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Numerical quasiconformal transformations for electron dynamics on strained graphene surfaces
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The dynamics of low-energy electrons in general static strained graphene surface is modelled mathematically
by the Dirac equation in curved space-time. In Cartesian coordinates, a parametrization of the surface can be
straightforwardly obtained, but the resulting Dirac equation is intricate for general surface deformations. Two
different strategies are introduced to simplify this problem: the diagonal metric approximation and the change
of variables to isothermal coordinates. These coordinates are obtained from quasiconformal transformations
characterized by the Beltrami equation, whose solution gives the mapping between both coordinate systems.
To implement this second strategy, a least-squares finite-element numerical scheme is introduced to solve the
Beltrami equation. The Dirac equation is then solved via an accurate pseudospectral numerical method in the
pseudo-Hermitian representation that is endowed with explicit unitary evolution and conservation of the norm.
The two approaches are compared and applied to the scattering of electrons on Gaussian shaped graphene surface
deformations. It is demonstrated that electron wave packets can be focused by these local strained regions.
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I. INTRODUCTION

Graphene is a material made of carbon atoms arranged
on a two-dimensional (2D) honeycomb lattice. This atomic
configuration confers this material with unique electronic, me-
chanical, and thermal properties [1]. In particular, its charge
carriers can be described by a massless Dirac equation at low
energy (�2 eV), promoting graphene to the rank of Dirac
materials [2]. Thanks to these interesting and intriguing prop-
erties, graphene has been considered for many applications,
ranging from quantum electrodynamics simulators [3] to field
effect transistors [4].

A little more than a decade ago, it has been realized that
electronic properties of charge carriers can be modified by the
introduction of mechanical deformations (strain) in graphene
samples [5,6]. This gave birth to the field of strain engineering
or “straintronics” [7–12]. This phenomenon has spurred many
theoretical [13–18] and experimental investigations [19–22],
in part because strain is responsible for very large pseudo-
magnetic fields and because straintronics may pave the way
toward technological and scientific applications. For instance,
the low-energy charge carriers of corrugated graphene have
a similar behavior to electrons in strong gravitational fields
[10,23,24], providing a bridge between condensed matter and
quantum gravity.
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The workhorse of straintronic theory is the Dirac equation
in curved space-time, which gives a theoretical description of
low-energy charge carriers in deformed graphene [5,6,25–27].
This equation can be obtained as the low-energy limit of the
nearest-neighbor tight-binding model with a space-dependent
hopping parameter and nearest-neighbor vectors. This space
dependence arises from the modification of the interatomic
distance, which in turns, changes the hopping integrals. As
long as these deformations are not too large, the ensuing
metric and other differential geometry variables in the Dirac
equation can be linked to the strain tensor and elasticity theory
[12,28].

Recently, the dynamics of electrons propagating in strained
graphene samples has been studied numerically [29,30] and
analytically [31]. Remarkably, it was demonstrated that elec-
trons can be confined by scattering on strained regions,
allowing for electronic wave packet guiding. These inves-
tigations have been performed using simple strain field
configurations having symmetries, simplifying the theoreti-
cal approaches. However, for controlling electrons in more
complex applications, a framework for general surfaces is
required. The main goal of this article is to provide the-
oretical strategies to study the dynamics of electrons in
general strained surfaces using the Dirac equation in curved
space-time.

Starting from the Dirac equation in curved space-time
expressed in covariant notation, a comprehensive derivation
of the Dirac equation in Cartesian coordinate for a general
static graphene deformation is first presented. The nontrivial
steps leading to an explicit equation are detailed, in particu-
lar when the system has no symmetry. Despite the apparent
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geometrical simplicity of such systems, consisting of a 2D
arbitrary surface embedded in a 3D space, the resulting Dirac
equation becomes quite intricate and challenging to solve
analytically or numerically. Two strategies are introduced
to simplify this problem: the diagonal metric approximation
and the change of variables to isothermal coordinates. It is
demonstrated that for both strategies, the Dirac equation has a
simple form, reminiscent of the Dirac equation in flat space.
However, they both have their own challenges: The diagonal
approximation is valid only for a certain restricted class of sur-
faces while another equation, the Beltrami partial differential
equation, needs to be solved to obtain the required quasicon-
formal transformations, adding another layer of complexity.
In this article, both approaches are described and analyzed.
In addition, some specific examples and benchmark simula-
tions are considered where both approaches are compared.
The main outcome is a set of tools that can be applied for
the computation of electron transport in deformed graphene
samples.

This paper is organized as follows. Section II is de-
voted to a general presentation of the mathematical tools
and framework required for the derivation of isothermal co-
ordinates from a general 2D surface, including a definition
of quasiconformal transformations. In Sec. III, we propose
a comprehensive derivation and analysis of the Dirac equa-
tion modeling graphene lattices in curved space. A simplified
version of the Dirac equation is also explicitly derived and
justified when diagonal terms of the Riemannian metric tensor
can be neglected. Section IV is devoted to the numerical
approximation to the Beltrami and Dirac equations. The nu-
merical approach is then tested and benchmarked in Sec. V,
where the scattering of wave packets on local deformation is
considered. We conclude in Sec. VI.

II. SOME ELEMENTS OF DIFFERENTIAL GEOMETRY
FOR 2D SURFACES

In this article, graphene is treated as a 2D curved sur-
face embedded in a 3D Euclidean space. Therefore, before
proceeding to the derivation of the Dirac equation, some im-
portant differential geometry results for surfaces are reviewed
as they will be necessary in subsequent sections.

Let us consider a 2D surface S embedded in a 3D Eu-
clidean ambient space R3. Define a Cartesian coordinate
chart x, y, z on the ambient space. Then, the surface can be
parametrized by

S = {(X (x),Y (x), Z (x)) / x ∈ D}, (1)

with X,Y, Z ∈ C1(D;R) and x = (x, y) ∈ D ⊂ R2. Denoting
the vector in the ambient space r(x) = (X (x),Y (x), Z (x)) ∈
R3, the Jacobian matrix of the transformation from the global

to the local representation Jx
r := ∂r

∂x
reads

Jx
r =

[
Xx(x) Yx(x) Zx(x)
Xy(x) Yy(x) Zy(x)

]
, (2)

where the notation �i(x) := ∂i�(x) (for � = X,Y, Z and i =
x, y) has been introduced for simplicity.

Hence the naturally induced metric tensor gS describing
the surface locally is simply given by

gS (x) = Jx
r

(
Jx

r

)T
(3)

=
[

X 2
x + Y 2

x + Z2
x XxXy + YxYy + ZxZy

XxXy + YxYy + ZxZy X 2
y + Y 2

y + Z2
y

]
. (4)

To follow the traditional notation introduced by Gauss, the
metric tensor in the frame (∂x, ∂y), is written as

gS (x) =
[

E (x) F (x)
F (x) G(x)

]
, (5)

while the ensuing first fundamental form (metric tensor field)
is given by

ds2 = E (x)dx2 + 2F (x)dxdy + G(x)dy2. (6)

This metric describes locally a general surface in terms of the
x coordinates, the original Cartesian coordinates of the plane
z = 0 in the ambient space. For general surface deformations,
the nondiagonal term is nonzero (F �= 0), implying that coor-
dinates are not orthogonal over the whole domain. In addition,
the presence of this nondiagonal term makes the calculations
for the Dirac equation more tedious. In particular, the expres-
sion of Christoffel’s symbols and the vielbein, required in
the Dirac equation in curved space-time, has many terms and
becomes complicated. For these reasons, it can be convenient
to perform a change of variables to isothermal coordinates that
diagonalizes the metric.

Definition II.1. Let S be a 2D surface embedded in a 3D
Euclidean ambient space. Isothermal coordinates u = (u, v)
are local orthogonal coordinates on S in which the metric is
given by

ds2 = ρ(u)[du2 + dv2]. (7)

Using these coordinates entails the calculation of the func-
tion ρ(u), as detailed below. Nevertheless, because the metric
is diagonal in this coordinate system, many equations such
as the Dirac equation have a simpler form. Remarkably, it
has been proven that for 2D surfaces, there always exists a
(nonunique) coordinate change that allows for transforming
the metric in the form of Eq. (7) [32,33] with a specific
expression for ρ in terms of the induced metric gS in other
coordinates (here, the Cartesian coordinates), the so-called
quasiconformal transformations [34].

