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The worm algorithm is a versatile technique in the Markov chain Monte Carlo method for both classical
and quantum systems. The algorithm substantially alleviates critical slowing down and reduces the dynamic
critical exponents of various classical systems. It is crucial to improve the algorithm and push the boundary of
the Monte Carlo method for physical systems. We here propose a directed worm algorithm that significantly
improves computational efficiency. We use the geometric allocation approach to optimize the worm scattering
process: worm backscattering is averted, and forward scattering is favored. Our approach successfully enhances
the diffusivity of the worm head (kink), which is evident in the probability distribution of the relative position
of the two kinks. Performance improvement is demonstrated for the Ising model at the critical temperature
by measurement of exponential autocorrelation times and asymptotic variances. The present worm update
is approximately 25 times as efficient as the conventional worm update for the simple cubic lattice model.
Surprisingly, our algorithm is even more efficient than the Wolff cluster algorithm, which is one of the best
update algorithms. We estimate the dynamic critical exponent of the simple cubic lattice Ising model to be
z ≈ 0.27 in the worm update. The worm and the Wolff algorithms produce different exponents of the integrated
autocorrelation time of the magnetic susceptibility estimator but the same exponent of the asymptotic variance.
We also discuss how to quantify the computational efficiency of the Markov chain Monte Carlo method. Our
approach can be applied to a wide range of physical systems, such as the |φ|4 model, the Potts model, the O(n)
loop model, and lattice QCD.
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I. INTRODUCTION

The Markov chain Monte Carlo (MCMC) method is a pow-
erful numerical tool for studying a wide variety of statistical
mechanical problems [1,2]. Many kinds of nontrivial phases
and phase transitions in both classical and quantum systems
have been uncovered by the MCMC method. The essence
of the method is to construct a global transition kernel as a
series of local kernels acting on local state variables. One can
sample states from an arbitrary target distribution even in a
vast number of dimensions (or degrees of freedom) of state
space.

In the MCMC method, one has to care about autocorrela-
tion between samples. The autocorrelation function [1,2] of
an estimator Ô is defined by

AÔ(t ) = 〈Oi+t Oi〉 − 〈Ô〉2

〈Ô2〉 − 〈Ô〉2
, (1)

where Os is the sample of a physical quantity O, such as
the total energy, at the sth Monte Carlo step. The Monte
Carlo average is denoted by the bracket 〈·〉. The autocor-
relation function eventually becomes (almost) independent
of i in Eq. (1) after the distribution convergence, namely,
the thermalization (the burn-in). In many cases, the func-
tion decays exponentially for large t : AÔ(t ) ∼ e−t/τexp,Ô ,

where

τexp,Ô = lim sup
t→∞

t

− ln |AÔ(t )| (2)

is the exponential autocorrelation time of Ô. Autocorrelation
reduces the effective number of independent Monte Carlo
samples to Meff ≈ M/2τint,Ô, where M is the number of sam-
ples obtained in a simulation and

τint,Ô = 1

2
+

∞∑
t=1

AÔ(t ) (3)

is the integrated autocorrelation time of Ô. The constant 1
2

comes from the discrete nature of the Monte Carlo time evo-
lution. The needed computation time for a certain precision is
proportional to these autocorrelation times, τexp,Ô and τint,Ô.
They may depend on estimators and update methods.

The MCMC method can be applied to many kinds of phase
transitions in principle, but the convergence (relaxation) rate
and the sampling efficiency can become very poor in some
cases, such as critical slowing down [3,4]. As the system
approaches a critical point, the exponential autocorrelation
time diverges: τexp ∝ ξ z ∝ |t |−νz, where ξ is the correlation
length, t is the temperature difference from a critical point,
and ν is the critical exponent of the correlation length. The
exponent z is called the dynamic critical exponent, which is
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given by

z = lim
L→∞

ln(maxÔ τexp,Ô)

ln L
(4)

at the critical point, where L is the system length. Note that
most estimators share the maximum exponential autocorre-
lation time. Thus, τexp,Ô ∝ Lz asymptotically at the critical
point. The exponent of the integrated autocorrelation time
may differ from z, but they are identical in many cases. For
example, in the case of the square lattice Ising model, the
Metropolis algorithm for the single spin update suffers from
the rapid growth of the autocorrelation times: τexp ∼ τint ∝ Lz

with z ≈ 2.17 [5–8]. The dynamic critical exponent is ex-
pected to be universal among many MCMC updates [6]. Such
a large dynamic critical exponent hampers efficient sampling
near a phase transition: the spectral gap of a Markov chain
� ≈ τ−1

exp ∝ ξ−z is reduced to zero at the critical point. It is
thus crucial to devise a smart update method that alleviates or
avoids slowing down.

In the case of unfrustrated models, the cluster algo-
rithms, such as the Swendsen-Wang [9] and the Wolff [10]
algorithms, reduce the dynamic critical exponent signifi-
cantly [8,11,12]: for example, z ≈ 0.3 for the Ising model
in two dimensions. The Wolff algorithm is known to be
more efficient than the Swendsen-Wang algorithm in d � 3
dimensions. The size of a cluster corresponds to the correla-
tion length, and the flip of clusters, which can be performed
with probability 1, achieves an efficient nonlocal spin update.
Forming such an efficient cluster, however, is nontrivial or
impractical in general cases. The application of the cluster
updates is thus limited to specific models.

In the meantime, the worm algorithm has been one of the
most versatile techniques in the world line quantum Monte
Carlo method [13,14]. In quantum cases, a naive local update
of world lines is often not allowed: for example, a local
spin flip breaking up the world line is not allowed in the
XXZ quantum spin model because the total magnetization
is conserved by the Hamiltonian. The worm algorithm works
especially well for cases in which the allowed configurations
are restricted by such constraints.

The main idea of the worm algorithm is to achieve an even-
tual nonlocal update resulting from sequential local updates
in extended state space. In practice, the extended space is
composed of configurations that contain kinks, which break
the constraint. We insert a pair of kinks, which is called the
worm, and move one of them, which is called the worm head.

The whole procedure of the worm algorithm is described
by the repetition of the following processes.

(i) A pair of kinks is inserted at a randomly chosen position
of the system.

(ii) One of the kinks moves in a stochastic way, updating
the configuration.

(iii) When meeting each other, the kinks are removed.
The worm algorithm for classical systems [15] was pro-

posed as well, which we call the classical algorithm hereafter.
During the process (ii) mentioned above, the position of the
worm (the kinks) randomly shifts from site to site of a lattice.
The algorithm aims at a random walk of the kink at sites
(vertices). The next site is chosen at random among the nearest
sites. The worm shifting process is then accepted or rejected

using the Metropolis algorithm. The detailed balance holds in
every shifting process. Although each worm move is local in
the extended space, a nonlocal update in the original space
is eventually achieved after the whole worm update (from
insertion to removal). Despite its local nature, the worm al-
gorithm significantly reduces the dynamic critical exponents
for several classical models [16,17]. We review the details of
the classical algorithm for the Ising model in Sec. II.

It is critical to optimize the stochastic worm update for
efficient computation. How can we improve the worm algo-
rithm? The stochastic worm move can be viewed as a diffusion
process of the kink in the real space. Thus, higher diffusivity
of the kink is expected to yield higher sampling efficiency. In
particular, the worm backscattering process, which cancels the
previous update, should be averted for efficient sampling.

