have raised doubts on the
validity of the stochastic approach, they call “path thermo-
dynamics,” to evaluate thermodynamic quantities (especially,
entropy production) using path probabilities in reactive sys-
tems. In particular, they claim that “nowadays the general
belief is that path thermodynamics is the ultimate theoretical
formalism for physicochemical systems ranging from macro-
scopic to nanometer scale. [...] Yet, we shall prove that the
resulting properties will be wrong whenever the reactive sys-
tem involves more than one elementary reaction leading to the
same composition changes.” Similar criticisms have already
been expressed by Malek Mansour et al. in Ref. [2].

The aim of this Comment is to show that such criticisms
are ill founded because they result from basic misconceptions
in the stochastic formulation of chemical thermodynamics in
reactive systems.

The reactive systems that are here considered are networks
of elementary chemical reactions ρ = 1, 2, . . . , r:
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where {Ai}a
i=1 are reactant and product species, {Xj}c

j=1 in-

termediate ones, and ν
(∓)
ρ j ∈ N the numbers of molecules

entering the forward and backward reactions ±ρ of respective
rates W±ρ . For a system of volume V , the molecular concen-
trations are given by ai = Ai/V and x j = Xj/V , where Ai and
Xj are the numbers of molecules of corresponding species.
These concentrations are supposed to be uniform because of
efficient mixing.

If the intermediate species are assumed to have lower
concentrations than reactants and products (ai � x j) either
at initial time or by supply from outside, the system may
reach a stationary state determined by the reactant and product
concentrations. This stationary state is either the equilibrium
steady state if the conditions of detailed balance are satisfied,
or a nonequilibrium steady state (NESS) if this is not the case.

At the mesoscopic level of description, the numbers Ai

and Xj are erratically changing in time because of reactive
events occurring at random upon inelastic collisions between
molecules. Such physicochemical systems can be described
in the framework of the theory of stochastic processes. If
the reactive events are fast enough with respect to the mean
time between their occurrences, these stochastic processes
may be taken as continuous-time discrete-state Markov pro-
cesses defined in terms of transition rates W±ρ . The theory of
such Markovian processes has been developed since classic
works by Kolmogorov [3] and Feller [4,5]. A famous theorem
by them states that the probabilities of such a process are
given by the solutions of a master equation and that these
solutions are essentially unique. This master equation can
be written in terms of the transition rates W±ρ and it can
be solved to obtain the probability distributions of the ran-
dom variables at a given time, as well as the probabilities of
the paths taken by these variables at successive instants of
time.

In Ref. [1], Malek Mansour et al. claim that “... we are
entirely free to define a ‘path’ any way we want. But then
it is not always possible to associate a stochastic process to
an arbitrary constructed path. This misinterpretation of the
Kolmogorov’s theorem is at the origin of the wrong result
of Gaspard and Andrieux” [6,7]. The fallacy of this state-
ment is that Malek Mansour et al. [1] here suppose that
the uniqueness theorem of Kolmogorov and Feller imposes
some limitations in the description of a physicochemical sys-
tem by different possible stochastic processes. Actually, the
stochastic processes concerned by the uniqueness theorem of
Kolmogorov and Feller are defined by choosing given random
variables, although different sets of random variables may
be chosen for the description of a physicochemical system,
thus leading to the definition of several possible stochastic
processes. Therefore, the uniqueness theorem does not estab-
lish the uniqueness of the stochastic process associated with a
given physicochemical system. The misuse of the uniqueness
theorem in Ref. [1] is misleading Malek Mansour et al. to
incorrect conclusions that will now be refuted.
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As a matter of fact, there exist different properties of inter-
est in reactive systems. These properties may be the numbers
Xj of molecules of the intermediate species in the reaction net-
work (1), or the amounts of reactants and chemical free energy
that are consumed when the reaction network is driven out of
equilibrium, or also the entropy that is produced due to dissi-
pation. Establishing the balances of energy and entropy is the
goal of thermodynamics. Besides, depending on the set of ran-
dom variables chosen to describe physicochemical systems,
the stochastic process may be reversible or not, whenever the
system is at equilibrium or not, as can be illustrated in many
physicochemical systems. The choice of random variables is
thus crucial for the description of nonequilibrium systems and
their thermodynamics. Fully aware of these fundamental is-
sues, the author of this Comment proposed in 2004 to describe
the time evolution of a stochastic reactive system in terms of
the paths

X (t ) = X 0
ρ1→X 1

ρ2→· · · ρn→X n, (2)

where X l are the numbers of molecules of intermediate
species at the successive times t1 < t2 < · · · < tn and ρl the
reactions occurring along the path, while the initial condition
is sampled according to the stationary probability distribution
Pst (X 0) [6]. The successive random reactive events can be
generated with Gillespie’s algorithm [8,9] based on the fol-
lowing reaction rates of the network (1):