Definition II.2. Let the coordinates be expressed in the
complex plane as z = x + iy ∈ C and w = u + iv ∈ C. A
mapping from the Cartesian to isothermal coordinates z → w

is said quasiconformal, if it is a solution to the Beltrami
equation:

wz̄ = μ(z)wz, (8)

where ‖μ‖∞ < 1 is the Beltrami coefficient.
The solution to the Beltrami equation is a homeomorphism

which preserves the orientation between Riemann surfaces
with a bounded conformality distortion [34].

The specific quasiconformal transformation satisfied by
isothermal coordinates, i.e., the expression for μ, can be ob-
tained explicitly. Introducing Wirtinger’s derivatives

∂z = 1
2 [∂x − i∂y], ∂z̄ = 1

2 [∂x + i∂y], (9)
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and using the chain rule, the metric (6) can be written as

ds2 = λ|dz + μdz̄|2, (10)

where

λ = 1

4

(
E + G + 2

√
�

)
, μ = E − G + 2iF

4λ
, (11)

and � = det(gS ). On the other hand, the metric in isothermal
coordinates (7) is given by

ds2 = ρdwdw̄, (12)

= ρ|wz|2
∣∣∣∣dz + wz̄

wz
dz̄

∣∣∣∣2

. (13)

Identifying Eqs. (10) and (13), one can deduce that the map-
ping z → w produces isothermal coordinates as long as μ =
wz̄/wz, i.e., as long as the mapping obeys the Beltrami equa-
tion. In addition, the comparison yields

ρ(z) = λ(z)

|wz(z)|2 . (14)

Therefore, isothermal coordinates w and their correspond-
ing metric can be found explicitly by solving the Beltrami
equation.

III. DIRAC EQUATION IN CURVED SPACE AND
STRAINED GRAPHENE

Applying an external force to a graphene sample produces
a strain and deforms its atomic structure. The relative posi-
tions of carbon atoms in the lattice are modified, which in
turns, changes the behavior of the electrons traveling in the
material. In a flat graphene sample, the low-energy electrons
are described in quantum mechanics by a massless Dirac
equation, analogous to relativistic electrons [35]. Obviously,
as graphene is subjected to mechanical constraints, one ex-
pects a different theoretical framework that takes strain into
account. Remarkably, the quantum dynamical behavior of
low-energy electrons in a deformed graphene sheet is given
by the Dirac equation in curved space [5,6,24–27]. This
important result has been obtained from the tight-binding
model low-energy limit [28] and from general symmetry
principles [36].

In this section, the Dirac equation describing strained
graphene is stated, starting from the general covariant notation
and specializing to some relevant cases for applications.

A. Dirac equation in covariant notation

In this section, the Dirac equation in curved space-time de-
scribing strained graphene is given in covariant notation [37].
Every tensor is expressed in terms of its components, with
upper and lower indices denoting contravariant and covariant
vector components, respectively. Einstein’s summation con-
vention on component indices is used hereafter. Three kinds
of indices are used: Greek indices are general (local) curved
space-time coordinates or charts (μ, ν = 0, 1, 2), uppercase
Latin indices are flat space Lorentz coordinates, while lower-
case Latin indices are the spatial coordinates of the general
curved space (i, j = 1, 2). In this formalism the metric g can
be written g : TS ×S TS → R, with gq = gμν (q)dxμdxν ,

where gμν (q) = gq(∂μ, ∂ν ) and gq : TqS × TqS → R with
q = (t, q) and q ∈ S .

In covariant notation, the curved space-time Dirac equation
describing electrons in graphene in general curvilinear coordi-
nates q = (q1, q2, q3) = (t, q) has a particularly simple form,
which reads (in units where h̄ = 1)

iγ̄ μ(q)Dμψ (q) = 0, (15)

where ψ is the two-component wave function, Dμ is
the covariant derivative (defined below), and γ̄ μ(q) =
(γ̄ 0(q), vF γ̄ (q)), with vF the Fermi velocity, are the gen-
eralized γ matrices. Introducing the metric tensor gμν (q)
describing the surface locally, the generalized γ matrices can
be defined via their Clifford algebra [38] as

{γ̄ μ(q), γ̄ ν (q)} = 2gμν (q), (16)

where {·, ·} is the anticommutator. Finding an explicit expres-
sion of these matrices can be performed in a local frame field
by using the vielbein formalism. This permits a connection
between generalized γ matrices and flat space γ matrices,
given by

γ̄ μ(q) = γ Aeμ
A (q), (17)

where eA(q) = eμ
A (q)∂μ and eμ

A = ∂xμ/∂xA are the vielbein
(spanning TqS for any q ∈ S). Similarly, orthonormal coor-
dinates on the cotangent bundle T ∗

q S are denoted eA(q) =
eA
μ(q)dxμ. Some properties of the vielbein are summarized in

Appendix A.
The symbol γ A represents γ matrices in flat space-time,

obeying the usual relation

{γ A, γ B} = 2ηAB, (18)

where η = diag(1,−1,−1) is the Minkowski metric for flat
2D space in Cartesian coordinates. An explicit representation
of these matrices is given by the Dirac representation, where

γ 0 =
(

1 0
0 −1

)
, γ 1 =

(
0 1

−1 0

)
, γ 2 =

(
0 −i

−i 0

)
.

(19)

This representation is used throughout this article.
One critical component of Eq. (15) is the covariant

derivative

Dμ = ∂μ + �μ(q) − ieAμ(q), (20)

where �μ(q) is the spinorial affine connection and Aμ is the
four-vector electromagnetic potential. The latter is included
when an external electromagnetic field is coupled to electrons.
On the other hand, the spinorial affine connection �μ(q) is in-
troduced in the covariant derivative to preserve the covariance
of the Dirac equation on curved space-time. In order to sat-
isfy invariance by local Lorentzian transformations (DAψ =
LB

AU (L)DBψ , where U (L) is the matrix representation of the
Lorentz group), we get

�μ(q) = −i

4
ω AB

μ (q)σAB, (21)

where σAB = i[γA, γB]/2 is the commutator of the γ matrices
while the spin connection is

ω AB
μ (q) = eA

ν (q)
[
∂μeνB(q) + �ν

μσ (q)eσB(q)
]
, (22)
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where the Christoffel symbols

�ν
μσ (q) = gνρ (q)

2
[∂σ gρμ(q) + ∂μgρσ (q) − ∂ρgμσ (q)], (23)

were introduced.
This completes the description of the covariant Dirac equa-

tion in curved space-time. Each term of this equation can be
evaluated from the metric and therefore, its explicit form de-
pends on the surface deformation, and thus on the coordinate
basis which is used.

B. Static metric

The Dirac Eq. (15) applies to a general space-time and
thus includes effects from timelike deformation of the surface,
when it is deformed dynamically. In this article, we restrict our
analysis to static space-time curved surfaces. Then the metric
satisfies the conditions ∂t gμν (q) = 0, g0i = 0 for i = 1, 2, and
g00 = 1. In the following we denote by g the static metric
tensor (different from the general metric g). It becomes

g(q) =
[

1 0
0 −gS (q)

]
, (24)

where the minus sign ensures that g reduces to the Minkowski
metric η in the limit of zero curvature. For static metric of
this form, the timelike γ matrix is γ̄ 0(q) = γ 0 and the Dirac
equation can be written in Schrödinger-like form as

i∂tψ (t, q) = H (t, q)ψ (t, q), (25)

where H (t, q) is the Dirac Hamiltonian operator in static
curved space. It is defined as

H (t, q) = −ivF ᾱi(q)[∂i + �i(q) − ieAi(t, q)]

− I2eA0(t, q), (26)

where the generalized Dirac matrices are (for i = 1, 2)

ᾱi(q) := γ 0γ̄ i(q). (27)

Equation (25) is the starting point of this article as it describes
the quantum dynamics of electrons on curved static graphene
surfaces. The deformed surface is characterized locally by the
metric and thus the expression of the covariant derivative and
the generalized γ matrices can be obtained from g.