The directed loop (or the directed worm) algorithm was
proposed to improve the efficiency of the world line quantum
Monte Carlo method [14]. The directed worm has an addi-
tional feature, the direction to move in. The update does not
hold the detailed balance for each local worm process but does
for the whole worm update from insertion to removal. Thanks
to the directed path, backscattering is successfully suppressed.

In the meantime, the geometric allocation approach was
proposed to optimize the transition probability in a flexible
manner [18]. It is a versatile technique for the MCMC method.
The basic concept of this approach is that the flows between
the states are purposely allocated in a geometric fashion. One
can easily find a set of probabilities that holds the global (total)
balance even without detailed balance and minimize the rejec-
tion probability. The efficiency of the directed worm update in
the world line quantum Monte Carlo method is significantly
improved by the geometric allocation approach [18,19].

The purpose of the present paper is to enhance the diffusiv-
ity of the kink in the worm algorithm. We propose a directed
worm algorithm accelerated by the geometric allocation ap-
proach. The key ideas of our approach are the following.

(1) The kinks are located on bonds (edges) instead of sites
of a lattice.

(2) The worm move is directed.
(3) The worm backscattering probability is minimized, and

the forward scattering probability is maximized using the
geometric allocation.

We confirm enhanced diffusivity by calculating the proba-
bility distribution of the relative position of the two kinks. The
present algorithm is detailed in Sec. III.

We also discuss how to compare MCMC samplers in
Sec. IV. We stress that the sampling efficiency of the MCMC
method should be quantified by the asymptotic variance, the
prefactor of the asymptotic scaling of the statistical error
squared.

We demonstrate, in Sec. V, that the present worm
algorithm for the Ising model significantly improves compu-
tational efficiency. We show that the efficiency of the present
worm update is approximately 25 times as high as that of the
classical worm update for the simple cubic lattice Ising model
at the critical temperature. There is no extra computational
cost in the present algorithm, as compared to the classical
algorithm. Our algorithm is even more efficient than the Wolff
cluster algorithm, which is one of the best update methods for
the Ising model. We estimate the dynamic critical exponent
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of the simple cubic lattice Ising model to be z ≈ 0.27 in the
worm update.

Our approach is applicable to many physical models, such
as the |φ|4 model [15], the Potts model [20], the O(n) loop
model [17,21,22], and lattice QCD [23], and expected to im-
prove the efficiency of the MCMC update for these models as
well as for the Ising model.

The present paper is summarized with discussions in
Sec. VI.

II. CLASSICAL ALGORITHM

We review the conventional (classical) worm algo-
rithm [15] for the Ising model in this section. Let the model be
represented by −H/T = K

∑
〈i j〉 σiσ j , where H is the Hamil-

tonian, T is the temperature, and σi = ±1 is the Ising spin
variable at each site (vertex) i of a lattice (graph). The partition
function of the canonical ensemble can be represented by

Z =
∑

σi=±1

eK
∑

〈i j〉 σiσ j =
∑

σi=±1

∏
b=〈i j〉

eKσiσ j

=
∑

σi=±1

∏
b=〈i j〉

cosh(K )
∑

nb=0,1

[σiσ j tanh K]nb

= 2N [cosh K]N tot
b

loops∑
{nb}

[tanh K]�, (5)

where the bond variable on bond b is denoted by nb, the iden-
tity eKσiσ j = cosh(K )

∑
nb=0,1[σiσ j tanh K]nb is used in the

second line, and N and N tot
b are the total number of sites and

bonds of a lattice, respectively. In the last line, the sum runs
over all the bond configurations that only have closed loops
formed by the activated bonds (nb = 1). The configurations
that have open strings of activated bonds do not contribute
to the partition function. The total length of the closed loops
is denoted by � ≡ ∑

b nb. The bond variables are sampled by
means of the MCMC method under the constraint of the loop
structure: the number of activated bonds meeting at each site is
even. Any set of bond variables can be used as the initial state
in the simulation as long as the loop constraint is satisfied. As
the initial state, we chose the vacuum state, in which the bond
variables are all deactivated (nb = 0 ∀b).

The worm algorithm is an efficient update method for
sampling under such a constraint or a conservation law. The
fundamental idea is to extend the state space and allow con-
figurations containing kinks, which break the constraint. Let
us consider inserting two kinks and move one of them in a
stochastic way. The moving kink is called the worm head, and
the other is the worm tail. The classical worm algorithm [15]
is described as follows.

(1) Choose a site i0 at random as the starting point and set
i ← i0. Insert the worm head and tail at i0. Go to step 2.

(2) Choose a site j at random among the nearest neighbor
sites of site i and shift the worm head from i to j with probabil-
ity p = [tanh K]1−nb , where nb (= 0 or 1) is the bond variable
on b = 〈i j〉 before the shift. If the shift is accepted, update
nb (0 ↔ 1) and set i ← j. If j = i0, go to step 3. Otherwise,
repeat step 2.

(3) Measure observables. Go to step 1 after removing the
worm with probability pmove, or go to step 2 with probability
1 − pmove.

The probability pmove can be set to an arbitrary value in
(0,1]: pmove = 1/2 in Ref. [15].

In the measurement, the total energy can be measured by
the total number of activated bonds:

E = −∂ ln Z

∂β

= −N total
b tanh K −

(
1

tanh K
− tanh K

)
〈�〉, (6)

where β = 1/T is the inverse temperature. The spin corre-
lation function, Gi j ≡ tr[σiσ je−βH ]/Z , can be estimated by
〈Ni j〉/〈Nj〉, where Ni j is how many times the head is at site
i and the tail is simultaneously at site j in step 2, and Nj

is how many times the head and tail are both at site j in
step 3. The magnetic susceptibility, χ ≡ β

N

∑
i j Gi j , can be

estimated by

χ = β〈�worm〉, (7)

where �worm is the worm length, the total number of worm
shifting processes in step 2 including the rejection process. It
is straightforward to calculate the Fourier transformed corre-
lation function: one only needs to take into account a phase
factor depending on the kink position. The correlation length
can be calculated using the Fourier transformed correlation
functions and the moment method [24].

The worm algorithm significantly reduces the dynamic
critical exponents of several models [16]. It has been ap-
plied to many fundamental physical systems, such as the
Potts model [20], the |φ|4 model [15], the O(n) loop
model [17,21,22], and lattice QCD [23].

One can use the worm algorithm for dual variables on a
dual lattice [15,25–27]. The dual worm algorithm samples
domain walls of the original spin variables; in other words,
it samples “unsatisfied” bonds that increase the total energy.
While the classical worm algorithm is formulated in the high
temperature expansion, the dual worm algorithm is in the low
temperature expansion for the dual inverse temperature: β ′ =
− 1

2 ln tanh β [28,29]. One of the advantages of the dual worm
algorithm is that it is applicable also to frustrated cases, in
which the original worm algorithm suffers from the negative
sign problem [26,27].