Wρ (X |X ′) for the transition X
ρ→X ′ = X + νρ (3)

with ρ = ±1,±2, . . . ,±r and the stoichiometric coefficients
νρ = {νρ j ≡ ν

(+)
ρ j − ν

(−)
ρ j }c

j=1. Far from being superfluous, the
reaction sequence {ρ1, ρ2, . . . , ρn} is playing a key role and it
must be specified to be consistent with the Gillespie algorithm
simulating the reactive events. Indeed, Gillespie’s algorithm
provides an exact Monte Carlo method for simulating the
stochastic time evolution of coupled chemical reactions de-
scribed by jump Markov processes [8,9]. Moreover, it is worth
pointing out that the aim of the original algorithm is the
simulation of the reactive events, instead of the jumps of the
molecular numbers X .

Apparently, Malek Mansour et al. in Refs. [1,2] have over-
looked these essential aspects and they have wrongly assumed
that the paths are defined in Ref. [6] as

X0(t ) = X 0 → X 1 → · · · → X n (4)

by omitting the reaction sequence. The stochastic process
resulting from this omission is defined in terms of the sole
random variables X l that are the molecular numbers of inter-
mediate species. The rates of this other stochastic process are
given by summing the rates of all the elementary reactions
having equal stoichiometric coefficients for the intermediate
species considered, according to

W (X |X ′) ≡
∑

ρ

δX ′−X ,νρ
Wρ (X |X ′). (5)

This other stochastic process is thus different from the pre-
vious one if the reactive system involves more than one
elementary reaction leading to the same composition changes.
For numerical purposes, the rates (5) define a different Gille-
spie algorithm, which can have the advantage of speeding

up simulations. However, the limitation is that this other
stochastic process does not contain enough information to
evaluate the entropy production, which instead requires the
knowledge of the elementary chemical reactions taking place
in the reactive system [10]. The theorem by Kolmogorov
and Feller certainly guarantees the uniqueness of the path
probabilities Pst[X (t )] and Pst[X0(t )] associated with each of
the two stochastic processes, but, contrary to the erroneous
claims by Malek Mansour et al. in Ref. [1], this theorem does
not disprove the existence of either one or the other of those
processes.

Now, we continue with the issue of evaluating the entropy
production using path probabilities. Inspired by Ref. [11],
the author of the present Comment proposed in Ref. [6] that
entropy production can be evaluated in reactive systems using
the ratio of the probability Pst[X (t )] of the path (2) to the
probability of its time reversal

X R(t ) = X n
−ρn→ · · · −ρ2→X 1

−ρ1→X 0. (6)

The logarithm of this ratio can be written as

ln
Pst[X (t )]

Pst[X R(t )]
= Z (t ) + ln

Pst (X 0)

Pst (X n)
(7)

in terms of the quantity

Z (t ) ≡ ln
n∏

l=1

Wρl (X l−1|X l )

W−ρl (X l |X l−1)
. (8)

In the long-time limit, the last term in Eq. (7) becomes negli-
gible in front of Z (t ). This latter is linearly growing with time
under nonequilibrium conditions, giving the entropy produc-
tion rate

diS
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∣∣∣∣
st

= R ≡ lim
t→∞

1

t
〈Z (t )〉 (9)

in terms of the mean value of the quantity (8) with respect
to the path probability of the stochastic process, Boltzmann’s
constant being set equal to 1 [6]. This method leads to the
standard expression for entropy production in reactive sys-
tems [10]

diS

dt

∣∣∣∣
st

=
∑

X

r∑
ρ=1

[Wρ (X − νρ |X )Pst (X − νρ )

−W−ρ (X |X − νρ )Pst (X )]

× ln
Wρ (X − νρ |X )Pst (X − νρ )

W−ρ (X |X − νρ )Pst (X )
� 0. (10)

In contradistinction with what is written in Ref. [6], Malek
Mansour et al. have supposed in Refs. [1,2] that the paths (4)
omitting the reaction sequence and their time reversal would
have been considered in Ref. [6]. This allegation is misleading
Malek Mansour et al. to consider a quantity looking like
Eq. (7) but for the paths (4) instead of (2) and Z (t ) replaced
by

Z0(t ) ≡ ln
n∏

l=1

W (X l−1|X l )

W (X l |X l−1)
, (11)
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which is defined with the rates (5) instead of (3). Given that
the assumptions are different, it is not a surprise that this is
also the case for the conclusions that are reached.

Actually, the mean growth rate of the quantity (11) is
always smaller than or equal to the entropy production rate
given by Eq. (9): R0 ≡ limt→∞〈Z0(t )〉/t � R. If the stochastic
process of the paths (4) is reversible although the system is out
of equilibrium, the rate R0 is equal to zero, confirming that the
paths (4) may not be used to correctly evaluate the entropy
production rate.