C. Dirac equation in Cartesian coordinates

In Cartesian coordinates q = (t, x) = (t, x, y), according
to Eqs. (5) and (24), the full space-time metric is

g(x) =
⎡⎣1 0 0

0 −E (x) −F (x)
0 −F (x) −G(x)

⎤⎦. (28)

To get an explicit expression of the Dirac equation, the viel-
bein has to be evaluated from Eq. (A1). Because the metric
is not diagonal, this equation cannot be solved straightfor-
wardly: First, it has to be written in matrix form and then
diagonalized, as demonstrated in Appendix B.

The nonzero Christoffel symbols can be calculated from
(23), they are shown here for completion (where we have

denoted Ex, Ey, etc., the partial derivatives of E with respect
to x, y):

�1
11(x) = FEy + GEx − 2FFx

2�
, (29)

�2
12(x) = �2

21(x) = EGx − FEy

2�
, (30)

�1
22(x) = 2GFy − FGy − GGx

2�
, (31)

�2
22(x) = EGy + FGx − 2FFy

2�
, (32)

�1
12(x) = �1

21(x) = GEy − FGx

2�
, (33)

�2
11(x) = 2EFx − EEy − FEx

2�
. (34)

Finally, the last ingredient is the affine spin connection. Notic-
ing that for a stationary (time-independent) surface, we have
g0i = g0i = 0 and �0

i j = �i
j0 = 0, we hence obtain the follow-

ing spin connection

ωAB
1 = eA

1 ∂1e1B + eA
2 ∂1e2B + eA

1 �1
11e1B

+ eA
2 �2

11e1B + eA
1 �1

12e2B + eA
2 �2

12e2B, (35)

ωAB
2 = eA

1 ∂2e1B + eA
2 ∂2e2B + eA

1 �1
21e1B

+ eA
2 �2

21e1B + eA
1 �1

22e2B + eA
2 �2

22e2B. (36)

However, only the components ω12
1 , ω12

2 , ω21
1 , and ω21

2 are
required in the calculation of �i because the Dirac matrix
structure of the affine spin connection fulfills σ11 = σ22 = 0.
As a matter of fact, the nonzero components are

σ12 = i

2
[γ1, γ2] = γ 0 = −σ21. (37)

The expression of the vielbein and the spin connection can
then be reported in Eqs. (25) and (26) to obtain the Dirac
equation for a general static surface. Using results from the
analysis of first order hyperbolic systems along with some
assumptions on the regularity of the coefficients, one can show
that the Cauchy problem of the resulting equation has a unique
solution (see Appendix C).

The Dirac equation in Cartesian coordinates is not shown
here for simplicity but can be evaluated using a computer
algebra system. However, going through this procedure is a
tedious task and implementing the resulting Dirac equation
numerically is very error-prone. For these reasons, two differ-
ent strategies are now introduced to simplify this problem. In
the first one, the nondiagonal terms in the metric are neglected
while in the second one, a change of coordinates to isothermal
coordinates (defined in Sec. II) is performed.

D. Diagonal approximation in Cartesian coordinates

In this section, nondiagonal terms F of the metric ten-
sor in Cartesian coordinates are neglected, allowing for a
drastic simplification of the Dirac equation. The justifica-
tion and conditions for this approximation are presented
in Sec. III D 2.
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1. Dirac equation

Intuitively, the diagonal approximation can be performed
when Cartesian coordinates are quasiorthogonal everywhere
on the surface, occurring when |F | 
 min(|E |, |G|). In this
case and under some continuity assumptions, it can easily
be proven that the solution of the Dirac equation using the
full metric is close to the solution obtained with the diagonal
metric (see Sec. III D 2). Then the approximate metric simply
becomes

g(x) =
⎡⎣1 0 0

0 −E (x) 0
0 0 −G(x)

⎤⎦. (38)

For diagonal metrics, the expression of the vielbein can be
easily determined from Eq. (A1). In this coordinate system,
the natural local vielbein is also diagonal and is given by

e(x) =
⎡⎣1 0 0

0
√

E (x) 0
0 0

√
G(x)

⎤⎦. (39)

Using these expressions of the metric and veilbein where it is
assumed that nondiagonal terms of the metric g on surface S
(1) are neglected, the Dirac equation modeling electrons on
the graphene surface S reads

i∂tψ (t, x) =
{

− i
vF√
E (x)

α1[∂1 + �1(x) − ieA1(t, x)]

− i
vF√
G(x)

α2[∂2 + �2(x) − ieA2(t, x)]

− I2eA0(t, x)

}
ψ (t, x), (40)

where the Dirac matrices in flat space are the Pauli matrices
(αi = σ i) and

�1 = i

4

Ey√
EG

γ0, (41)

�2 = −i

4

Gx√
EG

γ0, (42)

and where (A0, Ai ) represents an external electromagnetic
field.

This form is similar to the Dirac equation in flat space,
the only difference residing in the appearance of the 1/

√
E

and 1/
√

G prefactors on the right-hand side. This makes this
approach very attractive from the computational point of view
because the resulting equation can be straightforwardly eval-
uated from the surface.

The expression of the Dirac equation is naturally much
simpler when nondiagonal terms of the metric can be ne-
glected. In the following subsection, we rigorously study the
limits of the diagonal approximation of the metric tensor.
However, there exist surfaces where this approximation fails
and the full metric, including nondiagonal terms, has to be
taken into account. When this happens, it is convenient to
perform a change of coordinates to isothermal coordinates,
defined in Sec. II.

2. Diagonal approximation

Some analytical arguments are now given to justify the
diagonal approximation in Cartesian coordinates described in

Sec. III D 1. Starting from Eq. (25), the full Dirac equation in
curved space without approximation, for (t, x) ∈ [0; T ] × S ,
can be written as (neglecting the electromagnetic field)

∂tψ (t, x) = −{[
e1

1(x)α1 + e1
2(x)α2

]
[∂1 + �1(x)]

+ [
e2

1(x)α1 + e2
2(x)α2

]
[∂2 + �2(x)]

}
ψ (t, x).

(43)

On the other hand, from the approximate diagonal metric
tensor in Eq. (38), now written as g̃i j

S , we obtain the following
Dirac equation, for (t, x) ∈ [0; T ] × S:

∂t ψ̃ (t, x) = −{̃
e1

1(x)α1[∂1 + �̃1(x)]

+ ẽ2
2(x)α2[∂2 + �̃2(x)]

}
ψ̃ (t, x). (44)

For i ∈ {1, 2}, we define the following perturbation parame-
ters ϑ, ε by writing:

�i(x) = �̃i(x) + ϑi(x), (45)

ei
A(x) =

{̃
ei

A(x) + εi
A(x), if i = A,

εi
A(x), if i �= A,

(46)

where we assume that ε, ϑ , ẽ, and �̃ belong to L2(R2,C) ∩
L∞(R2,C2×2), and that there exists δ ∈ R small enough
such that

‖ϑ‖∞ < δ, ‖ε‖∞ < δ. (47)

Proposition III.1. We denote ψ and ψ̃ the respective solu-
tions to (43) and (44) with the same smooth initial data. Then
under the conditions (45)–(47), there exists CT > 0 such that

sup
t∈[0;T ]

‖ψ (t, ·) − ψ̃ (t, ·)‖∞ � CT δ. (48)

Proof. We set

χ (t, x) := ψ (t, x) − ψ̃ (t, x), (49)

and

φ(t, x) := {[
ε1

1 (x)α1 + ε1
2 (x)α2

]
[∂1 + �1(x)]

+ [
ε2

1 (x)α1 + ε2
2 (x)α2

]
[∂2 + �2(x)]

+ ẽ1
1(x)α1ϑ1(x) + ẽ2

2(x)α2ϑ2(x)
}
ψ (t, x). (50)

Then, it is straightforward to show that χ satisfies

∂tχ (t, x) = −ẽ1
1(x)α1χ (t, x) − ẽ2

2(x)α2χ (t, x) − φ(t, x)

χ (0, x) = 0, (51)

where φ ∝ ε, ϑ contains all the terms proportional to the
perturbation parameters. Next, because the solution ψ to the
Dirac equation is in H1(R+ × R2,C2), there exists C1 > 0,
such that ‖φ‖1 � C1δ, where ‖ · ‖1 is the H1 norm. We
simply conclude using Gronwall’s lemma on the character-
istic surface for (51), which then allows us to deduce that
‖χ‖1 � C2δ for some C2 > 0. �

These arguments based on perturbation theory allow us
to conclude that the diagonal approximation of the metric is
relevant whenever |||gi j

S − g̃i j
S ||| is small enough, occurring

when |F | 
 |E | and |F | 
 |G|.
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E. Dirac equation in isothermal coordinates

Isothermal coordinates have been defined in Sec. II as
coordinates where the metric is diagonal. A mapping from
any coordinate system to these coordinates always exists for
2D surface embedded in a 3D Euclidean space and can be
obtained from a solution of the Beltrami Eq. (8). Therefore,
starting from Cartesian coordinates for which the surface
parametrization is more natural, we switch to isothermal co-
ordinates, where the Dirac equation has a simpler form. The
latter is now given explicitly.