In two dimensions, the dual variables are under an addi-
tional constraint: the winding number of the loops formed by
the unsatisfied bonds is even (odd) for periodic (antiperiodic)
boundaries. If this constraint is ignored in simulation, never-
theless, the domain wall free energy, the difference between
the free energy of the system with periodic boundaries and
the free energy of the system with antiperiodic boundaries,
can be estimated from the winding number histogram [25]:
e−β(FAP−FP ) = ZAP/ZP = 〈NAP〉/〈NP〉, where FAP is the free
energy of the system with periodic (antiperiodic) boundaries
in one (the other) direction, FP is the free energy of the system
with periodic boundaries in both directions, ZAP and ZP are
the associated partition functions, NAP is how many times the
winding number is even (odd) in one (the other) direction,
and NP is how many times the winding numbers in the two
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FIG. 1. Example of a configuration containing the present worm
in the square lattice Ising model. The solid lines show the activated
bonds, and the broken lines show the deactivated bonds. The solid
circles indicate the worm head (h) and the worm tail (t), both of
which break the loop constraint of the activated bonds.

directions are both even, respectively. Because the square
lattice is self-dual, the dual worm update at the critical tem-
perature is identical to the original worm update, except for
the winding number constraint. The domain wall free energy
is, therefore, accessible in both formalisms.

III. PRESENT APPROACH

We present a modified worm update in this section. The
worm backscattering (rejection) probability is minimized, and
the forward scattering probability is maximized using the geo-
metric allocation approach. Our algorithm is indeed free from
rejection at the critical temperatures of the square lattice and
the cubic lattice Ising models. As a result, the diffusivity of the
worm head is enhanced, which improves computational effi-
ciency. We show the ergodicity of the Markov chain created
by the present method and describe how to measure relevant
physical quantities, such as the magnetic susceptibility. We
also discuss a possible bias and how to avoid it in the worm
algorithm.

A. Worm on bonds

We adopt the same representation of the partition func-
tion [Eq. (5)] with the classical worm algorithm. Our goal
is to sample bond variables {nb} efficiently under the loop
constraint. We here consider inserting the worm, namely, a
pair of kinks, on a bond, or an edge, of a lattice. Our worm
is distinct in this respect from the classical worm, which is
always located at sites. We then move the worm head, that
is, one of the pair, from one bond to another in a stochastic
way: when coming to a site, the worm head scatters to another
(or possibly the same) bond with a certain probability. This
scattering process continues until the head comes back to the
tail, that is, the other of the pair.

A typical configuration containing the present worm in
the L = 6 square lattice Ising model with open boundaries is
illustrated in Fig. 1. In our algorithm, each kink is located at

FIG. 2. Example of the worm scattering process for the square
lattice case. The solid circle in each graph shows the worm head, and
the arrow shows the moving direction of the head. When coming to
a vertex (state a), the worm head scatters to another (or possibly the
same) bond (states b, c, d , and e) with a certain probability.

the center of a bond; the bond variables can take nb = 0, 1
2 , or

1. The head has a moving direction in a fashion similar to the
directed loop algorithm [14].

Suppose the moving direction of the head is upward in
Fig. 1. Then the head scatters at the next site (vertex) and
moves to a bond connecting to the site stochastically, which
we call the worm scattering process. The four possible states
after the scattering are shown as b, c, d , and e in Fig. 2. The
next state is chosen between the four states with a certain
probability. We discuss probability optimization in Sec. III B.
After the worm scattering, bond variables are updated, as
shown in Fig. 2; the halves of bonds are updated (nb = 0, 1

2 , 1)
as the kink is assumed to be at the center of a bond. We repeat
this worm scattering process until the head comes back to the
tail position.

The whole procedure of the present algorithm is described
as follows.

(1) Choose a bond b0 at random as the starting point and
b ← b0. Insert the worm head and tail at the center of b0.
Choose the moving direction at random. Go to step 2.

(2) Choose the next bond c with the probability optimized
using the geometric allocation. If b �= c, update the bond
variables nb and nc, and set b ← c. If b = b0, go to step 3.
Otherwise, repeat step 2.

(3) Measure observables and go to step 1 after removing
the kinks (worm).

As compared with the classical worm algorithm, the prob-
ability pmove at step 3 is fixed to 1 in our algorithm. Note
that the present worm carries extra weight (a factor of 1/2)
such that the insertion and the removal are accepted with
probability 1, as discussed in Sec. III E.

One of the advantages of our approach is that it is straight-
forward to optimize the worm scattering probability. In
general, the transition probability is set under global balance
in the MCMC method. If one did not resort to the Metropolis
algorithm in the classical worm update, the worm shifting
probability at a site would depend on other shifting processes
at the nearest neighbor sites. The shifting probabilities at the
nearest neighbor sites would further depend on the processes
at the next nearest neighbor sites. Thus, it is nontrivial to
write down the global balance condition in a closed form.
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The Metropolis scheme reduces the condition to a local form,
but no room for optimization is left, except for increasing the
number of possible states. In contrast, the balance condition of
the worm scattering process in our approach is expressed in a
closed form without using the Metropolis algorithm, as shown
in the next subsection. This simple structure of the balance
condition leaves much room for optimization.

B. Geometric allocation approach

We here detail the optimization of the transition probabil-
ity in the present worm algorithm. In the MCMC method,
it is crucial to optimize the transition probability for prac-
tical and efficient sampling. The problem we tackle here is
how to prepare a set of appropriate transition probabilities
between given states. The geometric allocation [18,19] is a
versatile approach to optimizing the transition probability.
The fundamental concept of this approach is that the flows
between the states are purposely allocated using a geomet-
ric graph. This geometric manner is very distinct from the
conventional approaches, such as the Metropolis and the heat
bath algorithms. They provide algebraic solutions that satisfy
the detailed balance condition, which is a sufficient condition
for the global balance. In contrast, the allocation approach
converts the optimization problem into a geometric puzzle and
provides a graphic solution. Although the geometric alloca-
tion was originally introduced to break the detailed balance in
Ref. [18], one of the main advantages of this approach is that
we can easily arrange the transition probability in a flexible
manner. We stress that the geometric allocation is not merely
a representation of solutions but a versatile and efficient way
to find optimal solutions.

Let us describe the rule of the puzzle game. Let vi j :=
πi pi→ j be the raw flow from state i to j, where πi is the
weight, or the measure, of state i apart from the normalization
factor of a target distribution, and pi→ j is the transition proba-
bility from i to j. Given possible states and their weights {πi},
we allocate vi j under the two conditions: the law of probabil-
ity conservation and the global balance condition, which are
expressed by

πi =
n∑

j=1

vi j ∀i (8)

and

π j =
n∑

i=1

vi j ∀ j, (9)

respectively, where n is the number of possible states. In the
worm scattering process for the square lattice Ising model,
there are four possible states because a square lattice has a
coordination number of 4. For example, in the case of Fig. 2,
the possible states are b, c, d , and e, with n = 4.

Let us reinterpret the conventional algorithms in this pic-
ture. It is easy to understand that the flows allocated by the
Metropolis and the heat bath algorithms are represented by

vi j = 1

n − 1
min (πi, π j ) i �= j (10)

and

vi j = πiπ j∑n
k=1 πk

∀i, j, (11)

respectively. Both algorithms satisfy the detailed balance con-
dition, which is expressed by the symmetry of the flow:
vi j = v ji.

Let us set a cost function in this optimization problem. The
cost function we first consider is the average rejection (worm
backscattering) probability, which is given by

∑
i vii/

∑
j π j .

We optimize the flow for the average rejection probability
to be minimized. This choice should be desirable because,
in general, the rejection reduces the sampling efficiency of
the MCMC method. Rejection minimization has also been
discussed in the previous applications [18,19].