As proved in Ref. [6], it is the rate (9) that gives the
entropy production rate in reactive systems since the paths (2)
are needed to identify the transitions associated with the ele-
mentary chemical reactions, as required by the principles of
chemical thermodynamics [10].

Finally, Malek Mansour et al. are trying in Eqs. (14)–
(16) of Ref. [1] to disprove the fluctuation theorem given
by their Eq. (7) for the quantity Z (t ). What is wrong with
this attempt is that it is again confusing the properties of the
two different stochastic processes associated with the paths
defined by either (2) or (4). On the one hand, the quantity
Z (t ) in Eq. (14) of Ref. [1] can only be defined for the
paths X (t ) defined by Eq. (2) including the sequence {ρl}n

l=1
of elementary reactions in the path, but the probability of
this path is not equal to the probability of its time reversal,
Pst[X (t )] �= Pst[X R(t )], in contradiction with the so-called
“fundamental relation” used to obtain Eq. (16) of Ref. [1]. On
the other hand, for the Schlögl model [12,13] considered in
this part of Ref. [1], the stochastic process based on the paths
X0(t ) defined by Eq. (4) omitting the reaction sequence is a
reversible process, for which Pst[X0(t )] = Pst[X R

0 (t )] indeed
holds. However, for the stochastic process corresponding to
the paths X0(t ) where the reaction sequence is omitted, the
quantity Z (t ) defined in Eq. (14) of Ref. [1] is undefined since
the sequence {ρl}n

l=1 of elementary reactions is not specified,
contradicting the premises. Consequently, in both alternatives,
Eq. (16) of Ref. [1] does not invalidate the fluctuation theorem
given by Eq. (7) of the same paper.

Thus, the claims by Malek Mansour et al. in Ref. [1],
according to which the results of Refs. [6,7] would be wrong,
are inconsistent due to basic mistakes in the stochastic for-
mulation required to evaluate entropy production in reactive
systems.

II. ILLUSTRATIVE EXAMPLE

These issues are easily illustrated with the following simple
reaction network,

A
W+1�
W−1

X
W−2�
W+2

B, (12)

where A and B are the reactant or product species, while X is
the intermediate species. The transition rates of this reaction
network are given by

W+1 = k+1A, W−1 = k−1X,

W+2 = k+2B, W−2 = k−2X. (13)

The Gillespie algorithm simulating this process is based on
the distinct rates W±1 and W±2 and it generates the paths (2)
specified not only by the molecule numbers Xl , but also the

reactive events ρl ∈ {±1,±2}. The knowledge of the reaction
sequence allows us to reconstruct the time evolution of the
number A of reactant or product molecules that is consumed
during the process. Therefore, every path (2) is equivalent to

X (t ) = (A0, X0) → (A1, X1) → · · · → (An, Xn). (14)

The stochastic process of the paths (2) is thus here identical to
the process defined for the paths (14) in terms of the random
variables A and X . The master equation of this process is given
by

d

dt
P(A, X, t ) = W+1(A + 1, X − 1)P(A + 1, X − 1, t )

+W−1(A − 1, X + 1)P(A − 1, X + 1, t )

+W+2(A, X − 1)P(A, X − 1, t )

+W−2(A, X + 1)P(A, X + 1, t )

−
±2∑

ρ=±1

Wρ (A, X )P(A, X, t ), (15)

ruling the time evolution of the probability P(A, X, t ) that the
system contains the molecule numbers A and X at time t .

Now, we may consider the stochastic process associated
with the paths (4) obtained by omitting the reaction sequence
or, equivalently, from the paths (14) by erasing the random
variables {A0, A1, . . . , An}. Clearly, the information contained
in the paths (4) is too limited to reconstruct the paths (14)
and thus to determine the sequence of elementary chemical
reactions that have been followed during the process, in order
to evaluate the entropy production.

In the literature [10,12–19], it is often assumed that the
concentrations a = A/V and b = B/V of reactant and product
are held constant during the process, because these species
are in excess with respect to the intermediate ones. Un-
der such circumstances, the rates W+1 � k+1aV and W+2 �
k+2bV no longer depend on the random variable A in the
master equation (15). We may thus deduce the following
master equation ruling the marginal probability distribution
P(X, t ) ≡ ∑

A P(A, X, t ) for the sole random variable X ,

d

dt
P(X, t ) = W+(X −1)P(X −1, t )+W−(X +1)P(X + 1, t )

−[W+(X ) + W−(X )]P(X, t ) (16)

with the cumulative transition rates W± ≡ W±1 + W±2. The
paths of this reduced stochastic process are given by Eq. (4).