In isothermal coordinates q = (t, u) = (t, u, v), the spatial
part of the line element is given by (7). Therefore, the corre-
sponding metric is diagonal and its matrix representation is

g(u) =
⎡⎣1 0 0

0 −ρ(u) 0
0 0 −ρ(u)

⎤⎦. (52)

Just like in the diagonal approximation, an expression of the
natural vielbein can be easily found:

e(u) =
⎡⎣1 0 0

0
√

ρ(u) 0
0 0

√
ρ(u)

⎤⎦. (53)

Because both the metric and vielbein are diagonal in isother-
mal coordinates, the Dirac equation can then be simplified to

i∂tψ (t, u) =
{
−i

vF√
ρ(u)

αi[∂i + �i(u) − ieAi(t, u)]

− I2eA0(t, u)

}
ψ (t, u), (54)

where the affine spin connection is

�1(u) = i

4

ρv (u)

|ρ(u)|γ0, (55)

�2(u) = −i

4

ρu(u)

|ρ(u)|γ0. (56)

Again, this equation in curved space is similar to the Dirac
equation in flat space, making isothermal coordinates very
attractive from the computational point of view as they mini-
mize the number of terms in the equation.

The formulation in isothermal coordinates can be applied
to general surfaces and leads to a greatly simplified expression
of Christoffel’s symbols and spin connections, similar to the
Cartesian case when the nondiagonal terms of the metric are
neglected. The main challenge, however, lies in the solution
to the Beltrami equation, required to construct the mapping
x → u and the function ρ(u). There exists a few analytical
solutions to the Beltrami equation for simple configurations,
but for general surfaces, it has to be obtained numerically.
A numerical scheme for solving the Beltrami equation is
presented in Sec. IV B.

IV. NUMERICAL SCHEMES

It is very challenging to solve analytically the time-
dependent Dirac equation in curved space-time. The existing
solutions are mostly for highly symmetric and static sys-
tems. Therefore, to study the electronic dynamics in general

configuration, we now resort to an accurate numerical
approach.

A. Numerical method for the Dirac equation

In this section, a numerical scheme is presented to solve
the Dirac equation for strained graphene given in Eqs. (40)
and (54). To reach this goal, it is convenient to consider the
corresponding Dirac Hamiltonian:

H = −i
vF√
E (x)

α1[∂1 + �1(x) − ieA1(t, x)]

− i
vF√
G(x)

α2[∂2 + �2(x) − ieA2(t, x)]

− I2eA0(t, x). (57)

Strictly speaking, this Hamiltonian is not Hermitian (H† �=
H), stemming from the fact that the self-conjugation of the
affine spin connection is not Hermitian: It can be demon-
strated that �

†
i = −γ 0�iγ

0, a property that breaks the
hermiticity of the Hamiltonian operator. Nevertheless, it is
known that H is self-adjoint (〈φ|H†|ψ〉g = 〈φ|H |ψ〉g) with
respect to the g-scalar product [39]

〈φ|ψ〉g =
∫

dx
√

det(g)φ†(x)ψ (x). (58)

Of course, one recovers the L2 product in flat space when
det(g) = 1. The corresponding g-norm ‖ψ‖g = 〈ψ |ψ〉g is
conserved by the time evolution given by the Dirac equation
in curved space [39]. However, it is not straightforward to de-
velop a numerical scheme that explicitly conserves the g norm
because the Hamiltonian is not Hermitian. As a consequence,
the discrete time evolution operators in usual strategies like
operator splitting or the Crank-Nicolson method, will not be
unitary and thus, will not conserve the norm.

This problem can be cured by noticing that the Hamiltonian
is a pseudo-Hermitian operator [40]. Such operators can be
transformed as

Hη = ηHη−1, (59)

such that H†
η = Hη. This η representation incurs a transfor-

mation of the norm, which becomes the usual L2 norm while
the wave function becomes ψη = ηψ . Then, it can be demon-
strated that the scalar products are identical:

〈φ|ψ〉g = 〈φη|ψη〉L2 , (60)

as long as the time evolution is performed by H for φ,ψ and
by Hη for φη, ψη. Given that Hη is Hermitian, usual techniques
can thus be used and should explicitly preserve the norm.

The transformation that Hermiticizes the Hamiltonian is
η = (detg)

1
4 [40], yielding

Hη = (detg)
1
4 H (detg)−

1
4 (61)

= −i
vF√
E (x)

α1

[
∂1 − ∂1

√
detg

2
√

detg
+ �1(x) − ieA1(t, x)

]
− i

vF√
G(x)

α2

[
∂2 − ∂2

√
detg

2
√

detg
+ �2(x) − ieA2(t, x)

]
− I2eA0(t, x). (62)
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The numerical scheme will thus solve the equation

i∂tψη = Hηψη. (63)

For this purpose, the pseudo-spectral Crank-Nicolson (PSCN)
method introduced in Refs. [41,42] is used. Introducing a set
of discrete times given by tn = t0 + n�t for n ∈ Z+, where t0
is the initial time and �t is the time step, the Crank-Nicolson
scheme reads(

1 + i
�t

2
Hη

)
ψn+1

η =
(

1 − i
�t

2
Hη

)
ψn

η , (64)

where ψn
η = ψη(tn).

The space discretization is performed by introducing a 2D
grid where each point is given by (xk, yl ) = (x0 + k�x, y0 +
l�y) for k, l ∈ Z+, where x0, y0 are the position of the bound-
ary and �x,�y are the spatial steps. The wave function is
projected on the grid, ψn

η,kl = ψ (tn, xk, yl ), yielding a linear
system of the form

Lψn+1 = b, (65)

whose solution gives the updated wave function ψn+1
η,kl .

The gist of the PSCN method is the construction of the
matrix L and the vector b by using a spectral method to
evaluate spatial derivatives. In particular, the derivatives are
projected on the grid via

[∂iψ
n]kl = F−1

i [ikiFi[ψ
n]]kl , (66)

where ki are the discrete Fourier modes in axis i while Fi is
the partial discrete Fourier transform operator that performs a
Fourier transform in the i direction. Armed with this notation,
the right-hand side of Eq. (64) can be evaluated straight-
forwardly, assuming that ψn

η,kl is known. The left-hand side
is more challenging: The solution is defined implicitly and
therefore, the operation [∂iψ

n+1]kl is not known a priori. The
strategy introduced in Ref. [42] consists of using a Krylov
iterative technique, such as GMRES or conjugate gradient,
to solve the linear system. This is interesting for two main
reasons:

(i) In these methods, an initial guess is chosen and im-
proved iteratively toward the solution. Here, the initial guess
is chosen as ψn which is close to ψn+1 for small �t and on
which the discrete spectral derivative can be evaluated.

(ii) These methods allow for matrix-free solution of the
linear system, where the matrix L is not constructed explicitly
nor stored in memory. Rather, a linear operator is defined
which yield the vector v = Lψn,m, where ψn,m is the mth iter-
ation of the Krylov method. Most implementations of Krylov
methods allow for defining such operators.

The PSCN scheme has second-order convergence in time
and up to spectral convergence in space (see Section IV C).
In addition, when the fast Fourier transform (FFT) is used
to compute the derivatives, the complexity per time step is
O(N ln N ), where N is the total number of grid points. The nu-
merical method was implemented in Python using the FFTW
interface [43] for the FFT and the matrix-free GMRES algo-
rithm was used to solve the linear system. We again refer the
reader to Ref. [42] for more details and analysis of the method.

