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Artificial compressibility method for strongly anisothermal low Mach number flows
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Artificial compressibility methods aim to reduce the stiffness of the compressible Navier-Stokes equations by
artificially decreasing the velocity of acoustic waves in the fluid. This approach has originally been developed as
an alternative to the incompressible Navier-Stokes equations as this avoids the resolution of a Poisson equation.
This paper extends the method to anisothermal low Mach number flows, allowing the simulations of subsonic
flows submitted to large temperature variations, including dilatational effects. The procedure is shown to be
stable and accurate using a finite-difference method in a staggered grid system for the simulation of strongly
anisothermal turbulent channel flow. The highly scalable nature of the approach is well suited to complex high-
fidelity simulations and GPU processing.
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I. INTRODUCTION

The Mach number is an important parameter for the numer-
ical resolution of the compressible Navier-Stokes equations
with an explicit time stepping. At low Mach number, acoustic
perturbations travel rapidly compared to the velocity of the
fluid, such that the details of their propagation become irrel-
evant to the flow dynamics. At the same time, the lower the
Mach number, the more acoustic waves become limiting for
the time step of the simulation, severely deteriorating the effi-
ciency of the procedure. To alleviate this restriction, low Mach
number approximations of the compressible Navier-Stokes
equations may be used. This includes the incompressible
Navier-Stokes equations, in the absence of conduction and
density gradients, and the more general low Mach number
equations [1]. In both cases, no acoustic waves are generated
as pressure acts within the approximate system of equations
as a Lagrangian multiplier of a constraint on the divergence
of velocity. Numerically, this is often resolved using at each
time step a predictor-corrector projection scheme [2,3]. This
operation is computationally expensive and accounts for a
predominant part of the simulation cost. Several alternative
approaches have been suggested to simulate incompress-
ible flows. For instance, the lattice-Boltzmann (LB) method
addresses this issue by resolving the Boltzmann transport
equation on a discretized phase space [4]. The strategy fol-
lowed in this paper is the use of artificial pressure equations
to generate artificial acoustic waves traveling at a lower speed
without affecting the velocity of the fluid. This type of ap-
proach preserves the explicit in time and local in space nature
of the compressible Navier-Stokes equations, and is thus
massively parallelizable and has low memory requirements.
Artificial compressibility methods can be attributed to the pio-
neering work of Chorin [5] in the context of steady flows. The
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approach can be extended to unsteady flows using a dual time-
stepping procedure to enforce the incompressibility constraint
at each time step, but it can also be used without subitera-
tion [6]. The latter approach includes the α-transformation
of O’Rourke and Bracco [7], the pressure gradient scaling
(PGS) method of Ramshaw et al. [8], the acoustic speed
reduction (ASR) method of Wang and Trouvé [9], the ki-
netically reduced local Navier-Stokes (KRLNS) equations of
Ansumali et al. [10] and Karlin et al. [11], the artificial acous-
tic stiffness reduction method (AASCM) of Salinas-Vázquez
et al. [12], the entropically damped artificial compressibility
(EDAC) method of Clausen [13], and the general pres-
sure (GP) equation of Toutant [14]. These methods provide
successive improvements to the numerical simulation of in-
compressible flows using artificial pressure equations, and
they have been validated extensively for both laminar and
turbulent viscous flows in the literature [11,13,15–18]. To
the best of our knowledge, low Mach number flows with
large temperature variations have been relatively ignored
up to now in these developments despite their ubiquitous-
ness in a large variety of industrial applications, including
heat exchangers, propulsion systems, or nuclear or concen-
trated solar power plants [19–22]. Strongly anisothermal
low Mach number flows suffer from the same time-step
restrictions as incompressible flows using the compressible
Navier-Stokes equations, and they would also greatly benefit
from the performance and scalability improvements provided
by artificial compressibility methods. However, this type of
flow is governed by a strong coupling between tempera-
ture and velocity [23–26] and thus it cannot be resolved
by including the temperature as a passive scalar in existing
methods.

