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Numerical heating in particle-in-cell simulations with Monte Carlo binary collisions
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The binary Monte Carlo (MC) collision algorithm is a standard and robust method to include binary Coulomb
collision effects in particle-in-cell (PIC) simulations of plasmas. Here we show that the coupling between PIC
and MC algorithms can give rise to (nonphysical) numerical heating of the system that significantly exceeds
that observed when these algorithms operate independently. We argue that this deleterious effect results from an
inconsistency between the particle motion associated with MC collisions and the work performed by the collec-
tive electromagnetic field on the PIC grid. This inconsistency manifests as the (artificial) stochastic production
of electromagnetic energy, which ultimately heats the plasma particles. The MC-induced numerical heating can
significantly impact the evolution of the simulated system for long simulation times (=10? collision periods, for
typical numerical parameters). We describe the source of the MC-induced numerical heating analytically and

discuss strategies to minimize it.
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I. INTRODUCTION

The particle-in-cell (PIC) method [1-3] is a robust and
versatile simulation technique to capture kinetic plasma ef-
fects in large-scale systems and in multiple dimensions. It has
been successfully used in a vast number of areas in plasma
physics research, including plasma-based accelerators [4,5],
intense laser-plasma interactions [6,7], plasma instabilities
[8—11], and astrophysical plasma phenomena [12—14]. In this
method, the coupling between the motion of a collection of
plasma particles and their electromagnetic field is described
self-consistently. The plasma particles have a finite size as-
sociated with the deposition of the particle current or charge
densities on the simulation grid, which is used to update the
electromagnetic fields at the grid vertices, by solving the field
equations in a discretized form. In the case of electromag-
netic PIC codes, the field equations are Maxwell’s equations.
While the long-range (collective) electromagnetic field is well
described, this method distorts and reduces (smooths) the
short-range (interparticle) electromagnetic fields, thus allow-
ing the study of kinetic physics with fewer particles than in
a real plasma [1-3]. As a result, the standard PIC method
does not quantitatively capture collisional plasma behavior
associated with particle-particle interactions.! It does however
capture collisions between finite-size particles, which have a
modified collision operator from a real plasma.

In physical regimes where collisions between plasma
particles are important, a Monte Carlo (MC) procedure is
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"Note that if the PIC grid resolution were to resolve the classical
electron radius, then the self-consistent interparticle electromagnetic
field would be correctly calculated, but this is not done in practice.
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commonly adopted to include the statistical effects of col-
lisions on the plasma dynamics in a quantitatively accurate
manner. When doing this it is imperative that the effects from
the collisions between the finite-size particles be reduced to
sufficiently low levels.

There are two main MC methods that have been applied to
the PIC framework. The first is a grid-based method, where
the moments of the collision field particles are defined on the
simulation grid and the simulated macroparticles are subject
to drag and diffusion in velocity space according to Langevin
equations. The Langevin equations are integrated via MC
sampling. The drag and diffusion coefficients are functions of
the moments of the velocity distribution of the field particles
(defined on the grid) and the macroparticle velocities and are
chosen to satisfy the classical theory of screened Coulomb
collisions [15,16]. The second method is the binary collision
method, where particles in close vicinity (within the same grid
cell) are randomly paired and elastically scattered. The scat-
tering angle is sampled via MC from a probability distribution
function that describes the statistics of classical screened
Coulomb collisions [17-21]. These methods are found in
many of the PIC codes used by the plasma community (see,
e.g., [20,22-27]) and have been used successfully to describe
the dynamics of collisional plasmas in a variety of scenarios.

While there has been significant work on understanding
the convergence properties of both these methods [28,29] and
extending their validity for a wider range of physical regimes
[20,21,30,31], little focus has been given to the numerical
and nonlinear coupling between these MC-based collision
models and the PIC framework. This is in large part be-
cause most of the validation tests for these collision models
(relaxation tests of temperature anisotropies, relative drifting
species, etc.) are performed isolated from the standard PIC
algorithm, i.e., when the self-consistent long-range electric
and magnetic fields calculated by the standard PIC algorithm
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are turned off [17,20,21]. In addition, the few test cases that
do require the PIC-MC coupling (e.g., validation of resistive
fields [21]) are performed for short simulation times, i.e.,
order of 10s of the inverse collision frequency. The effects of
the PIC-MC coupling over long simulation times of >10° of
the inverse collision frequency remain unexplored. Such long
simulations are necessary, for instance, to model the dynamics
of collisional shocks in multicomponent plasmas for inertial
confinement fusion (ICF), where kinetic effects like species
separation at the shock front are expected to develop [32-35].