B. Numerical approximation of the Beltrami equation

In Secs. II and III, it was argued that using isothermal
coordinates requires a solution to the Beltrami equation. The
latter gives the mapping between Cartesian coordinates, where
a natural parametrization of the surface exists, and the isother-
mal coordinates, where the Dirac equation has a simple form.
However, explicit solutions to the Beltrami equation are usu-
ally challenging to find due to its mathematical complexity.
As a consequence, those calculations need to be performed
numerically. In this section, a numerical scheme to perform
this task is presented.

The overall strategy/algorithm is now summarized:
(1) Parametrization of the surface S in Cartesian coordi-

nates, then explicit construction of E , F , G, and g.
(2) Evaluation of the Beltrami coefficient μ via Eq. (11).
(3) Numerical computation of wh, an approximate solu-

tion to the Beltrami equation.
(4) Computation of ρh via Eq. (14).
(5) Evaluation of ρh as a function of u and v, which re-

quires the inverse of w = u + iv.
(6) Estimation of the Dirac equation in isothermal coordi-

nates thanks to a then diagonal metric tensor.
Each step is relatively straightforward, except the third one,

which is now detailed.

Numerical solution to the Beltrami equation

A convergent numerical scheme to solve the Beltrami Eq.
(8) numerically is now discussed. It is assumed that the com-
plex dilation μ given in (8) is such that μ ∈ L∞(C) with
‖μ‖∞ < 1. According to Refs. [32,34], there exists a unique
quasiconformal mapping w satisfying the Beltrami equation
with values fixed at z = 0, 1 and at infinity. For μ analytic,
one of the most standard, simple and efficient methods is the
one derived by Daripa [44,45], based on numerical approx-
imation of Hilbert’s and Cauchy’s transforms. However, the
downside of this approach are the required strong regularity
of μ as well as the need for working on unbounded domains.
Going beyond these restrictions, the most natural alternative is
the least-squares finite-element method based on a variational
formulation of the Beltrami equation.

To obtain this variational formulation, the real and imag-
inary parts of the Beltrami equation are separated and
formulated as a system of partial differential equations. As-
suming that |μ| < 1 over � ⊂ C, the Beltrami Eq. (8) is
rewritten as [46]

∇u(x) = JA∇v(x), (67)

where A and J are defined as

A = 1

1 − |μ|2

×
{

[Re(μ) − 1]2 + Im(μ)2 −2Im(μ)
−2Im(μ) [1 + Re(μ)]2 + Im(μ)2

}
,

(68)

J =
[

0 −1
1 0

]
. (69)

Recall that there is no unique choice of isothermal coordi-
nates as they depend on the choice of boundary values. The
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Beltrami equation is solved in Cartesian coordinates on a
rectangular domain given by � = [xmin, xmax] × [ymin, ymax].
To obtain a unique solution, the following mixed Dirichlet and
Neumann boundary conditions are considered:

u|∂�l = xmin, u|∂�r = xmax,

uy|∂�d = 0, uy|∂�t = 0, (70)

vx|∂�l = 0, vx|∂�r = 0,

v|∂�d = ymin, v|∂�t = ymax, (71)

where ∂�l,r,d,t are the left, right, down, and top boundaries of
the rectangular domain, respectively. These boundary condi-
tions allow for mapping the rectangular domain � in Cartesian
coordinate to the same domain in isometric coordinates (� →
�), such that u ∈ � in isothermal coordinates. It also ensures
that for a flat metric, we have x = u and y = v. Finally, it as-
sumes that the deformation has a support such that μ|∂� = 0.
These boundary conditions can be written in the form Ru = h
on ∂�, where R is a differential operator and h is a set of
constants. Similar boundary conditions have been considered
in Refs. [47,48].

This equation can hence be solved using different ap-
proaches. In this work, a standard least-squares finite-element
method is considered, which is well suited for PDE with
first-order differentials [49]. Using the properties of A and J ,
the least-squares functional is written as

L(u, v; μ) = ‖P∇u + JP∇v‖2
L2

�

+ ‖Ru − h‖2
L2

∂�

, (72)

where:
(1) The function (u, v) belongs to V , defined as

V = {w ∈ H1(�;R)} × {w ∈ H1(�;R)}. (73)

(2) The norm ‖ · ‖L2
�

is a norm on (ł2(�;C))
2
.

(3) The matrix P satisfies PT P = A and is explicitly given
by [46]

P = 1√
1 − |μ|2

[
1 − Re(μ) −Im(μ)
−Im(μ) 1 + Re(μ)

]
. (74)

The functional L is minimized when (u, v) ∈ V is solution
to Eq. (8) with boundary conditions (70) and (71). Following
Ref. [49], the corresponding Euler-Lagrange equation is

(P∇û + JP∇v̂, P∇u + JP∇v)L2
�

+ (Rû,Ru)L2
∂�

= (Rû, h)L2
∂�

, (75)

where û, v̂ are test functions in H1(�;R). Then, the dis-
cretization proceeds as usual for finite-element methods:

(1) A triangulation of � is introduced.
(2) The functions u, v are expanded on a piecewise poly-

nomial basis.
(3) A gradient descentlike method is used to solve the

resulting linear system of equations.
In this work, a finite-element method and piecewise contin-

uous second-order polynomials is chosen as basis functions.

More specifically, u and v are approximated by piecewise
continuous quadratic polynomials (P2 − P2):

uh =
∑
i∈τI

ciui, (76)

vh =
∑
i∈τI

divi, (77)

where {ci},{di}i are expansion coefficients and {(ui, vi )}i ∈ P2

are the second degree polynomial basis. This is performed on
a conformal triangular finite-element mesh τh = τh(�) whose
elements are indexed by a finite set I = {1, . . . , dim(Vh)}, and
such that Vh ⊂ V . In order to minimize a finite-dimensional
version of min(u,v)∈V L(u, v; μ), we apply a least-squares
method on (uh, vh) ∈ Vh, that is we minimize

min
(uh,vh )∈Vh

(‖Ph∇uh + JPhvh‖2
L2

τh
+ ‖Ruh − hh‖2

L2
∂τh

)
, (78)

where ‖ · ‖2
L2

τh

denotes the L2 norm on τh. This leads to finding

a nontrivial solution to Lx = f with matrix L = {Li j}i j and
vectors f = { fi}i constructed from (75), that is for

Li j = (P∇ûi+JP∇v̂i , P∇u j + JP∇v j )L2
τh
+(Rûi,Rû j )L2

∂τh
,

(79)

fi = (Rûi, h)L2
∂τh

, (80)

for basis functions (ui, vi ) of Vh and (̂ui, v̂i ) of Vh dense in
(H1(�;R))

2
.

Our implementation of this numerical method is based on
the finite-element package FENICS [50], which has a simple
interface allowing for a symbolic definition of the functional
(75), along with the possibility of using many element types
and discretization. In particular, the mesh and the linear sys-
tem are generated automatically from the specification of the
domain and the functional. Also, the resulting code is paral-
lelized using the message passing interface, allowing for good
performance on large problems. Finally, the linear system is
solved using a Krylov iterative method (GMRES).

C. Convergence of the Beltrami and Dirac solvers

The analysis of convergence of the Beltrami equation
solver is standard, we hence only provide the main results.
Let us first notice that the operator L (72), is continuous and
coercive with respect to u and v in H1(�) such that for some
constants c(μ) > 0 and α(μ; �) > 0,

|L(u, v; μ)| � c(μ)‖u‖H1(�)‖v‖H1(�), (81)

|L(u, v; μ)| � α(μ; �)[‖u‖H1(�) + ‖v‖H1(�)]. (82)

Continuity is a consequence of the fact that μ belongs to
L∞(�), while coercivity comes from Poincaré’s inequality
on � bounded [51]. By Lax-Milgram’s theorem we deduce
the existence of a unique solution to the Beltrami equation
in H1(�) × H1(�) [52]. Assuming that u and v belong to
Hs+1(�), the least-squares finite-element solution (uh, vh) is
such that (see Ref. [53])

‖u − uh‖L2(�) + ‖v − vh‖L2(�)

� c(μ; �)hs+1(‖u‖Hs+1(�) + ‖v‖Hs+1(�) ), (83)
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and

‖u − uh‖H1(�) + ‖v − vh‖H1(�)

� c(μ; �)hs(‖u‖Hs+1(�) + ‖v‖Hs+1(�) ). (84)

In numerical experiments presented in the next section, we are
using P2 finite elements, and we indeed observe a third-order
convergence.