To increase further the diffusivity of the worm head, we
maximize the forward scattering probability under the condi-
tion of backscattering minimization. Our choice of the local
transition probability is expected to reduce the variance of the
worm length, namely, the variance of the first return time for
the head to come back to the tail position.

We found the optimal solution through the geometric allo-
cation shown in Fig. 3. Any local configuration in the worm
scattering can be mapped into the case of Figs. 3(a) or 3(b)
through a possible rotation and flip. It is easy to confirm that
Eqs. (8) and (9) are both satisfied: the area of each weight
(color) is conserved, which is nothing but the probability
conservation; the entire box shape is intact after the allocation,
which guarantees the global balance. We also obtained the
analytical form of the flow vi j corresponding to the optimal
allocation, which is shown in the caption.

The rejection-free condition [18] is, in general, given by

π1 �
n∑

i=2

πi. (12)

This condition is equivalent to tanh K � 1/3 ⇐⇒ T �
2/ ln 2 in the case of Fig. 3(a) and always satisfied in the case
of Fig. 3(b). Here, the ratio π4/π1(= tanh K ) depends on the
temperature in the simulation. Our update is rejection free for
T � 2/ ln 2 � 2.885, including the critical temperature Tc =
2/ ln(1 + √

2) � 2.269 [28]. In addition, the forward scatter-
ing probability (v12 + v21 + v34 + v43)/

∑
j π j is maximized

under rejection minimization in both cases.
We chose the unique solution satisfying the detailed

balance condition under backscattering minimization and for-
ward scattering maximization. Technically, directed worm
scattering always breaks the detailed balance in the extended
state space. Nevertheless, if local worm scattering satisfies the
detailed balance condition without taking the direction into
account, the whole worm update from insertion to removal
ensures the detailed balance in the original state space [14].
It is easy to find many (actually infinite) solutions to sat-
isfy the required conditions [Eqs. (8) and (9)] thanks to
the geometric picture. Even solutions breaking detailed bal-
ance can be readily found [18]. For example, starting from
the solution shown in Fig. 3(a), we can increase a certain
amount of v13, v34, and v41, while decreasing the same amount
of v31, v43, and v14. This modified solution again satisfies
Eqs. (8) and (9) without the detailed balance because vi j �= v ji
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FIG. 3. Geometric allocation for the square lattice Ising model.
There are two cases: (a) and (b). The solid (broken) lines show
the activated (deactivated) bonds, and the solid circles show the
worm head. The weight, or the measure, of each state is denoted
by πi (i = 1, 2, 3, 4) apart from the normalization factor of the target
distribution, and the allocated raw flow from i to j is denoted by vi j .
The detailed balance condition is satisfied in both cases: vi j = v ji.
In the case of (a), we set v12 = π4, v13 = v14 = 1

2 (π1 − π4), and
v34 = 1

2 (3π4 − π1). This rejection-free allocation can be performed
if 3π4 > π1 ⇔ T < 2/ ln 2. In the case of (b), we set v12 = 1

2 (π1 +
π4), v13 = v23 = 1

2 (π1 − π4), and v34 = π4, which is possible at any
temperature. The scale of the area πi is arbitrary; only the ratio π4/π1

matters.

for (i, j) = (1, 3), (1, 4), (3, 4). The modified solution, as
well as the original solution [Fig. 3(a)], has the minimized
(zero) backscattering rate (= v11 + v22 + v33 + v44)/

∑
j π j

and the maximized forward scattering rate (= v12 + v21 +
v34 + v43)/

∑
j π j . If local flows break the detailed balance

condition (vi j �= v ji), the whole worm update breaks the de-
tailed balance in the original state space as well, which is
called irreversible. Although it is possible to improve the
efficiency by breaking detailed balance, we have not yet found
any irreversible solution that works significantly better than
the present choice in the case of the Ising model. We selected
the present reversible solution because it is unique and easy
to prove the ergodicity (discussed below in Sec. III C). Irre-
versible Markov chains, nevertheless, have the potential to
play an essential role in Monte Carlo dynamics.

We can calculate all the transition probabilities, pi→ j =
vi j/πi ∀i, j, before simulation and prepare a look-up table
storing the probabilities. In the actual simulations, we choose
the next state in each worm scattering by using Walker’s
method of alias [30,31]. The advantage of Walker’s method
is that the computation time, which is O(1), does not increase

with the number of possible states n in contrast to the com-
putation time of a simple binary search, which is O(log n).
The present algorithm needs no extra computational cost,
compared to the classical worm algorithm.

In the simple cubic lattice case, we chose a set of flows, as
illustrated in Fig. 4. The six possible states are indexed such
that (1, 2), (3, 4), and (5, 6) are the pairs of the states from
and to which the worm head forward scatters like the square
lattice case. The allocation patterns depending on the local
configuration are all shown in Fig. 4. We express the analytical
form of vi j as well in the caption. The rejection-free condition
[Eq. (12)] is satisfied for T � 2/ ln(3/2) � 4.933, including
the critical temperature Tc ≈ 4.511 [32]. In addition to the
conditions of backscattering minimization and forward scat-
tering maximization, we here impose an additional condition
to find the unique solution; the variance of the forward scatter-
ing flow,

∑
k=1,3,5(vk k+1 − v)2, where v = 1

3

∑
k=1,3,5 vk k+1,

is minimized. Other solutions, nevertheless, are expected to
work as well as our choice does as long as the backscattering
probability is minimized, and the forward scattering probabil-
ity is maximized.

Our geometric allocation approach to optimizing the worm
scattering probability can be generalized to many physical
models, such as the |φ|4 model, the Potts model, the O(n)
loop model, and lattice QCD. It is expected to improve the
computational efficiency of the worm update for these models
as well as for the Ising model.

C. Ergodicity

We here show that the Markov chain created by the present
worm algorithm is (uniformly) ergodic in the extended state
space; equivalently, it is irreducible and aperiodic [33]. Any
configuration under the loop constraint is represented by a
combination of loops formed by activated bonds. The worm
can create any loop with a finite probability. (Note that the
forward scattering probability is always positive in the present
flow allocation.) Hence any state with and without kinks can
be visited from the vacuum state, in which nb = 0 ∀b. Because
our solution of the transition probability holds the detailed bal-
ance, any two states in the extended state space are connected
by the transition kernel; the Markov chain is irreducible.

Let us next consider the aperiodicity. Even if it never
backscatters, the worm can come back to the same physical
state (with no kink). There are many paths for the kink to
start from and end at the vacuum state. For example, the paths
formed by 9 and 11 worm scattering steps (going around a
plaquette twice) exist for both the square and cubic lattice
models. Let p and q be 9 and 11, respectively. Because p and q
are coprime, Bézout’s identity states ∃a, b ∈ Z such that ap +
bq = greatest common divisor (p, q) = 1. We can choose a
and b such that −q < a < 0 and 0 < b < p.