In this work we explore the numerical coupling between
the binary MC collision algorithm [17] and the electromag-
netic PIC framework [3] in PIC-MC simulations. In particular,
we find that PIC-MC simulations suffer from (nonphysical)
numerical heating that is significantly greater than when PIC
and MC algorithms operate independently. We show that this
numerical heating results from an inconsistency between the
motion of the particles induced by the MC collisions and
the work performed by the collective fields evaluated on the
PIC grid. This inconsistency manifests as the artificial pro-
duction of electromagnetic radiation that stochastically heats
the neighboring plasma particles. We calculate the artificial
production of electromagnetic energy for the special case of
a uniform density plasma in thermal equilibrium and derive
scaling laws for the artificial heating rate with numerical pa-
rameters. We then verify our analytic scaling laws with the
results of PIC-MC numerical experiments. These scalings are
important to guide the choice of numerical parameters for
simulating a given system and for guaranteeing its physical
validity. In particular, as the PIC method is being pushed to
model very large systems, often with >10° time steps, lever-
aging the continuous increase in computational power and
the inherent advantages of the method for massively parallel
computing, the numerical heating discussed in this work can
become a significant concern and needs to be controlled.

This paper is organized as follows. We begin by discussing
the coupling between the PIC and MC algorithms in Sec. II.
We show that the motion of the particles due to MC collisions
is inconsistent with the work performed by the fields on the
PIC grid, resulting in the artificial production of electromag-
netic radiation. We further calculate the resulting heating rate
for the special case of a plasma in thermal equilibrium and
determine how it scales with the numerical parameters of
the simulation. In Sec. III we perform numerical experiments
using one-, two-, and three-dimensional (3D) PIC-MC sim-
ulations and verify the results of our analytical estimates of
the heating rate. Based on our findings, we discuss strategies
to minimize the heating rate in Sec. IV. We summarize and
present our conclusions in Sec. V.

II. PIC-MC COUPLING

In the PIC method, charged particles interact with each
other via self-consistently generated electric and magnetic
fields. The simulation domain is discretized into a grid (here-
after, the PIC grid). Particles deposit their current or charge
densities onto the PIC grid, and Maxwell’s equations are used
to self-consistently advance the electric and magnetic fields
onto the same PIC grid. These fields are then interpolated
to each of the individual particle positions to evaluate the

Lorentz force and advance the particles to their new position.
This procedure corresponds to the main loop (one time step)
of the PIC algorithm.

The particle current or charge density deposition on the
PIC grid effectively acts as a low-pass filter, smoothing out
the high-frequency (wave-number) components of the cur-
rent or charge densities [1]. The self-consistent electric and
magnetic fields that are evaluated on the PIC grid therefore
correspond to smooth collective fields, which correctly de-
scribe the long-range (collisionless) plasma interactions but
mitigate short-range (collisional) interactions. The binary MC
collision method aims to fill this gap. We note that there are
short-range interactions between the plasma particles which
are less severe than for point particles [36]. Therefore, the
PIC method does include modified collisions that will cause
a non-Maxwellian distribution function to relax towards a
Maxwellian. The finite-size particle collisions do not lead to
numerical heating (which is caused by aliasing) as energy is
conserved during the process. These collisions can be reduced
by increasing the number of particles per cell.