Regarding the Dirac equation solver, let us recall some
basic facts about the pseudospectral method used in this paper.
First, because Hη is Hermitian, the �2 norm of the numerical
solution ψh is trivially conserved using a trapezoidal rule:
‖ψn

h ‖�2 = ‖ψ0
h ‖�2 .

Regarding pseudospectral methods, let us recall that for ψ

smooth enough and a pseudospectral approximation on a N-
point grid ψh, we have [54]

‖ψh − ψ‖ � Ns−r‖ψ‖Hs , for s > r > d/2 ∈ R. (85)

We do not provide an analysis of the convergence of the Dirac
equation solver, as it would require an important technical
effort and is outside the scope of this article. However, we
recall a standard result on first-order one-dimensional linear
hyperbolic equations, which provides interesting information
regarding the accuracy of the overall pseudospectral approach
used in our paper. Let us recall that the studied Dirac equation
is a linear Hermitian hyperbolic system but a priori non-
conservative. It was proven in Refs. [54,55], that for ∂tv +
∂x(q(x)v) = 0 with v(0, ·) = v0, a pseudospectral method in
space leads to the following error estimate

‖vh(t, ·) − v(t, ·)‖L2

� e‖q′‖∞t‖(N1−s‖v0‖Hs + N2−s max
τ�t

‖v(τ, ·)‖Hs ). (86)

Interestingly, it is shown in Ref. [54] that the pseudospectral
scheme looses one order of convergence compare to a full
spectral method. Overall, we expect the same typical con-
vergence accuracy in space for the Dirac equation solver, as
long as their coefficients are smooth and bounded. In time,
as we use a trapezoidal rule, we trivially have a second-order
convergence.

We then conjecture that the error on the pseudospectral
approximation of ψ is bounded by (for s > 1 + d/2):

‖ψh(t, ·) − ψ (t, ·)‖2
L2

� e2Q∞t‖[N−2s‖ψ0‖Hs + N1−s+d/2 max
τ�t

‖ψ (τ, ·)‖(Hs )4 ],

(87)

where

Q∞ := max{|||∇A|||∞, |||∇B|||∞, |||∇C|||∞}. (88)

V. NUMERICAL RESULTS

In this section, some numerical experiments are presented
to test the numerical approaches presented earlier.

A. Isothermal coordinates

The first numerical results are focused on the solution of
the Beltrami equation. We consider two different numeri-

FIG. 1. Numerical L2 error as a function of element size for
the solution of the Beltrami equation using the least-squares finite-
element method with P2 elements.

cal tests in which the convergence of the solver is assessed
empirically.

1. Convergence of the Beltrami solver

To validate the numerical method and the implementation
of the Beltrami equation least-squares finite-element solver,
a simple test case is introduced. This is performed via the
method of manufactured solution [56], where an explicit solu-
tion is selected while the parameters in the partial differential
equation are fixed from this solution. For the Beltrami equa-
tion given in Eq. (8), the particular solution considered in this
article is

up(x, y) = x − x0 + Cu sin2

(
πx

Lx

)
sin2

(
πy

Ly

)
, (89)

vp(x, y) = y − y0 + Cv sin2

(
πx

Lx

)
sin2

(
πy

Ly

)
, (90)

where Cu,Cv � 1 are arbitrary constants, x0 = xmin + Lx/2
and y0 = ymin + Ly/2, where we defined Lx = |xmax − xmin|
and Ly = |ymax − ymin|. This particular solution obeys the
boundary conditions in Eqs. (70) and (71). The Beltrami co-
efficient is obtained from the solution via

μp(x, y) = up,x − vp,y + i(vp,x + up,y)

up,x + vp,y + i(vp,x − up,y)
, (91)

which is just a rewriting of μ = wz̄/wz using real quantities.
The Beltrami equation is solved numerically using the

least-squares method described in Sec. IV B. The Beltrami co-
efficient is set to μp and the constants are fixed to Cu = Cv =
0.5, ensuring that ‖μp‖∞ ≈ 0.121 < 1 and that the mapping
up, vp is a quasiconformal transformation. The domain is
chosen as � = [−2, 2] × [−2, 2] and the equation discretized
with a homogeneous finite-element mesh of size h. To verify
the convergence rate of the numerical method, we make h
vary from 0.0325 to 1.0. Usual Lagrange second-order finite
elements (P2) are used.
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FIG. 2. Graph of the (a) solution to the Beltrami equation, with u(x, y) on the left and v(x, y) on the right, and (b) the difference with the
flat solutions uflat (x, y) and vflat (x, y).

The L2 norm of the error is evaluated as a function of the
element size and the results are displayed in Fig. 1. These
results demonstrate that the numerical method reproduces the
exact solution with a high accuracy and that the least-squares
finite-element method is well suited for solving the Beltrami
equation. By fitting the numerical data, we determine that the
order of convergence is 3.08, as expected from the order of
Lagrange polynomials used and the analysis presented in the
last section.

2. An explicit example: The Gaussian surface

As an illustration, a numerical experiment for the compu-
tation of ρ(u) is proposed. We consider a physically relevant
configuration where a graphene surface is subjected to a lo-
cal Gaussian deformation with a surface S parameterized as

follows:

X (x) = x, Y (x) = y,
(92)

Z (x) = C exp

(
−|x|2

α2

)
,

for some given amplitude C = 20 nm and width α = 10
nm. The domain is � = (−50 nm, 50 nm)2. A deformation
like this could be implemented experimentally by placing
graphene on top of nanopillars or nanostructures [57–59].

The solution to the Beltrami equation is obtained using
the least-squares finite-element numerical method described
in the last section. We consider a real space triangulation of
the rectangular domain with Nx = Ny = 128 elements of equal
size in the x and y directions, respectively. The solution is
displayed in Fig. 2 along with the difference with uflat and
vflat, where uflat, vflat are the solution to the Beltrami equation
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FIG. 3. Graph of (left) the function ρ(x) for a Gaussian surface and (right) its corresponding function in isothermal coordinates ρ(u).

in flat space. They are obtained by setting μ = 0, in which
case the Beltrami equation becomes the Cauchy-Riemann
equation. The contours in Fig. 2 demonstrate clearly that the
coordinates u and v correspond to Cartesian coordinates far
from the deformation. However, they are deformed close to
the region where the curvature is maximal. The difference
with flat solutions allows for describing the relative effect of
curvature on the Beltrami equation solution. Again, it is seen
that far from the deformation, isothermal coordinates are flat
while they display the effect of curvature in the vicinity of the
deformation.

Once u and v are calculated, it is possible to evaluate ρ(x)
via Eq. (14). It is displayed on the left of Fig. 3. Finally, we
report in Fig. 3 (right) the function ρ(u) in isothermal coor-
dinates. The latter is obtained by interpolating the function
ρ(x) in Cartesian coordinates and by using the mapping u(x)
and v(x). As expected, we observe that ρ(u) is equal to 1
everywhere but in a small region centered at (u, v) = (0, 0).

The most important function for the time-dependent solver
is ρ(x) given by (14), because it appears explicitly in the
curved-space Dirac equation in isothermal coordinates. How-
ever, this function depends on the derivative of the Beltrami
solution. Here, the convergence of this function is verified
as the number of elements is increased from Nx = Ny = 16
to Nx = Ny = 512. The solution of reference is approximated
by setting Nx = Ny = 1024 and the L2 norm of the error is
calculated. The results are displayed in Fig. 4. The order of
convergence is numerically evaluated from the linear fit and
is given by 1.799, an order lower than for the solution. This
is expected because the function ρ depends on the derivative
of the solution. These derivatives are evaluated by taking the
derivative of the polynomial basis functions, thus reducing the
polynomial order. As a consequence, the order of convergence
of ρ is also reduced by 1. This demonstrates the importance
of choosing finite elements of type Pn with n � 2 in these
calculations.