In this paper, we develop an artificial compressibility
method suited to anisothermal flows, and we validate the
approach for a strongly anisothermal turbulent channel flow.
A derivation of the artificial compressibility equations is pre-
sented in Sec. II. The relevance of the procedure is then
verified numerically in Sec. III.
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II. DERIVATION OF AN ANISOTHERMAL ARTIFICIAL
COMPRESSIBILITY METHOD

To derive a system of equations for anisothermal low Mach
number flows, the present paper uses a two-step procedure, in
which the Mach number of the flow is first increased through
a modification of the initial and boundary conditions and then
artificially reduced using a change of variable in order to
recover the original initial and boundary conditions of the
system while preserving the ratio between the fluid velocity
and the speed of sound. The procedure is motivated by the
fact that, with an explicit time-stepping method, the number
of time steps required to simulate a flow time is lower at
larger Mach number. To determine the effect of Mach number
variations on the flow variables, the asymptotic development
of the compressible Navier-Stokes equations as a function of
the squared Mach number is used, introducing two pressures:
the thermodynamic pressure and the mechanical pressure.

Let us assume for this purpose a flow that can be modeled
in the immobile bounded domain � of volume V using the
compressible Navier-Stokes equations without body forces or
heat sources and the ideal gas equation of state,

∂ρ

∂t
+ ∂ρu j

∂x j
= 0, (1)

∂ρui

∂t
+ ∂ρu jui

∂x j
= − ∂ p

∂xi
+ ∂σi j

∂x j
, (2)

∂ p

∂t
+ ∂u j p

∂x j
= −(γ − 1)

∂q j

∂x j
+ p(1 − γ )

∂u j

∂x j
, (3)

p = rρT, (4)

where ρ is the density, t is the time, p is the pressure, γ

is the adiabatic index of the fluid, r is the ideal gas spe-
cific constant, ui is the ith component of velocity, and xi

is the Cartesian coordinate in the ith direction. The shear-
stress tensor σ and the conductive heat flux q are assumed
to be of the form σi j = μ(T )[(∂ jui + ∂iu j ) − (2/3)∂kukδi j]
and q j = −λ(T )∂ jT , respectively, where the dynamic vis-
cosity μ(T ) and the heat conductivity λ(T ) are functions
of temperature. For simplicity, we neglect the dissipation in
the pressure evolution equation (3) as this term vanishes in
the low Mach number limit. The flow is characterized by a
density scale ρb, a velocity scale ub, and a pressure scale
pb. The nondimensional numbers associated with the flow are
the Reynolds number Re = ρbubxb/μ(T b), the Prandtl num-
ber Pr = μ(T b)Cp/λ(T b), and the Mach number Ma = ub/cb,
with xb a length scale characterizing the geometry, Cp is the
isobaric heat capacity of the fluid, and cb =

√
γ rT b is the

typical velocity of acoustic waves.
As a first step, we assume that this initial flow can be

approximated, in a nondimensionalized sense, by another flow
defined on the same domain � and length scale xb but with a
larger Mach number α Ma, where α > 1 is a speedup factor.
This is justified by the fact that, if the Mach number Ma of this
initial flow is sufficiently small, the larger Mach number α Ma
is also small. The Mach number can be modified through a
modification of either the velocity scale or the temperature
scale of the flow. To avoid dealing with the dependence of
viscosity and thermal conductivity on temperature, we choose
to preserve the temperature scale of the flow. To determine

how velocity, density, and pressure should be transformed, an
asymptotic development of the nondimensionalized variables
involved in the compressible Navier-Stokes equations as
a function of the squared Mach number can be used [27].
At low Mach number, the nondimensionalized density and
velocity are independent of the Mach number, while the
Mach number dependence of pressure cannot be neglected.
Namely, u/ub ≈ û0, ρ/ρb ≈ ρ̂0, and p/pb ≈ p̂0 + Ma2 p̂1,
where û0, ρ̂0, p̂0, and p̂1 do not depend on the Mach number.
The zeroth-order nondimensionalized pressure p̂0 can be
shown to be constant in space by injecting these asymptotic
developments into the Navier-Stokes equations [27–29].
It is therefore useful to decompose pressure in a
thermodynamic pressure p0 = pb p̂0 and a mechanical
pressure p1 = p − p0 = pb Ma2 p̂1. Let us consider,
using this definition, that the initial flow is characterized
by the tuple F (x, t ) = (ρ(x, t ), u(x, t ), p0(t ), p1(x, t ))
governed by Eqs. (1)–(4) along with a set of initial
conditions Fi(x) = (ρi(x), ui(x), p0i, p1i(x)), such that
F (x, 0) = Fi(x), and a set of boundary conditions
Fb(x, t ) = (ρb(x, t ), ub(x, t ), p0b(t ), p1b(x, t )), such that
DF (x, t ) = DFb(x, t ) on the boundary ∂� of �, where D is
a differential operator. The flow with a larger Mach number
α Ma may in that case be defined by using a time scale t ′b =
t b/α, a density scale ρ ′b = ρb/α, a velocity scale u′b = αub,
and a pressure scale p′b = pb/α. The corresponding thermo-
dynamic mechanical pressures are p′