In a pure binary MC collisional simulation, particles in-
teract solely through binary collisions. Similar to the PIC
method, the simulation domain is discretized into a grid
(the MC grid or collision grid). Particles within the same
collision cell are randomly paired and their momenta are
scattered by a random angle which obeys some prescribed
probability distribution function (PDF). When the colliding
particles have equal numerical weights, this method conserves
kinetic energy and momentum on each collision, and thus
global energy and momentum conservation are also achieved.
The extension to collisions between particles of different nu-
merical weights has been treated in [19,20]. In this work
we restrict ourselves to collisions between particles of equal
numerical weight for simplicity. The scattering angle PDF
determines the collision statistics of the system and ultimately
the macroscopic transport properties of the system. For plas-
mas, the standard scattering angle PDF is such that Spitzer
collision rates are recovered [17]. However, numerous works
have proposed modifications to the scattering angle PDF
to extend the validity of the macroscopic collision rates to
broader physical regimes of plasma density and temperature
[17-21,30,31,37].

The PIC and binary MC collision algorithms can thus be
naturally combined to simultaneously capture both long-range
(collective) and short-range (particle-particle) interactions (so
long as enough particles are used to reduce the finite-size
collisions to low enough levels). The collision grid is usually
made to coincide with the PIC grid, and particles within
the same cell are (i) sequentially pushed according to the
long-range electric and magnetic fields and (ii) randomly
paired and scattered according to the local collision statis-
tics. We find, however, that the coupling between PIC and
MC algorithms can lead to unphysical effects that are en-
hanced compared to when these two algorithms operate
independently. While the kinematics of the MC collisional
interactions between particle pairs preserves energy and mo-
mentum, the stochastic velocity changes (8v,g) result in
particle displacements that are inconsistent with the work per-
formed by the collective fields registered on the PIC grid. This
inconsistency manifests as a stochastic error in the field values
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FIG. 1. Comparison between (a) pure PIC, (b) pure MC, and (c) PIC-MC simulations of a 1D uniform electron-proton plasma in thermal
equilibrium. The total energy conservation (Ae€/€p) and change in electron (A€, /€y) and proton (Ae€,/€p) kinetic energies are shown for
each case. The change in electromagnetic energy (Ae€gm/€o) is shown only for the PIC and PIC-MC simulations, since the self-consistent
electromagnetic field is turned off in the pure MC case. Note that the range of the vertical scale of the PIC-MC case is 10 times larger than the

pure PIC and pure MC cases.

on the grid, which ultimately leads to the artificial stochastic
heating of the system and deterioration of global energy
conservation.

This effect is illustrated in Fig. 1, where the energy conser-
vation results for pure PIC [Fig. 1(a)], pure MC [Fig. 1(b)],
and PIC-MC [Fig. 1(c)] simulations of a 1D electron-proton
plasma in thermal equilibrium are presented as a function of
time. The initial plasma temperature is 7 = 100 eV and the
number density is 10?* cm ™3, which are typical conditions
that arise in intense laser-solid interactions and ICF research
[38,39]. For these conditions, the characteristic electron-ion
collision frequency v,; (defined in Sec. III) is ve; 2~ 0.3wp,
where w,, is the electron plasma frequency. We used a grid
resolution of Ax = 0.25¢/wp, >~ 18Ap (where ¢/w,, and Ap
are the plasma skin depth and Debye length, respectively),
100 particles per cell per species, and a time step close
to the Courant stability condition for an explicit fully elec-
tromagnetic field solver; note that by temporally resolving
Wpe, Vei 15 automatically well resolved since v,; < wp, in all
cases considered in this work. Both physical and numerical
parameters are kept fixed for the three simulation cases. Fig-
ure 1(a) reveals the innate finite numerical heating of PIC
codes as seen by the artificial increase in the electron kinetic
energy. This unwanted numerical effect is associated with
the presence of aliasing modes in the electromagnetic field,
but can be kept at a tolerable level by an appropriate choice
of numerical parameters [2,3]. In our case, despite underre-
solving the Debye length (as is often the case in practical
numerical simulations of intense laser-plasma interactions at
high densities), we have used fourth-order particle shapes
to minimize the unphysical heating. This effect is explained
by the presence of an artificial stochastic electric field (with
zero mean and finite variance) that accounts for the stochastic
errors inherent to the PIC numerics [2]. It has been shown
that such a stochastic electric field leads to a linear increase
in the average particle energy at a rate that is inversely pro-
portional to the particle mass, which is consistent with the
curves for the electron and proton energies in Fig. 1(a). For
this reason, this innate numerical heating effect of PIC codes