We prove ∀n � pq − 1, ∃c, d ∈ N such that n = cp + dq.
First, we can express pq − 1 = −ap + (p − b)q, where −a >

0 and p − b > 0. We here use mathematical induction: if
∃m ∈ N such that m � pq − 1 and ∃α, β ∈ N such that m =
αp + βq, then ∃α′, β ′ ∈ N such that m + 1 = α′ p + β ′q.
We can express m + 1 = (α + a)p + (β + b)q = (α + a +
q)p + (β + b − p)q. If α + a � 0, simply α′ = α + q and
β ′ = β + b. If α + a < 0, we can take α′ = α + a + q � 0

013308-6



GEOMETRIC ALLOCATION APPROACH TO ACCELERATING … PHYSICAL REVIEW E 103, 013308 (2021)

FIG. 4. Geometric allocation for the simple cubic lattice Ising model. There are four cases: (a), (b), (c), and (d). The six possible states are
indexed such that (1, 2), (3, 4), and (5, 6) are the pairs of the states from and to which the worm head forward scatters like the square lattice case.
The detailed balance condition is satisfied in all the cases: vi j = v ji. In the case of (a), we set v12 = π6, v13 = v14 = v15 = v16 = 1

4 (π1 − π6),
and v34 = v56 = 1

4 (5π6 − π1); in (b), v12 = 1
2 (π1 + π6), v13 = v23 = 1

2 (π1 − π6), and v34 = v56 = π6; in (c), v12 = v34 = v56 = π6 and v13 =
v15 = v35 = 1

2 (π1 − π6); in (d), v12 = v34 = 1
4 (3π1 + π6), v15 = v25 = v35 = v45 = 1

4 (π1 − π6), and v56 = π6. This rejection-free allocation
in (a) can be performed if 5π6 > π1 ⇔ T < 2/ ln(3/2). The allocations in (b), (c), and (d) are possible at any temperature.

and β ′ = β + b − p � 0. The last inequality follows
from α + a < 0 ⇒ αp + ap < 0 ⇒ m + 1 − (β + b)q <

0 ⇒ m + 1 − (β + b − p)q < pq ⇒ (β + b − p)q >

m + 1 − pq � 0 ⇒ β + b − p � 0.
Therefore, the vacuum state can be revisited from itself

with a finite probability after n � pq − 1 worm scattering
steps: the vacuum state is aperiodic in the extended space.
Hence, the Markov chain is aperiodic.

We can choose an irreversible solution instead of the
present reversible one, as mentioned in Sec. III B. It is not
trivial to prove the ergodicity of irreversible Markov chains.
Nevertheless, we have tested a couple of irreversible solutions
and confirmed that the results are consistent. We thus expect
many solutions to generate ergodic Markov chains even with-
out detailed balance.

D. Enhanced diffusivity

We demonstrate here that the present worm algorithm in-
deed enhances the diffusivity of the worm head. Figure 5
shows the probability distribution of the difference between
the coordinates of the two kinks (the worm head and tail)
in the classical and the present worm updates for the L =
128 square lattice Ising model at the critical temperature. The
coordinates were measured 256 worm shifting or scattering
steps after the insertion. The distribution in the present worm
update is much broader than in the classical worm update. The
removed worms at (x, y) = (0, 0) before 256 worm steps are
not shown in Fig. 5 but counted in the normalization.

The distribution tail of the kink distance is well approx-
imated by a Gaussian distribution, as shown in Fig. 6. We

estimated the variances of the Gaussian distributions 64, 128,
and 256 local worm steps after the insertion. In Fig. 6, al-
though some faster decay is observed in the distribution after
64 scattering steps of the present worm update, the tails of the
distributions after 128 and 256 steps are well fitted to Gaus-
sian distributions up to longer distances. We found a linear
growth of the variance as a function of the number of local
worm steps, as shown in the inset. The variance in the present
worm update is six times as large as in the classical worm
update. These observations indicate that the present method
successfully enhances the diffusivity of the worm head, which
is expected to improve sampling efficiency.

E. Estimators

Many physical quantities can be measured in the present
worm simulation as well as in the classical worm simulation.
For example, the total energy can be estimated by the same
observable [Eq. (6)]. Nevertheless, estimators associated with
the extended state space need to be slightly modified. As
relevant quantities, we here explain how to measure the spin
correlation function and the magnetic susceptibility.

In the classical worm algorithm, the state space is extended
to include the configurations that contain (up to) two kinks
at sites of a lattice. How many times the two kinks are at
sites i and j directly contributes to the estimator of the spin
correlation between sites i and j, as mentioned in Sec. II. On
the other hand, the present worm is never located at the sites
during the update processes.

Let us here consider a virtual process of shifting the two
kinks from bonds to adjacent sites of the bonds. There are four
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FIG. 5. Probability distributions of the difference between the
coordinates of the two kinks (head and tail) for the L = 128 square
lattice model at the critical temperature in (a) the classical and (b) the
present worm updates. The coordinates were measured 256 worm
shifting or scattering steps after the insertion. The contours show
the coordinates at which P(x, y) = 0.5, 1.0, 1.5, 2.0, and 2.5 × 10−4.
Because the two kinks are removed when meeting each other, the
distribution is lowered near the center, which is more significant in
the classical worm update. The removed worms are not shown here
but counted in the normalization.

choices of sites because each bond connects two sites. We
choose a pair of sites at random, one from the two adjacent
sites of the head and the other from the two adjacent sites of
the tail. We then consider using the Metropolis algorithm to
accept or reject the virtual shift. The acceptance probability
depends on the change of � = ∑

b nb. If this virtual shift were
accepted, we would count one for measuring the associated
spin correlation in a manner similar to the classical worm
algorithm. We next consider a reverse process of shifting
the kinks from the sites to the original bonds, using the
Metropolis algorithm again. If this reverse shift were rejected,
we would count one for measuring the spin correlation again.
We would repeat the reverse shifting process and continue
counting one while the kinks would be on sites. The average
count through these virtual processes is given by the ratio
of the weight of a site-kink configuration to the weight of a
bond-kink configuration. Thus, we can use the weight ratio
as the reweighting factor from a bond-kink configuration to
a site-kink configuration. Since we assume each kink to be at
the center of a bond in the present algorithm, the reweighting
factor is given by a simple form. To calculate the magnetic
susceptibility, we take the average over the four possible
choices and sum up the reweighting factors during the worm
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FIG. 6. Tails of the probability distributions of the distance be-
tween the two kinks in the classical (open) and the present (solid)
worm updates 64 (triangles), 128 (squares), and 256 (circles) local
worm steps after the insertion, measured in the L = 128 square
lattice Ising model at the critical temperature. The distribution
was measured at r = |r|, where r = (x, y) and |x| = |y|. The tails
are fitted to Gaussian distributions: P(r) ∝ e−r2/2σ 2

, where σ 2 is
a parameter (variance). The inset shows the linear scaling of the
estimated variance in the classical (circles) and the present (squares)
worm updates as a function of the number of worm steps (s). The
variance in the present worm update is approximately six times as
large as in the classical worm update.

scattering process from insertion to removal without going
through the virtual processes.

From the above argument, a magnetic susceptibility esti-
mator in the present algorithm is given by

χ̂ = β

4zw

∑
path

frew, (13)

where β is the inverse temperature, z is the coordination
number (four for a square lattice and six for a cubic lattice), w
is the extra weight the worm carries,

frew =
(

s + 1

s

)
fh (14)

is the reweighting factor after a worm scattering process,
and s ≡ √

tanh K . In Eq. (14), fh is 2/s if the head is on
an activated bond, 2s on a deactivated bond, and s + 1

s on a
half-activated and half-deactivated bond. In other words, fh

takes 2/s or 2s if the head comes back to the tail. It takes s + 1
s

otherwise. The summation in Eq. (13) means that frew is cal-
culated after each worm scattering process and summed over
the scattering processes in step 2. The sum of the reweighting
factors is divided by four because we take the average of the
four reweighting factors depending on the choice of adjacent
sites. Furthermore, it is divided by the coordination number
because of the multiple counts in the virtual shift from bonds
to sites.