0 = p′b p̂0 = p0/α and
p′

1 = p′bα2 Ma2 p̂1 = αp1. In other words, it is characterized
by the tuple F ′(x, t ′) = (ρ ′(x, t ′), u′(x, t ′), p′

0(t ′), p′
1(x, t ′)),

governed by Eqs. (1)–(4) along with the initial
conditions F ′

i (x) = (ρi(x)/α, αui(x), p0i/α, αp1i(x)),
and the boundary conditions F ′

b (x, t ′) =
(ρb(x, t ′)/α, αub(x, t ′), p0b(t ′)/α, αp1b(x, t ′)). Indeed,
the resulting flow has the same Reynolds number
Re′ = ρ ′bu′bxb/μ(T b) = Re and Prandtl number Pr′ =
μ(T b)Cp/λ(T b) = Pr as the flow F but a larger Mach number
Ma′ = u′b/cb = α Ma.

As a second step, the variables of the sped-up flow F ′
are transformed to embed the modifications of the initial
and boundary conditions within the system of equations.
This change of variable should counteract the above speedup
of the flow. By introducing t ′′ = αt ′, u′′ = u′/α, ρ ′′ = αρ ′,
p′′

0 = αp′
0, and p′′

1 = p′
1/α into Eqs. (1)–(4), the flow F ′ is

associated with an artificial flow F ′′, described by the set of
governing equations

∂ρ ′′

∂t ′′ + ∂ρ ′′u′′
j

∂x j
= 0, (5)

∂ρ ′′u′′
i
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j u

′′
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∂x j
= −∂ p′′
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∂xi
+ ∂σ ′′

i j

∂x j
, (6)

∂ p′′
1

∂t ′′ + ∂u′′
j p′′

1

∂x j
= − (γ − 1)

α2

∂q j

∂x j
+

(
p′′

1(1 − γ ) − γ p′′
0

α2

)

× ∂u′′
j

∂x j
− 1

α2

∂ p′′
0

∂t ′′ , (7)

p′′
0 + α2 p′′

1 = rρ ′′T, (8)

where the fact that the thermodynamic pressure p′′
0 is con-

stant in space is used to simplify Eqs. (6) and (7). The
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corresponding initial conditions, F ′′
i (x) = Fi(x), and bound-

ary conditions, F ′′
b (x, t ′′) = Fb(x, t ), are identical to those

of the initial flow. Accordingly, since the two pressures p′′
0

and p′′
1 approximate the two pressures p0 and p1 of the

initial flow, respectively, the “full” pressure p of the ini-
tial flow is best approximated by p′′ = p′′

0 + p′′
1, which does

not obey the equation of state (8). To close the system of
equations, notice first that any global variations of mechan-
ical pressure can be absorbed into thermodynamic pressure
without changing the equations. This may be shown, for in-
stance, by decomposing pressure in a mean pressure p′′ =
p′′

0 + (α2/V )
∫
Ψ

p′′
1dV and a fluctuating pressure ṗ′′ = p′′

1 −
(1/V )

∫
Ψ

p′′
1dV in Eqs. (5)–(8). With this decomposition, the

“full” pressure would be approximated as p ≈ p′′ + ṗ′′ =
p′′

0 + p′′
1 + [(α2 − 1)/V ]

∫
Ψ

p′′
1dV , which introduces a small

error compared to the above decomposition. For clarity, we
keep the notations p′′

0 and p′′
1 and assume henceforth that the

volume integral of p′′
1 is zero. Equation (7) can with these

notations be integrated to provide an equation for p′′
0, closing

the system:

∂ p′′
0

∂t ′′ = − α2

V

∫
∂�

p′′
1u′′

j n jdS − γ p′′
0

V

∫
∂�

u′′
j n jdS︸ ︷︷ ︸

(I)

− (γ − 1)

V

∫
∂�

q jn jdS︸ ︷︷ ︸
(II)

+ α2(1 − γ )

V

∫
�

p′′
1

∂u′′
j

∂x j
dV

︸ ︷︷ ︸
(III)

,

(9)

with n the outward-pointing unit normal vector to the surface
∂�. Note that if a more accurate prediction of the “full”
pressure is deemed important, for instance in the case of
the dependence of the fluid properties on pressure, the time
derivative of p′′

1 can alternatively be included in Eq. (9). The
system of Eqs. (5)–(9) produces acoustic waves with a veloc-
ity artificially reduced by a factor α2 compared to the original
system [(1)–(4)]. It is accordingly more efficient to resolve
with an explicit time-stepping method. Note that although
α > 1 for the purpose of artificial compressibility methods,
the above developments are also valid for low values of α.
In particular, the system of Eqs. (5)–(9) tends to the low
Mach number equations of Paolucci [1] as α tends to zero
and the velocity of acoustic waves tends to infinity. In that
case, the time derivative of p1 becomes negligible in front of
the dilatation and conduction terms in Eq. (7) as α tends to
zero. Equation (7) thus becomes a constraint on the divergence
of velocity that needs to be resolved at each time step to
determine p1.

The present method is proposed as an alternative to the
resolution of the low Mach number equations [1], in which
no acoustic waves are generated, and it targets the same
type of strongly anisothermal low Mach number flows. Al-
though thermoacoustic waves [30] are produced by the system
of equations, the method is not expected to be relevant to
their study as their velocity has been reduced artificially.
Compared to the artificial methods devised for incompress-
ible flows [11,13,14,18], the proposed methodology includes
two pressures in the final set of Eqs. (5)–(9), namely the
thermodynamic pressure and the mechanical pressure. This

decomposition is useful to take into account anisothermal
effects because the two pressures are affected differently by
a reduction of the speed of sound. In addition, thermal con-
duction must be properly scaled by 1/α2 in Eq. (7) to account
for Mach number effects. The first two terms (I) and (II) of
Eq. (9) are surface averages and thus typically inexpensive
to compute. In addition, they vanish in isolated systems or
if the inward and outward fluxes cancel out. The third term
(III) is related to flow dilatation and can be expected to be
small since this correlation is usually very small in low Mach
number flows [25,31]. The validity of this assumption will be
discussed in more detail in the following. The convective term
in Eq. (7) has been found to be crucial for incompressible
flows in a previous paper [18]. The diffusive term in Eq. (7)
physically represents thermal conduction and may thus not
be neglected in the case of strongly anisothermal flows that
are the target of this study. Similarly, numerical evidence (not
presented here) shows that the term α2 p′′

1 in the ideal gas
Eq. (8) cannot be neglected, as would be the case in the low
Mach number approximation [1].

III. RESULTS

The use of the artificial pressure Eqs. (5)–(9) to simulate
anisothermal low Mach number flows is demonstrated using
a fully developed turbulent anisothermal channel flow. The
configuration is composed of a two no-slip plane walls at
constant temperature enclosing a fully turbulent fluid flow.
The bottom wall (y = 0) is at the temperature T1 = 293 K and
the top wall (y = 2h) is at the temperature T2 = 586 K. A large
temperature ratio of 2 between the hot and cold sides of the
channel is selected in order to induce an asymmetry between
the hot and cold sides of the channel. The actual value of the
wall temperature does not affect the validity of the artificial
compressibility assumption, provided that the Mach number
is fixed, but it can influence the validity of other modeling
assumptions (ideal gas law, Sutherland’s law). The streamwise
(x) and spanwise (z) directions are periodic and statistically
homogeneous. The Richardson number Ri = Gr/Re2 is small
(Ri ≈ 0.01) as the distance between the top and bottom walls
is small and gravity acts perpendicularly to the flow direction,
as is the case in a beam-down solar receiver. A forced convec-
tion regime where buoyancy is neglected can thus be assumed.
The flow is characterized by the Prandtl number and the mean
friction Reynolds number Reτ = (1/2)(Reτ,1 + Reτ,2), where
Reτ,1 and Reτ,2 are, respectively, the friction Reynolds number
at the bottom and hot wall, defined as