~

is also known as stochastic numerical heating. The results of
the pure binary MC collisional simulation are presented in
Fig. 1(b). Note that Aegm/€g is not shown for this case since
the self-consistent electromagnetic fields are turned off. Both
electron and proton species have equal numerical weights
and hence the binary MC collisional interactions conserve
kinetic energy and momentum both locally and globally. Un-
fortunately, when both PIC and MC algorithms are coupled
a significant increase in the heating rate is found (=~ 60x the
heating rate observed in PIC alone, for the chosen parame-
ters), as observed in Fig. 1(c). In this case, we also observe the
protons following the electron heating, due to the fast equili-
bration with the electrons compared to the heating time [v,; >
I'mc, where I'yic is the MC-induced heating rate defined as
I'me = (A€/€p)/ At]. These numerical experiments suggest
that the MC collision kinematics are not directly introducing
errors into the particle kinetic energies, but may be intro-
ducing errors in the collective electromagnetic fields through
modifications in the particle displacements and current
densities.

The effects of the PIC-MC coupling are further elucidated
in the following numerical experiments. We use a subtraction
technique [40] to inspect the fields produced by a single
electron in a PIC-MC simulation, revealing the effects of the
PIC-MC coupling at the most basic level. This is achieved
by performing a pair of 2D simulations of an electron-ion
plasma in thermal equilibrium. The first is a pure PIC sim-
ulation and the second is a PIC-MC simulation of precisely
the same system (the initial particle positions and momenta
are the same) with the addition of a single test electron that
drifts from left to right in the plasma with velocity close
to the thermal velocity. In the PIC-MC simulation, only the
test charge undergoes MC collisions with the background
ions; the background electrons and ions do not interact via
MC collisions. Hence, subtracting the electromagnetic field
distributions between the two simulations yields the fields
associated with a single thermal electron propagating in the
background plasma while undergoing MC collisions with the
background ions.
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FIG. 2. Self-consistent radiation emission by a single electron undergoing MC collisions with plasma ions in 2D PIC-MC simulations. The
colormaps show the patterns of the out-of-plane component of the electric field (E,), representing the electromagnetic emission of a single

electron. The electron is traveling from left to right with velocity v = (v)

= /8/m vy, Where vy, is the thermal electron velocity, and is

represented by the black circle; its trajectory is traced by the black line. (a) Fields produced by the electron in a pure PIC simulation. Also
shown are fields produced in PIC-MC simulations for (b) v,; = 0.04w), and (¢) v,; = 0.2wp,.

The out-of-plane component of the electric field (E;) pro-
duced by the test electron is presented in Fig. 2. This field
component corresponds to a purely electromagnetic compo-
nent of the radiation emitted by the test electron. Figures 2(b)
and 2(c) reveal the radiation emitted as a result of the MC
collisions for different collision frequencies (v,; = 0.04w,,
and v,; = 0.2w),, respectively). The amplitude of the emitted
radiation is observed to increase with the collision frequency,
which is consistent with the increasing amplitude in the col-
lisional velocity changes experienced by the electron; we
have verified that the radiated power is consistent with Lar-
mor’s formula. This radiation is almost absent in Fig. 2(a),
which corresponds to a case where the collision frequency
is zero, i.e., the case of a pure PIC simulation; the faint
emission in this case results from numerical PIC collisions,
occurring when the test electron scatters off of field fluctu-
ations on the PIC grid. While it is expected that the PIC
algorithm captures the electromagnetic radiation associated
with the MC collisions through their effect on the current
density deposited on the grid, this radiation violates the
consistency of the PIC-MC algorithm. This is because the
electromagnetic emission is the result of a force (associ-
ated with the MC collision) that is inconsistent with the
electromagnetic field registered on the PIC grid. This error
impacts the balanced energy exchange between particles and
the electromagnetic fields on the grid that ensure global en-
ergy conservation. This radiation can therefore be seen as
the artificial production of electromagnetic energy associ-
ated with MC collisions in PIC-MC simulations. It is this

J

8 Twcl 2

(a.p)

energy that is subsequently absorbed by the neighboring
plasma particles and ultimately increases the temperature of
the system.