B. Scattering on deformations

This section is devoted to numerical tests and benchmarks
for the pseudospectral method. For this purpose, we consider

a simple configuration where an initial Gaussian wave packet
is evolved in time and scatters on two Gaussian surface de-
formations. As in the last section, these local deformations
could be implemented experimentally by using nanopillars
or nanostructures [57–59]. Similar configurations have been
analyzed in the static regime in Refs. [60–62] while the dy-
namics have been considered in Ref. [63] for homogeneously
strained graphene inducing pseudomagnetic potentials and in
Refs. [29,30] for local but symmetric deformations.

Throughout, the initial state is a Gaussian wave packet
given by

ψ0
+(x) = N e

− x2

β2 eik·x, (93)

ψ0
−(x) = 0, (94)

where β is the width of the wave packet and k is its momen-
tum. The normalization constant N is chosen such that the
norm of the wave function is unity. The dynamics of similar

FIG. 4. Numerical L2 error as a function of element size for
ρ(x, y) obtained from the solution of the Beltrami equation using
the least-squares finite-element method with P2 elements.
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TABLE I. Simulation parameters for the initial wave packet and
the surface deformation for a typical scattering simulation.

Parameters Value

Gaussian width (β ) 10 nm
Wave packet momentum kx 3.12 ×10−7 eV
Wave packet momentum ky 0
Number of deformation (nG) 2
Gaussian widths (α1 = α2) 10 nm
Deformation position (a1) (−40 nm, 0)
Deformation position (a2) (40 nm, 0)

wave packets in flat graphene and the Zitterbewegung effect
have already been investigated in Ref. [64].

The graphene surface, on the other hand, is parametrized
by

X (x) = x, Y (x) = y, (95)

Z (x) =
nG∑
�=1

C� exp

(
−|x − a�|2

α2
�

)
, (96)

corresponding to a set of nG Gaussian deformations, cen-
tered on {a�}�=1,...,nG with widths {α�}�=1,...,nG and amplitudes
{C�}�=1,...,nG .

1. Scattering of the wave packet

Before investigating the properties of the numerical
scheme, such as convergence, the validity of the diagonal
approximation and the conservation of the norm, typical sim-
ulation results are displayed for illustration purpose and as
subsequent analysis will be performed on similar configura-
tions. The values of the simulation parameters are given in
Table I. In addition, the domain is a square centered at the
origin with sides of 200 nm, discretized with Nx = Ny = 1024
grid points. The Dirac equation in curved space is solved
numerically using the Crank-Nicolson pseudospectral method
in isothermal coordinates. The solution is mapped back to
Cartesian coordinates for visualization. The final time is set to
tfinal = 80 fs and the number of time step is Nt = 1000, mak-
ing for a time step �t ≈ 0.08 fs. Isothermal coordinates are
obtained numerically by solving the Beltrami equation. For
this purpose, the domain is discretized with a large number
of elements Nel,x = Nel,y = 1024, ensuring that the solution is
converged.

The initial state and the final solution are displayed in Fig. 5
and Fig. 6, respectively. They are compared to the solution
in flat space, where C1 = C2 = 0. Clearly, the presence of
the deformation has an important effect on the dynamics of
the wave packet, which proceeds as follow. When an initial
momentum is given to the wave packet, the latter splits in
two counterpropagating parts. After the free propagation in
the first 50 fs, both parts reach deformed regions and scatter
on Gaussian deformations. Remarkably, the scattering induces
a focusing effect: the wave packet is squeezed and then starts
to diverge (shown in the figure). This effect is reminiscent of
gravitational lensing in general relativity, where the propaga-
tion of waves and particles is distorted by the presence of large
mass objects that curve space [65]. In more details, as it propa-
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FIG. 5. Plot of the wave function at initial time t = 0

gates on deformed graphene, the center of the wave packet has
to travel a longer distance than its sides because graphene is
stretched more on the principal axis. The difference of prop-
agation distances along the Gaussian deformation induces a
phase difference that changes the wave front from planar
to spherical and that focuses the wave packet like a lens.
Analogously, the gravitational field around massive objects
stretches space-time and particles that travel closer to these
objects have to cover larger distances. In turns, this effect
produces a wave front distortion and a focusing of particles. In
both cases, the phase difference is due to the stretching of the
space where particles are propagating, in contrast to an optical
lens, where the phase difference comes from a modification in
the optical path length. Physical implications of this electronic
focusing phenomenon and its use for controlling the dynamics
of electron in graphene will be investigated in more details in
a subsequent article.

2. Diagonal approximation versus isothermal coordinates

To empirically compare the diagonal approximation to
the use of isothermal coordinates, a benchmark test is con-
sidered in which a wave packet is initialized at the center
of the domain. It is given a certain momentum and thus,
evolves for a small time in flat space before it is scattered
on a deformation. The parameters used in simulations are
the same as for Sec. V B 1, except for the amplitude of
the Gaussian deformation that we make vary between 0.1
and 20.0 nm. Also the Dirac equation in curved space is
solved numerically using both the diagonal approximation
and isothermal coordinates. The difference between the final
solution in the diagonal approximation ψη,diag(tfinal ) and the
one using isothermal coordinates ψη,iso(tfinal ) is quantified by
evaluating the L2 norm in Cartesian coordinates (the solution
in isothermal coordinates is mapped to Cartesian coordinates):
� = 1

2‖ψη,diag(tfinal ) − ψη,iso(tfinal )‖L2 . Defined in this way, �

takes its values in the interval � ∈ [0, 1], where the largest
value corresponds to when the two solutions do not overlap
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FIG. 6. Plot of the wave function at final time (t = 80 fs) when
it propagates in flat space (a) and when it scatters on Gaussian
deformations (b).

(assuming they are normalized to 1). The result of this proce-
dure is displayed in Fig. 7.

As expected, the final solution in the diagonal approxi-
mation is different from the one obtained with isothermal
coordinates when the deformation is larger. In our configu-
ration, it reaches a maximum value of 0.65 when C1 = C2 =
20 nm, implying that the overlap of the two functions is very
small in this case. These results are expected because the
nondiagonal components of the metric become important for
such deformations. However, for small deformation, the dif-
ference between the two methods becomes negligible. Given
that graphene can sustain a maximum strain of 25%, it is
possible that for many relevant physical configurations, the
diagonal approximation may be accurate enough.
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FIG. 7. Difference between the final solution obtained using the
diagonal approximation and isothermal coordinates (�), as a func-
tion of the Gaussian deformation amplitude.

3. Conservation of the norm in η representation

In this section, the conservation of the norm is empirically
analyzed. In Sec. III, the pseudo-Hermitian Hamiltonian was
transformed to the η representation in order to ensure that the
Crank-Nicolson method remains unitary at every time step
and that the L2 norm is explicitly conserved by the numerical
scheme. To verify the consequence of this transformation on
the conservation of the norm, we first solve the Dirac equation
numerically in the usual representation i∂tψ = Hψ . As men-
tioned earlier, the g norm ‖ψ‖g is conserved by the dynamics
in this case. This is compared to solving the Dirac equation
in the η representation given by Eq. (63). In this case, the L2

norm is conserved ‖ψη‖L2 . In both cases, the pseudospectral
Crank-Nicolson scheme is used while their corresponding
norms are evaluated at every time step. The simulation param-
eters are given in Table II. The absolute numerical error on
the norm, defined as ε = |‖ψ‖g − 1| and εη = |‖ψη‖L2 − 1|
in the usual and η representation, respectively, is displayed in
Fig. 8 for different grid sizes: Nx = Ny = 128, 256, 512. All
the calculations are performed in the diagonal approximation
in a square domain with 400-nm sides. The initial wave packet
is evolved using 200 time steps to a final time of 160 fs.

TABLE II. Simulation parameters for the initial wave packet and
the surface deformation for analyzing the conservation of the norm.

Parameters Value

Gaussian width (β ) 10 nm
Wave packet momentum kx 3.12 ×10−7 eV
Wave packet momentum ky 0
Number of deformation (nG) 2
Gaussian widths (α1 = α2) 20 nm
Gaussian amplitudes (C1 = C2) 40 nm
Deformation position (a1) (−70 nm, 0)
Deformation position (a2) (70 nm, 0)
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FIG. 8. Numerical error of the norm as a function of time, for
different grid sizes. Top left: Nx × Ny = 128 × 128. Top right: Nx ×
Ny = 256 × 256. Bottom: Nx × Ny = 512 × 512.