Let us consider the extra weight w in Eqs. (13) and (15). In
the worm algorithm, we can arbitrarily set the weight of each
state in the extended space: we assume that the present worm
has extra weight, a factor of 1/2, to insert and remove the
worm with probability 1 in the Ising model. The value of the
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extra weight comes from the fact that there are two possible
directions for the worm head to go in. We need to take this ex-
tra weight into account for estimators related to the extended
space. In the susceptibility estimator (13), the reweighting fac-
tor needs to be divided by the extra weight (w = 1/2 for the
Ising model). It is straightforward to calculate other quantities,
such as the Fourier transformed correlation function and the
correlation length. Note that while being a factor of 1/2 for
the Ising model, the extra weight that the worm carries may
depend on models and worm variants used in the simulation.

We easily find

χ ∼ β

4zw

(
s + 1

s

)2

〈�worm〉, (15)

where �worm is the worm length. It is because fh takes s + 1
s

unless the head and tail are located at the same position. This
estimation is comparable to Eq. (7) in the case of the classical
worm algorithm.

F. Avoiding bias

Before closing this section on the methodology, we discuss
a possible bias introduced by the fixed time simulation of
the worm algorithm and the Wolff cluster algorithm [10]. In
these methods, the computation time for a Monte Carlo step
depends on the worm length or the cluster size (in the Wolff
algorithm). The mean worm length, which is approximately
proportional to the magnetic structure factor (= χ/β) as
shown in Eqs. (7) and (15), is usually a decreasing function of
temperature and indeed so in the present Ising models. In con-
trast, the total energy is an increasing function of temperature.
When the configuration in the simulation is a higher energy
configuration, the computation time for the subsequent Monte
Carlo step (from worm insertion to removal) will be shorter
on average. In other words, the needed computational time
to sample a high energy configuration is shorter on average
than to sample a low energy configuration. As a result, given
a simulation time, say, 1 hour, high energy configurations tend
to be sampled more often than low energy configurations.
Therefore, such a fixed time simulation creates a bias. For
example, if a parallel simulation is run for a certain period
using independent Markov chains, an estimator that naively
averages over chains has a bias. To avoid this bias, we need
to fix the total Monte Carlo steps for each chain instead of
the total run time and take the average over chains that run
the same Monte Carlo steps. The bias we discuss here can be
caused in the worm algorithm for quantum systems as well.
Although the bias might be tiny, we carefully run simulations
avoiding it.

IV. HOW TO COMPARE MCMC SAMPLERS

We discuss how to quantify the computational efficiency
of the MCMC sampler. There are mainly two points to con-
sider [19]: the relaxation rate and the sampling efficiency. In
the former, as Monte Carlo samples are taken after the ther-
malization, faster relaxation to a target distribution allows for
sampling from an earlier Monte Carlo step; in the latter, more
efficient sampling yields a smaller statistical error. The mean
squared error of an estimator is proportional to the inverse

of the number of samples (Monte Carlo steps) according to
the central limit theorem [33]. The sampling efficiency of the
MCMC update should be quantified by the prefactor of the
scaling, that is, the asymptotic variance [19]. We explain here
how to measure relevant quantities in the present method.

The relaxation rate is quantified by the exponential auto-
correlation time. The autocorrelation function exponentially
decays in large Monte Carlo steps, which is the case for the
finite size systems we study in the present paper. We calculate
the function by running independent simulations and estimate
the exponential autocorrelation time as a fitting parameter.
In the present paper, we use a single exponential as the fitting
function and estimate the error bar of the fitting parameter by
using bootstrapping [34,35].

In the worm algorithm, we consider each Monte Carlo step
to be a one-time worm update from insertion to removal. In
other words, the number of Monte Carlo steps is equal to how
many times the head comes back to the tail. Here, the number
of Monte Carlo steps should be measured in units of the
number of sites for a fair comparison. An autocorrelation time
τ ′

exp estimated by fitting to an exponential function is rescaled:

τexp = τ ′
exp

〈�worm〉
N

, (16)

where 〈�worm〉 is the mean worm length, and N is the number
of sites. The mean worm length differs for the classical and
the present worm updates as the state space is extended in
different manners.

The sampling efficiency of the MCMC method is related to
the integrated autocorrelation time. It can be estimated by the
relation

τ ′
int = σ 2

2σ̄ 2
, (17)

where σ 2 is the mean squared error, namely, the square of the
statistical error, calculated by binning analysis using a much
larger bin size than the exponential autocorrelation time, and
σ̄ 2 is calculated without binning. The above estimator (17)
gives the exact integrated autocorrelation time (3) in the limit
of a large number of Monte Carlo steps [1]. In a manner
similar to Eq. (16), it is rescaled:

τint = τ ′
int

〈�worm〉
N

. (18)

Although the integrated autocorrelation time is useful for
studying Monte Carlo dynamics, we stress that the sampling
efficiency of the Monte Carlo method should be quantified
by the asymptotic variance, which is the prefactor of the
asymptotic scaling:

σ 2
Ô ≈ vasymp,Ô

M
, (19)

where σ 2
Ô

is the mean squared error of an estimator Ô, vasymp,Ô

is the asymptotic variance of Ô, and M is the renormalized
number of Monte Carlo steps. Here we assume Ô to be an
unbiased estimator of a physical quantity O: 〈Ô〉 = O. Then
the asymptotic variance is represented by

vasymp,Ô = 2τint,ÔvÔ, (20)

where vÔ = 〈Ô2〉 − 〈Ô〉2 is the variance of Ô.
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In the present paper, according to Eqs. (17), (18), (19),
and (20), we estimate the variances using the jackknife
method [36] and the following relations:

vasymp,Ô = M ′ σ
2
Ô

μ2
Ô

〈�worm〉
N

, (21)

vÔ = M ′ σ̄
2
Ô

μ2
Ô

, (22)

where M ′ is the original number of Monte Carlo steps used
for sampling in a simulation, σ 2

Ô
and σ̄ 2

Ô
are the mean squared

errors of an estimator Ô with and without binning, and μÔ
is the average of the samples, respectively. We here use the
squared coefficient of variation (σ 2/μ2) to remove a trivial
dependence on the definition of the estimator: for example,
the variances of the total energy and the energy density are
identical.

The renormalization of the number of Monte Carlo steps
is necessary also for the Wolff algorithm. We simply replace
the mean worm length with the mean cluster size in Eqs. (16),
(18), and (21).

V. RESULTS

We investigate the performance of our worm algorithm
for the simple cubic lattice Ising model, focusing on criti-
cal slowing down at the transition temperature. We compare
the present algorithm with the classical worm [15] and the
Wolff algorithms [10]. The ensemble used in the simulations
is represented by Eq. (5) at the critical temperature, 1/Tc ≈
0.221 654 55 [32]. Periodic boundaries were used in all the
spatial directions. We optimize the worm scattering probabil-
ity, as illustrated in Fig. 4. More than 224 Monte Carlo samples
were taken, in total, after 216 thermalization steps.