Based on the above interpretation, we may estimate the
numerical heating rate observed in PIC-MC simulations by
calculating the rate of production of electromagnetic energy
due to the MC-collisional interactions. For a closed (or pe-
riodic) and spatially uniform system, the average change in
electromagnetic energy density after one time step in a PIC-
MC simulation is given by

n+l n n+1
€EM.¢ ~ EM g Jn+1 /2 E; +E;
At 2 ’

where we have assumed a standard leapfrog integration
scheme commonly used in explicit PIC codes. The super-
script n denotes an integer time step and the subscript g
denotes the grid cell index. The electromagnetic energy
density at grid cell g is given by egy , = (E; - E; +Bj -
B})/87 (in cgs units), where E and B are the electric and
magnetic fields, respectively, and J is the current density.
The net Poynting flux is zero for a closed (or periodic)
system.

We can explicitly decompose the total current density in
the form J = Jpic + 8Jmc, where Jpic is the current density
associated with the precollision particle velocities and 8 Jyc is
the current density associated with the MC collision velocity
changes. For simplicity, we will refer to the latter as the
collision current density, which can be expressed as

ey

= > qudv P Wa(Xe — Xa) + qp8vy P Wa(x, — xp)

=y [—W (Xg — Xg) — —Wﬂ(xg—x,g)}m(wau”‘/2

(a.B)

(e, )

@)
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where ¢; and m; are, respectively, the charge and mass of
particle i, W;(x, — x;) is the numerical weight of particle i at
grid point X, du, g is the change in the precollision relative
velocity u, g = v, — Vg between the pair of colliding parti-
cles o and B, and myg = mgmg /(Mg + mg); V4 p (8Vg,o) is
the change in velocity of particle o (8) due to collision with
B («) and satisfies m, vy g = —mgdvg o = Mypduy g. In the
last line of Eq. (2) we have written the collision current density
as the sum of the contributions of effective particles with
charge density §p,p = maﬂ[%Wa(x —Xy) — %Wﬁ(x —xp)]
and effective velocity dug g. It is this stochastic component of
current density that is the source term for the production of
radiation resulting from the MC collisions.

In a one-spatial-dimension one-velocity-component
(1D1V) system, the stochastic collision current density fluc-
tuation at grid point g will induce a change in the local electric
field given by SEM'/2 = Eit! — B! = —47 At 8Jyc[!1/%.
Hence, the average rate of change in electromagnetic energy
density due to stochastic current density fluctuations in a
1D1V system is simply

+1
EEM’E — GEMag _ 5] n+1/2 E!
At - _( Mc‘g ’ g>

MC

n+1/2\2
¢ )

+Var (83| )], (3)

+ 27 At[(8Jwic|

where Var(X) = (X?) — (X)? denotes the variance of the ran-
dom variable X. The first two terms are found to be zero if
we consider current density fluctuations with zero average
and if the stochastic current density is uncorrelated with the
local electric field of the previous time step. Both these con-
siderations are satisfied when we are dealing with a simple
uniform plasma in thermal equilibrium. From Eq. (3) it is
clear that the presence of binary MC collisions gives rise to
an artificial source term that is proportional to the variance
of the stochastic collision current. The finite variance of the
collision current derives from the finite particle statistics in
a simulation cell and is responsible for artificially injecting
energy into the system and induce numerical plasma heating.
We have verified through numerical simulations that in two
and three dimensions the rate of increase of electromagnetic
energy density continues to scale as Ar Var(8Jyc), varying
only in the proportionality constant by a factor of a few.

In the following, we will consider in more detail the
numerical heating of a closed uniform system in thermal equi-
librium. Under these conditions, we have that (§Jucly™'/?) =

(8Jmc IEH/ 2. E}) = 0, allowing us to write the average rate of

injection of electromagnetic energy density due to the stochas-

tic collision current as
+1

<€]§M,g — €Emg n+1/2)

> X At Var(SJMC |g 4
MC

At

The electromagnetic energy produced by the MC colli-
sions can be reabsorbed by the plasma particles via inverse
bremsstrahlung (IB). As we will show in the next section, the
IB rate is significantly faster than the MC-induced heating rate
for typical numerical parameters. We can therefore write that

the change in plasma kinetic energy is given by

M o« At Var(SJ |n+l/2) )
A7 e MC|, )

where €k is the total kinetic energy density of the plasma at
grid point g. Hence, for a uniform equilibrium plasma with
initial thermal energy density ( €y = 2n0%kBTo, where kg is the
Boltzmann constant and 7j is the initial plasma temperature),
we define the MC-induced heating rate ['yc as the average
rate of increase of thermal energy density to the initial thermal
energy density of the plasma:

n+1 n
_ L [€ke —€kg
Pyie = —({ 4K«
() At
MC

At Var(8Jucly'/?)
nokpTy .