Reτ,ω = uτ,ωh

νω

, (10)

with νω the kinematic viscosity and uτ,ω = √
νω(∂y〈u〉x )ω the

friction velocity at the corresponding wall. Two mean friction
Reynolds numbers (180 and 395) and three Prandtl numbers
(0.76, 1.0, and 3.0) are selected, as reported in Table I. In the
case Reτ = 180 and Pr = 0.76, the Mach number based on
the volumetric flow rate is Ma = 0.008, whereas the artificial
Mach numbers used in the simulations are α Ma = 0.08, 0.25,
0.45, 0.55, and 0.65. In all other cases, a single artificial Mach
number is used, corresponding to α = 10. We used a struc-
tured mesh, regular in the directions x and z and following
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TABLE I. Flow variables and numerical domain of the selected configurations. The value of the Nusselt numbers Nu1 and Nu2 associated
with the bottom and top walls corresponds to the reference projection simulation.

Reτ Pr Domain size Grid points Nu1 Nu2 Ma α Ma

180 0.76 4πh × 2h × 2πh 48 × 50 × 48 6.0 4.2 0.008 0.08, 0.25, 0.45, 0.55, 0.65
180 1.0 4πh × 2h × 2πh 48 × 50 × 48 7.1 5.0 0.008 0.08
180 3.0 4πh × 2h × 2πh 48 × 50 × 48 13 9.9 0.008 0.08
395 0.76 4πh × 2h × (4/3)πh 96 × 100 × 64 12 8.9 0.018 0.18

a hyperbolic tangent law in the wall-normal direction. In the
case Reτ = 180, the cell sizes in the wall units are �+

x = 68,
�+

y = 0.50 at the wall and 25 at the center, and �+
z = 34. In

the case Reτ = 395, the cell sizes in the wall units are �+
x =

73, �+
y = 0.50 at the wall and 27 at the center, and �+

z = 36.
The effect of the grid size on the relevance of artificial com-
pressibility simulations was studied in Dupuy et al. [18] at
the isothermal limit. The mesh resolution was found to have
no strong effect on the accuracy of an artificial compressibil-
ity simulation compared to a reference projection simulation
on the same grid. The numerical method is based on a

finite-difference method written in a staggered grid system
[32]. The time scheme is given by a semi-implicit third-order
Runge-Kutta method [33]. The large temperature variations
reduce the time step because of the variations of fluid prop-
erties. In the momentum conservation Eq. (6), the convective
term is discretized using a fourth-order centered scheme while
the diffusive term is discretized with a second-order centered
scheme [25,34–37]. In the artificial pressure Eq. (7), the dif-
fusive term and the velocity-divergence term are discretized
with a second-order centered scheme [18], as described in Ap-
pendix. The convective term in the mass conservation Eq. (5)
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FIG. 1. Turbulence statistics for artificial compressibility simulations with the full formulation and the reference projection simulation
in the case Reτ = 180 and Pr = 0.76. (a) Mean streamwise velocity. (b) From bottom to top: standard deviation of wall-normal velocity, of
spanwise velocity, and of streamwise velocity. (c) Standard deviation of temperature. (d) From bottom to top: mean pressure and standard
deviation of pressure.

013314-4



ARTIFICIAL COMPRESSIBILITY METHOD FOR … PHYSICAL REVIEW E 103, 013314 (2021)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0.1  1  10  100

U
+

y+

Projection, cold side
αMa=0.08, cold side
αMa=0.25, cold side
αMa=0.45, cold side
αMa=0.55, cold side
αMa=0.65, cold side
Projection, hot side
αMa=0.08, hot side
αMa=0.25, hot side
αMa=0.45, hot side
αMa=0.55, hot side
αMa=0.65, hot side

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.1  1  10  100

U
rm

s+
, V

rm
s+

, W
rm

s+

y+

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  50  100  150  200

T
rm

s+

y+

(c)