For a fair comparison, we adopt N local worm processes
in the worm algorithms and N spin updates in the Wolff algo-
rithm as the unit of time in the Monte Carlo dynamics. Here N
is the number of sites of the system. The autocorrelation times
were rescaled as shown in Eqs. (16) and (18). The mean worm
length in the classical worm update is proportional to the
magnetic susceptibility: 〈�classical worm〉 = χ/β ∝ Lγ /ν , where
γ and ν are the critical exponents of the susceptibility and the
correlation length, respectively [1]. We found a relation be-
tween the worm lengths in the present and the classical worm
updates: 〈�present worm〉 ≈ 1.765〈�classical worm〉 for L � 16.

The integrated autocorrelation time, the variance, and the
asymptotic variance of the energy estimator are shown in
Fig. 7. We calculated these quantities in the manner explained
in Sec. IV. Using the Wolff algorithm, we calculated the total
energy from the spin configuration. The present algorithm
produces the shortest integrated autocorrelation time and the
smallest asymptotic variance. The shorter correlation time in
the present worm update allowed us to run simulations for the
larger system size.

Fitting a power law to data, we estimate the exponents
of τint,Ê to be 0.28, 0.31, and 0.27, and those of vasymp,Ê to
be −2.44, −2.35, and −2.46 in the Wolff cluster (triangles),
the classical worm (circles), and the present worm (squares)
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FIG. 7. (a) The integrated autocorrelation time, (b) the variance,
and (c) the asymptotic variance of the total energy estimator as a
function of the system length of the simple cubic lattice Ising model
at the critical temperature. The exponents of τint,Ê are estimated to be
0.28, 0.31, and 0.27, and those of vasymp,Ê are to be −2.44, −2.35, and
−2.46 in the Wolff cluster (triangles), the classical worm (circles),
and the present worm (squares) updates, respectively; the exponent
of vÊ is estimated to be −2.75 in all the updates. The inset of panel
(c) shows the ratios of the asymptotic variance in the classical worm
(diamonds) and the Wolff cluster (pentagons) updates to the one in
the present worm update. They are approximately 27 and 2.2 for large
system sizes, respectively.
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updates, respectively; we estimate the exponent of vÊ to be
−2.75 in all the updates. We expect the three algorithms to
produce the same exponent asymptotically. Nevertheless, as
shown in the inset of Fig. 7(c), the asymptotic variance in the
present worm update is approximately 27 and 2.2 times as
small as in the classical worm and the Wolff cluster updates,
respectively.

In the worm algorithm, the weight of the loop configuration
is not the Boltzmann distribution, as shown in Eq. (5): πi ∝
(tanh K )�i . Thus, estimators for a physical quantity naturally
depend on the representation. We can construct an estimator
in the worm algorithm the mean value of which is identical to
a physical quantity of the original spin system. Nevertheless,
the variances of the estimators are generally different. The
variance of the energy estimator is the same for the classical
and the present worm algorithms simply because the same
estimator is used. However, the variance is different from
the one in the Wolff algorithm: the estimators are different,
although their mean values are identical. Nevertheless, the
difference is small, and both the variances show almost the
same exponent (≈ −2.75) of the power-law decay, as shown
in Fig. 7(b). The variance of the energy estimator in the Wolff
algorithm is nothing but the energy variance of the original
spin system, which is proportional to the specific heat. The
asymptotic scaling, therefore, should be vÊ ∝ Lα/ν−d with
the exponent α/ν − d ≈ −2.826 [32]. The present estimate
is slightly larger by 2.7%. Data of larger system sizes seem
to be needed for a single power-law fit we use to match the
exponent estimated from the more sophisticated analysis.

The quantities of the magnetic susceptibility estimators
are shown in Fig. 8 like the energy estimator. In the Wolff
algorithm, we test two estimators: χ̂ = βM2

z /N (here dubbed
Wolff spin), where Mz is the total magnetization of spins,
and χ̂ = β�cl (Wolff cluster), where �cl is the cluster size.
We estimate the exponents of τint,χ̂ to be 0.150(9), −0.50(1),
−0.731(7), and −0.679(4); those of vχ̂ to be 0.01, 0.58, 0.92,
and 0.85; and those of vasymp,χ̂ to be 0.18, 0.18, 0.22, and 0.18
in the Wolff spin, in the Wolff cluster, in the classical worm,
and in the present worm updates, respectively. The numbers in
the parentheses indicate the statistical error, one standard devi-
ation, in the preceding digit. Interestingly, while the exponents
of τint,χ̂ and vχ̂ are different for each estimator and algorithm,
the exponent of vasymp,χ̂ is most likely identical. Particularly,
vasymp,χ̂ is almost the same for the two estimators in the Wolff
algorithm. Nonetheless, the asymptotic variance in the present
worm update is approximately 23 and 1.6 times as small as in
the classical worm and the Wolff cluster updates, respectively,
as shown in the inset of Fig. 8(c).

We note that the susceptibility estimator is different for
each case. Although the variance of the Wolff-spin estima-
tor (simply using spins) includes four spin correlations, the
variances of the estimators in the worm algorithms do not.
As we mentioned above, this is because the estimators in
the worm updates [Eqs. (7) and (13)] are different from the
Wolff-spin estimator. In practice, the variances were measured
using Eq. (22).

We emphasize that the sampling efficiency of the Monte
Carlo method should be quantified by the asymptotic variance.
As shown in Fig. 8, the exponent of the integrated autocorre-
lation time in the classical worm update is much smaller than
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FIG. 8. (a) The integrated autocorrelation time, (b) the variance,
and (c) the asymptotic variance of the magnetic susceptibility esti-
mator as a function of the system length of the simple cubic lattice
Ising model at the critical temperature in the Wolff (triangles), the
classical (circles), and the present worm (squares) algorithms. In the
Wolff algorithm, we test two estimators using the spins (Wolff spin)
and the cluster size (Wolff cluster) (see the main text for the detail of
the estimators). The exponents of τint,χ̂ are estimated to be 0.150(9),
−0.50(1), −0.731(7), and −0.679(4); those of vχ̂ are to be 0.01,
0.58, 0.92, and 0.85; and those of vasymp,χ̂ are to be 0.18, 0.18, 0.22,
and 0.18 in the Wolff spin, in the Wolff cluster, in the classical worm,
and in the present worm updates, respectively. The inset of panel
(c) shows the ratios of the asymptotic variance in the classical worm
(diamonds) and the Wolff cluster (pentagons) updates to the one in
the present worm update, which are approximately 23 and 1.6 for
large system sizes, respectively.
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FIG. 9. Autocorrelation functions of (a) the total energy and
(b) the magnetic susceptibility estimators in the classical (circles) and
the present (squares) worm updates for the L = 4 (open) and 8 (solid)
simple cubic lattice Ising model. The horizontal axis is the rescaled
time of the Monte Carlo dynamics in units of L3 worm shifting or
scattering steps.

in the Wolff cluster update, but the exponent of the variance
in the classical worm update is much larger than in the Wolff
cluster update. Interestingly, the exponent of the asymptotic
variance is almost the same for the two algorithms. Indeed,
the asymptotic variance in the classical worm update is much
larger than in the Wolff cluster update.

The present worm update successfully reduces the vari-
ance of the susceptibility estimator. Because the worm length
is proportional to the susceptibility exactly in the classical
worm update as shown in Eq. (7) and approximately in the
present worm update as shown in Eq. (15), the variance of
the worm length is also significantly reduced by the present
algorithm. We expect the overall performance improvement
to be attributed to the variance reduction of the worm length.