Now, we can compare the growth rates R and R0 of the
quantities (8) and (11), respectively. Under the conditions
where A � aV and B � bV are constant, the stationary solu-
tion of Eq. (16) is a Poisson distribution of mean value 〈X 〉st =
V xst with xst = (k+1a + k+2b)/(k−1 + k−2). In this stationary
state, the macroscopic rates wρ ≡ Wρ/V are satisfying the
condition w+1 + w−1 = w+2 + w−2. In the limit where the
volume V is large enough, the Poisson distribution becomes
Gaussian and peaked around 〈X 〉st = V xst, so that the mean
growth rate of the quantity (8) is obtained from Eq. (10),
giving

R = diS

dt

∣∣∣∣
st

� V
2∑

ρ=1

[
(w+ρ − w−ρ ) ln

w+ρ

w−ρ

]
st

. (17)
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This entropy production rate is equal to zero at equilibrium
when the conditions of detailed balance hold: w+ρ = w−ρ

for ρ = 1, 2. Otherwise, it takes a positive value in NESS.
The stochastic process associated with the paths (2) is thus
reversible at equilibrium, but not in NESS.

However, the mean growth rate of the quantity (11) has the
value

R0 � V (w+ − w−) ln
w+
w−

(18)

with the cumulative reaction rates w± ≡ w±1 + w±2. Under
stationary conditions where w+ = w−, Eq. (18) is thus van-
ishing in consistency with the reversibility of the stochastic
process associated with the paths (4) for the reaction net-
work (12), although the system may be in NESS.

These considerations demonstrate that several stochastic
processes may describe a reactive system and that the entropy
production is correctly evaluated using one giving complete
information on the reaction sequence.

III. CHEMICAL MASTER EQUATIONS

The difficulties met by Malek Mansour et al. [1,2] in for-
mulating chemical thermodynamics for stochastic processes
is probably pointing towards some lack in the literature about
Gillespie’s algorithm. Indeed, the complete master equation
of this process is rarely considered.

One way to establish this complete master equation is
by introducing the numbers n = {nρ}±r

ρ=±1 counting the re-
active events that have occurred since the beginning of the
simulation with the rates (3) of the elementary reactions. If
the jump of these counters upon the reaction ρ is denoted
�nρ = −�n−ρ , the complete master equation can be written
as [20]

d

dt
P(X , n, t ) =

±r∑
ρ=±1

[Wρ (X − νρ |X )P(X − νρ, n − �nρ, t )

−W−ρ (X |X − νρ )P(X , n, t )], (19)

because the rates do not depend on the counters n. The
inclusion of such counters has also been considered in
other contexts, in particular, for charge transport in quantum
dots [21].

This powerful method can be used to investigate the sta-
tistical properties of reactions. In particular, the generating
function of the statistical moments of the reactive events
can be defined as F (X ,λ, t ) ≡ ∑

n P(X , n, t )e−λ·n by intro-
ducing the counting parameters λ. The equation ruling this
generating function can be deduced from the complete master

equation (19). We note that the standard chemical master
equation [14–17] is recovered for P(X , t ) = F (X ,λ = 0, t ).
This method is used to establish the fluctuation theorem for
currents in Ref. [22]. With this method, the entropy produc-
tion can be determined with the random rates n(t )/t and the
macroscopic affinities driving the process.

IV. CONCLUSION

As explained in this Comment, the doubts and criticisms
expressed by Malek Mansour et al. in Refs. [1,2] about the
validity of the stochastic approach to evaluate entropy pro-
duction in reactive systems are ill founded.

Contrary to what is claimed in Refs. [1,2], several Markov
processes can be defined for a given reactive system, depend-
ing on the set of random variables that are chosen. Each of
these stochastic processes is associated with a specific Gille-
spie algorithm and, in parallel, the theorem of Kolmogorov
and Feller establishes the uniqueness of the associated path
probabilities.

Since the entropy production is defined in terms of the
elementary chemical reactions [10], it is the process generated
by the Gillespie algorithm simulating the random events of
these elementary chemical reactions that should be considered
in stochastic thermodynamics.

Omitting observables may lead to lower values than ex-
pected for entropy production, because such omission is
further coarse graining the description of the process, up to
being so coarse that its nonequilibrium character may become
unobservable. This general feature can also be illustrated in
other physicochemical systems. For instance, Brownian mo-
tion in a constant external force can be described by the
stochastic process for the random variables of position and
velocity, as ruled by Kramers’ master equation [23]. How-
ever, the stochastic process for the sole random velocity is
in one-to-one correspondence with the Ornstein-Uhlenbeck
stochastic process, which is known to be reversible. The sit-
uation is thus analogous to what happens for the reaction
network of Sec. II. In both systems, the observation of the
sole random variable defining a reversible process does not
give direct evidence for the nonequilibrium character of the
system.
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