−0.5

 0

 0.5

 1

 1.5

 2

 0  0.2  0.4  0.6  0.8  1

P
+
, P

rm
s+

y/h

(d)

FIG. 2. Turbulence statistics for artificial compressibility simulations with the simplified formulation and the reference projection simula-
tion in the case Reτ = 180 and Pr = 0.76. (a) Mean streamwise velocity. (b) From bottom to top: standard deviation of wall-normal velocity,
of spanwise velocity, and of streamwise velocity. (c) Standard deviation of temperature. (d) From bottom to top: mean pressure and standard
deviation of pressure.
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FIG. 3. Energy balance for artificial compressibility simulations with the full and simplified formulations in the case Reτ = 180 and
Pr = 0.76, namely convective heat flux 〈Uy(γ P0 )/(γ − 1)〉 (“Convection”) and conductive heat flux 〈−λ(∂T/∂y)〉 (“Conduction”). (a) Full
formulation. (b) Simplified formulation.
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FIG. 4. Turbulence statistics for artificial compressibility simulations with the full formulation (ACFF) and the reference projection
simulation (Proj.) in the cases Reτ = 395 and Pr = 0.76, Reτ = 180 and Pr = 1.0, and Reτ = 180 and Pr = 3.0. (a) Mean streamwise velocity.
(b) Standard deviation of streamwise velocity. (c) Mean temperature. (d) Standard deviation of temperature. (e) Mean pressure. (f) Standard
deviation of pressure.

is discretized with a third-order QUICK (quadratic upstream
interpolation for convective kinetics) scheme [38]. At the
walls, a no-slip boundary condition is used for velocity, and
the temperature is imposed. No wall boundary condition is re-

quired for the pressure. This is performed using the TRIOCFD
software [39].

Three resolution algorithms are used. In the first reference
algorithm, the low Mach number equations are resolved using
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a projection method, a setup that has been validated exten-
sively in the same configuration in previous papers [24–26].
In the second algorithm, referred to as “full formulation”
hereafter, the flow is simulated using Eqs. (5)–(8) and (9).
In the third algorithm, referred to as “simplified formulation”
hereafter, we also use Eqs. (5)–(8) but neglect the dilatation
term (III) in Eq. (9). Note that in both the projection method
and the artificial compressibility methods, the mechanical
pressure has a volume integral of zero at each time step.
Let us first focus on the case Reτ = 180 and Pr = 0.76 in
order to compare the full and simplified formulations and
assess the influence of the artificial Mach number on the
predictions. In that case, both the full formulation and the
simplified formulation were found to be stable using our nu-
merical setup. The results are presented in Fig. 1 for the full
formulation and in Fig. 2 for the simplified formulation. In
both the full formulation and the simplified formulation, the
predictions provided by the artificial compressibility methods
are, with a low artificial Mach number, almost identical to the
reference projection simulation for all first-order and second-
order statistics of turbulence. In particular, the simulations
reproduce accurately the asymmetry between the hot and cold
side of the channel, which results from the variation of the
fluid properties with temperature. As evidenced by Fig. 3,
the simulations also predict accurately the energy balance be-
tween the mean convective and conductive heat fluxes, which
in a strongly anisothermal channel at low Mach number is
given by

〈Uy(γ P0)/(γ − 1)〉 = 〈λ(∂T/∂y)〉 − 〈λ(∂T/∂y)〉y=0. (11)

This shows that the strong coupling between temperature
and turbulence is correctly taken into account in the ar-
tificial compressibility methods and hence proves that the
numerical simulation of anisothermal low Mach number flows
with artificial pressure equations is possible. In addition, the
volume-integral term (III) in Eq. (9) can be considered negli-
gible given the small difference between the predictions of the
full formulation and the simplified formulation. Neglecting
this term as in the simplified formulation leaves only com-
putationally inexpensive surface-integral terms in Eq. (9) and
thus improves the efficiency of the numerical procedure. On
the other hand, neglecting the volume-integral term (III) in
Eq. (9) deteriorates the accuracy of the prediction for the stan-
dard deviation of pressure at larger artificial Mach numbers.
Indeed, this quantity is one of the toughest to capture with
artificial compressibility methods [18]. Using the full formu-
lation, its profile remains very close to the reference projection
profile until α Ma = 0.45 (Fig. 1), whereas the discrepancy is
larger using the simplified formulation (Fig. 2). Nevertheless,
accurate results are obtained for all turbulence statistics at
α Ma = 0.25 with both methods. This implies in particular
that the Nusselt number is well predicted. Numerically, the er-
ror on the Nusselt number is less than 1% even with the larger
artificial Mach number of 0.65. The applicability of the ar-
tificial compressibility method at a larger Reynolds number
(Reτ = 395) and larger Prandtl numbers (Pr = 1.0 or 3.0)
is assessed in Fig. 4. In each configuration investigated, the
method is able to produce accurate results for all first- and
second-order turbulence statistics of velocity, temperature,
and pressure.