In all the studied cases, the norm is accurately conserved,
with numerical errors never exceeding O(10−2). Also, the
error on the norm is reduced considerably as the number of
grid points is increased, as expected. The error in the η rep-

resentation is always lower than in the usual representation,
especially when the surface deformations are more impor-
tant. The difference naturally occurs when the wave packet
reaches the region in the vicinity of the deformation, at an
approximate time of t ≈ 60 fs. At earlier times, the wave
packet is essentially propagating in flat space, in which case
the two representations are equivalent and give similar errors
on the norm. At later times, the difference in the error between
the η and usual representation reaches at most two orders of
magnitude, but is reduced further for larger grids. As a matter
of fact, for the finest grid 512 × 512, the two representations
are equivalent. At this point, the accumulated truncating errors
and the numerical error of the linear solver are possibly more
important than the error due to the lack of unitarity, explaining
the similarity between the two representations. To conclude
this study, the η representation maintains a slight advantage
over the usual representation because its norm is better con-
served. However, at convergence, both representation lead to
accurate results.

VI. CONCLUSION

In this paper, two numerical approaches have been pro-
posed to solve the Dirac equation in curved space for
describing the dynamics of charge carriers in corrugated
graphene: the diagonal approximation and isothermal coor-
dinates. Using these strategies, it was possible to construct
a diagonal metric and as a consequence, obtain a relatively
simple Dirac equation, having a very convenient form from
the computational point of view. To obtain the quasiconfor-
mal transformation allowing for a change of variable between
Cartesian and isothermal coordinates, a least-squares numer-
ical scheme was introduced to solve the Beltrami equation.
This was tested numerically using some benchmark tests.

The resulting Dirac equations were solved in the pseudo-
Hermitian representation using the PSCN scheme. Several
experiments were performed to illustrate the efficiency of
the proposed methodologies for the simulation of electron
dynamics on arbitrary graphene surfaces. In particular, we
applied the numerical schemes to the scattering of wave pack-
ets on local Gaussian deformations. Using these numerical
tests, it was possible to conclude that the norm is better
conserved in the pseudo-Hermitian representation and that
the diagonal approximation ceases to be accurate for large
deformations.

Our numerical technique can be used to study the transport
properties of deformed graphene samples. Some general strain
configurations could be investigated and exploited to control
the electron propagation, similar to the work performed in
Refs. [29–31]. It may also be possible to obtain large-scale
properties of disordered corrugated graphene, such as the
conductivity. To reach this goal, calculations performed for
flat graphene with random impurities [66] could be adapted
to our numerical scheme in order to evaluate the transmission
coefficient.

The strategies presented in this paper, based on numerical
quasiconformal transformations and the diagonal approxi-
mation, could also be relevant in other contexts, for other
deformed 2D physical systems or more generally, when par-
ticles are confined to move on a curved 2D plane [67,68].
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Indeed, the diagonalization of the metric would also yield
simpler equations in these cases described by the Schrödinger
equation in curved space. Given the vast effort in 2D materials
and assuming that such systems can be described by effective
Schrödinger-like equations in curved space, it is plausible that
our techniques could find other applications in that area.

Physically, the results for the scattering of wave packets on
local deformations have shown a focusing effect, reminiscent
of gravitational lensing around massive objects in general
relativity. This interesting phenomenon will be characterized
in more details in a subsequent study.
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APPENDIX A: SOME PROPERTIES OF THE VIELBEIN

The vielbein is a concatenation of three vector fields that
define a local orthonormal basis. It obeys a number of impor-
tant properties. First, it can be used to express the metric in
the local frame fields via

eA
μ(q)eB

ν (q)ηAB = gμν (q). (A1)

Second, it is orthonormal:

eA
μ(q)eν

A(q) = δν
μ, (A2)

eA
μ(q)eμ

B (q) = δA
B, (A3)

where δB
A is the Kronecker delta. Finally, the general and

Minkowski indices can be lowered or raised using the general
and Minkowski metric, respectively:

eμA(q) = gμν (q)eA
ν (q), (A4)

eμA(q) = ηABeμ
B (q). (A5)

APPENDIX B: COMPUTING THE VIELBEIN IN
CARTESIAN COORDINATES

In this Appendix, the vielbein is evaluated from Eq. (A1),
rewritten as a matrix equation:

g = e�ηe, (B1)

where g, e, and η are the 3-by-3 matrix representation of gμν ,
eA
μ, and ηAB, respectively. To evaluate the vielbein, it can be

useful to transform the equation in the basis of the metric
eigenvectors. For this purpose, a similarity transformation is
performed to diagonalize the metric:

g′ = P�gP = (P�e�P)η(P�eP) = e′�ηe′. (B2)

The similarity transformation yields a new diagonal metric

g′(x) =
⎡⎣1 0 0

0 −A(−)(x) 0
0 0 −A(+)(x)

⎤⎦, (B3)

where the diagonal entries are the eigenvalues of the metric g:

A(±)(x) = Tr(g) ± H (x)

2
, (B4)

where H (x) =
√

Tr(g)2 − 4�. As usual, the transition matrix
is constructed from the eigenvectors of g:

P =

⎡⎢⎢⎣
1 0 0

0
√

2|F |√
HW (−)

√
2|F |√

HW (+)

0 −|F |
F

W (−)√
2H

|F |
F

W (+)√
2H

⎤⎥⎥⎦, (B5)

where

W (±) =
√

H ± (G − E ). (B6)

Once the metric has been diagonalized, it is straightforward to
evaluate the vielbein. It gives

e′ =
⎡⎣1 0 0

0
√
A(−) 0

0 0
√
A(+)

⎤⎦. (B7)

Going back in the canonical basis yields the following
nonzero components:

e0
0 = 1, (B8)

e1
1 = 2F 2

H

[√
A(+)

W (+)2
+

√
A(−)

W (−)2

]
, (B9)

e2
2 = W (+)2

√
A(+) + W (−)2

√
A(−)

H
, (B10)

e1
2 = e2

1 = F

H
[
√
A(+) −

√
A(−)]. (B11)

In the particular case where the surface is stretched uniformly
in the x and y coordinates, and deformed in the z coordinates,
the technique used here to evaluate the vielbein yields the
same results as Ref. [69].

APPENDIX C: ABOUT THE REGULARITY AND
UNIQUENESS OF SOLUTIONS

The well-posedness of the Dirac equation in curved space
relies on relatively standard results in the theory of first-order
hyperbolic systems [70]. For technical reasons, we here con-
sider the infinite surface S = {(X (x),Y (x), Z (x)) / x ∈ R2},
where we assume that (i) X , Y , Z are smooth, and (ii) Xi, Yi,
Zi are L∞(R2). Under these assumptions, the Cauchy problem
for the Dirac equations considered earlier (25), (40), and (54)
is well posed. More specifically, we rewrite the Dirac equation
in the form

∂tψ (t, q) = A(q)∂1ψ (t, q) + B(q)∂2ψ (t, q) + C(q)ψ (t, q),

ψ (0, ·) = ψ0 := (ψ0
+, ψ0

−)T , (C1)
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where A, B,C are matrices related to the vielbein and the
affine spin connection. They are given by

A(q) = −{
e1

1(q)α1 + e1
2(q)α2

}
, (C2)

B(q) = −{
e2

1(q)α1 + e2
2(q)α2

}
, (C3)

C(q) = −{(
e1

1(q)α1 + e1
2(q)α2

)
�1(q)

+ (
e2

1(q)α1 + e2
2(q)α2

)
�2(q)

}
. (C4)

A theorem of existence and uniqueness can then be stated
for equations of this form [71,72]. Denoting by Cs

b the set
of s times continuously differentiable (matrix) functions with
bounded derivatives, we have

Theorem C.1. Assume that A, B, and C belong to
Cs+1

b (R2), with s > 2 and that ψ0 ∈ Hs(R2), then there ex-
ists a unique solution ψ to (C1) which belongs to ψ ∈
C0([0,∞); Hs(R2)) ∩ C1([0,∞); Hs−1(R2)).

This theorem guides the development of numerical meth-
ods and ensure that the latter will converge toward the
solution.
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