We investigate the relaxation rate as well as the sampling
efficiency of the present update. The autocorrelation functions
(1) of the total energy and the magnetic susceptibility esti-
mators for L = 4 and 8 are shown in Fig. 9, calculated from
more than 230 independent Markov chains (sample paths).
Each chain was sampled after thermalization steps that are
much longer than the obtained exponential autocorrelation
time, so the dependence on the initial state in the simulations
is negligible in the present results. The function of the energy
estimator shows an almost single exponential decay; that of
the susceptibility estimator shows some fast and slow decays.
While τint,χ̂ in the classical worm update decreases with L as
shown in Fig. 8(a), τexp,χ̂ for L = 8 is larger than for L = 4
as shown in Fig. 9(b). The reason why τint,χ̂ decreases with
L in contrast to τexp,χ̂ is that the prefactor of the slow mode
decreases with L, which is also seen in Fig. 9(b).

We show the exponential autocorrelation times as a func-
tion of L in Fig. 10. The bootstrap method was used in the
estimation of the fitting parameter as mentioned in Sec. IV.
We found τexp,χ̂ ≈ τexp,Ê , which is most likely the maximum
exponential autocorrelation time among all the estimators. In
addition, the autocorrelation function of the energy estimator
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FIG. 10. Exponential autocorrelation times of the energy (solid)
and the magnetic susceptibility (open) estimators as a function of
the system length in the classical (circles) and the present (squares)
worm updates for the simple cubic lattice Ising model. The inset
shows the ratio of the autocorrelation time of the energy estimator
in the classical algorithm to the one in the present algorithm.

is well approximated by a single exponential function, as
shown in Fig. 9(a). Thus, the exponential and the integrated
autocorrelation times should be almost the same: τexp,Ê ≈
τint,Ê , which we indeed confirmed in the present results. We
hence found the asymptotic scaling: τexp,χ̂ ≈ τexp,Ê ≈ τint,Ê ∝
L0.27, the exponent of which was estimated from the plots in
Fig. 7. We therefore estimate the dynamic critical exponent
of the simple cubic lattice Ising model to be z ≈ 0.27 in the
worm update.

The exponential autocorrelation time in the present worm
update is approximately 26 times as small as in the classical
worm update, as shown in the inset of Fig. 10, which is
consistent with the asymptotic variances of the energy and the
magnetic susceptibility estimators. Note that the summation
of the autocorrelation function in the rescaled time is some-
what different from the rescaled integrated autocorrelation
time (18) because of the existence of the constant 1/2 in the
definition (3). Nonetheless, the asymptotic scaling is the same
for the two quantities.

VI. SUMMARY AND DISCUSSION

We have proposed a modified worm algorithm for the Ising
model and demonstrated performance improvement over the
conventional worm algorithm at the critical temperature. The
kinks of the present worm are located on bonds instead of sites
of a lattice as shown in Figs. 1 and 2. The worm scattering
probabilities are optimized using the directed worm frame-
work and the geometric allocation approach as illustrated in
Figs. 3 and 4. We minimize the backscattering (rejection)
probability and reduce it to zero in a wide range of temper-
atures, including the critical point. Moreover, we maximize
the forward scattering probability to enhance further the dif-
fusivity, or the diffusion constant, of the kink. Successful
enhancement of the diffusivity is confirmed by observing the
increased variance of the distribution of the distance between
the two kinks, as displayed in Figs. 5 and 6. As a result,
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the variance of the worm length, which is approximately
proportional to the variance of the susceptibility estimator, is
significantly reduced, as shown in Fig. 8(b).

We have discussed how to quantify the computational effi-
ciency of the MCMC method and measure relevant quantities
in the present approach. The relaxation rate is quantified by
the exponential autocorrelation time, and the sampling effi-
ciency is by the asymptotic variance, which is the prefactor of
the asymptotic scaling of the statistical error squared.

The exponential autocorrelation times and the asymptotic
variances in the present worm update are approximately only
4% as large as in the classical (conventional) worm update for
the simple cubic lattice Ising model as shown in Figs. 7, 8, 9,
and 10. The present worm update is surprisingly even more
efficient than the Wolff cluster update, although the exponent
of the asymptotic variance is most likely the same. We expect
the improvement over the classical algorithm to be attributed
to the variance reduction of the worm length.

The dynamic critical exponent of the simple cubic lattice
Ising model is estimated to be z ≈ 0.27 from fitting to a single
power law aLz, in which a and z are the fitting parameters.
The resultant fit is statistically reasonable, producing a plau-
sible mean square error of the regression χ2/Ndof ≈ 1, where
χ2 is the sum of the squared residuals and Ndof is the number
of degrees of freedom in the regression.

The estimate of the dynamic critical exponent is somewhat
larger than the previous estimate: z = α/ν ≈ 0.174, which
was proposed in the Wolff cluster update [12] and supported
in the classical worm update [16]. This relation between the
critical exponents was inferred from a numerical observation
that the integrated autocorrelation time of the energy estima-
tor is approximately proportional to the specific heat (∝Lα/ν

asymptotically) at the critical temperature. We checked the
ratio (not shown) of the autocorrelation time to the specific
heat more precisely than the previous works did and found a
slight but systematic increase as a function of L. This increase
indicates z > α/ν, which is consistent with the direct fitting of
the autocorrelation time. Note that although the total energy
was measured in the extended state space in Ref. [16], the
exponent of the autocorrelation time of the energy is expected
to be the same for the original and the extended state space.

Our estimate z ≈ 0.27 is interestingly consistent
with an estimate for the Wolff update, z = 0.24(2) [8].
This agreement suggests that the worm and the Wolff

algorithms share the same exponent not only of the asymptotic
variance but also of the exponential autocorrelation
time.

We have estimated the exponents of the autocorrelation
times: L0.27 ∝ τint,Ê ≈ τexp,Ê ≈ τexp,χ̂ � τint,χ̂ ∼ L−0.7.

A lesson to learn from the present analysis is that we must
be careful to estimate τexp and needed thermalization (burn-in)
steps. Because τint is usually easier to estimate than τexp, in
some (or probably many) cases, people roughly estimate τexp

assuming τexp ∼ τint . This assumption is correct if the autocor-
relation function is well approximated by a single exponential
term and τexp � 1. If the autocorrelation function has more
than one exponential term, the integrated autocorrelation time
is approximately given by τint ∼ c τexp, where c is the prefac-
tor of the slowest decay. Therefore, τexp can be much larger
than τint possibly in orders of magnitude as we have estimated
τint,χ̂ ∝ L−0.73 but τexp,χ̂ ∝ L0.27 in the classical worm update.
It is interesting that the prefactor decreases with the system
length: c ∝ L−1.0.

The present approach can be generalized to a wide range
of physical models to which the conventional worm algo-
rithm has been applied, such as the |φ|4 model [15], the
Potts model [20], the O(n) loop model [17,21,22], and lattice
QCD [23]. The geometric allocation approach is expected to
improve the computational efficiency of the directed worm
update also for these systems. Our approach can be applied to
frustrated models as well in combination with the dual worm
formalism [27]. In the meantime, an application of the lifting
technique, which is another way to break the detailed balance,
to the worm algorithm was recently proposed for the Ising
model [37]. It is of interest to further combine our approach
and the lifting technique. The performance of the present
worm algorithm for other models needs to be investigated in
the future.
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