FIG. 5. Staggered grid system.

IV. CONCLUSION

The artificial compressibility method proposed in this pa-
per is well suited to anisothermal low Mach number flows,
even in the case of strong coupling between velocity and
temperature. Thermal effects are accounted for using two
pressures, namely a thermodynamic pressure and a me-
chanical pressure, similarly to using a low Mach number
approximation [1]. The method can a priori be applied for any
Reynolds and Prandtl numbers as no particular assumption
regarding the Reynolds and Prandtl numbers is made in the
theoretical derivation. Numerically, we assessed two friction
Reynolds numbers (180 and 395) and three Prandtl numbers
(0.76, 1.0, and 3.0). In all cases, the procedure is stable and
provides accurate results for a strongly anisothermal chan-
nel flow. In particular, the procedure is able to predict the
asymmetry between the profiles at the hot and cold sides of
the channel caused by the coupling between temperature and
velocity. The Nusselt number is predicted with an error of
less than 1% even with the larger artificial Mach number of
0.65. Compared to the use of the compressible Navier-Stokes
equations, it provides a speedup that depends on the physical
Mach number of the configuration. Compared to a projection
method, the method is local in space and can thus be easily
parallelized.

ACKNOWLEDGMENTS

This work was funded by the French Investments for the
future (“Investissements d’Avenir”) programme managed by
the National Agency for Research (ANR) under Contract
No. ANR-10-LABX-22-01 (labex SOLSTICE). The authors
gratefully acknowledge the CEA for the development of the
TRUST platform. This work was completed thanks to a grant
of access to the HPC resources of CINES under the allocations
2020-A0042A05099 made by GENCI.

APPENDIX: NUMERICAL SCHEMES

This Appendix presents the implementation of the terms of
the pressure evolution equation. Since we use a staggered grid
system, velocity and pressure are not discretized at the same
locations. This is illustrated in Fig. 5 in the two-dimensional
case. The velocity divergence is discretized as

(∇ · U )i, j,k = ui+1, j,k − ui, j,k

�xi
+ vi, j+1,k − vi, j,k

�y j

+ wi, j,k+1 − wi, j,k

�zk
. (A1)
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The convective term is discretized as

[∇ · (UP)]i, j,k = ui+1, j,k (Pi+1, j,k + Pi, j,k ) − ui, j,k (Pi, j,k + Pi−1, j,k )

2�xi
+ vi, j+1,k (Pi, j+1,k + Pi, j,k ) − vi, j,k (Pi, j,k + Pi, j−1,k )

2�y j

+ wi, j,k+1(Pi, j,k+1 + Pi, j,k ) − wi, j,k (Pi, j,k + Pi, j,k−1)

2�zk
. (A2)

The conductive term is discretized as

[∇ · (λ∇T )]i, j,k =
(λi+1, j,k + λi, j,k ) Ti+1, j,k−Ti, j,k

�xi+1+�xi
− (λi, j,k + λi−1, j,k ) Ti, j,k−Ti−1, j,k

�xi+�xi−1

�xi

+
(λi, j+1,k + λi, j,k ) Ti, j+1,k−Ti, j,k

�y j+1+�y j
− (λi, j,k + λi, j−1,k ) Ti, j,k−Ti, j−1,k

�y j+�y j−1

�y j

+
(λi, j,k+1 + λi, j,k ) Ti, j,k+1−Ti, j,k

�zk+1+�zk
− (λi, j,k + λi, j,k−1) Ti, j,k−Ti, j,k−1

�zk+�zk−1

�zk
. (A3)
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