From Eq. (2) we find that Var(Jwmcl,) = Npairs((Spéﬂ,g)
(5u2ﬂ), where we have dropped the temporal superscripts
to simplify the notation. The Npr refers to the number of
colliding particle pairs whose current will be deposited at a
given grid point g. This number is proportional to the number
of simulation particles per cell (Nppc) and also depends on
the order of the particle weighting scheme and the spatial
dimensionality of the system. Hence, computing the variance
of the stochastic collision current is reduced to computing the
expected values for the random variables 8 p? pgandé u? 5

For simplicity, we consider collisions between species such
that mg >> m,, as is the case for electron-ion collisions. In
this limit, the random variable §pup , is reduced to §pqp,, >
quWo(Xg — Xy ). Given that the numerical weight of the par-
ticles will be proportional to Nppc, we find that (6,0513’ o) &
(gano/Nppc)*.

The amplitude of the change in relative velocity between
a pair of particles due to a binary collision can be written
as Suypg = Ugp/2(1 — cosfyp), where 6,4 is the scattering
angle by which the relative velocity vector between particles
o and B is rotated after the collision. As mentioned before,
the statistical distribution of the random scattering angle 6,4
depends on the collision model used. A number of works
have extended the original work of Takizuka and Abe [17]
to accommodate cumulative small-angle collisions [18], rela-
tivistic effects [20,21,30], and corrections at low-temperature
and high-density plasma regimes [21]. These extensions and
corrections were achieved by modifying the statistical distri-
bution of the random variable 6,4, and therefore the stochastic
current density and the associated heating rate will depend on
the physical regime and the model used. Here we will base
our calculations on the original work by Takizuka and Abe
for nonrelativistic Spitzer collisions.

From [17] the probability density distribution of 6,4
can be written in terms of another random variable §
such that Sugg = 2 uap+/82/(1 + 82), where 8 is normally
distributed with zero mean ((8) = 0) and variance (§%) =
27rq§q/23nL)»m;§u;§ At, where A is the Coulomb logarithm
and n; = min(ny, ng). Moreover, the distribution of uqg for
two species in thermal equilibrium at temperature 7 is found
to be flugp) = (maﬂ/2nT)3/2471uiﬁexp(—maﬁuiﬂﬂT).

(6)
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Based on these PDFs and considering (§%) <« 1, we find
that (8143”3) >~ (24/7 )T [mag)vag(T)At, where vop(T) =
2nq§q§nkm;§(T/maﬂ)_3/ 2 is the characteristic collision
frequency between species « and § at temperature 7.

We can now combine the calculated expectation values
above to substitute in Eq. (6) and obtain the MC-induced
heating rate for a closed electron-ion plasma system in thermal

equilibrium

1 Vaﬁ(T)(wpeAt)z

I'me(T) =Cp
Ty Nppc

, (N

where Cp is a constant that contains the effects of spatial
dimensionality, particle shape, and spatial filters, which will
be directly measured from PIC-MC simulations in the next
section. As expected, we find that the MC-induced heating
rate is proportional to v,g, vanishing in the limit when the
MC collisions are turned off (veg = 0). Equation (7) further
reveals the intrinsic numerical (unphysical) character of this
deleterious effect, through its dependence on the numerical
parameters Nppc and Atf. The MC-induced heating rate di-
minishes with increasing number of particles per cell, as the
collision-induced current fluctuations decrease with 1/Nppc.
Moreover, the heating rate is also significantly reduced with
decreasing time steps as At2, since smaller collisional velocity
changes are obtained with smaller A¢, which in turn results in
smaller collision-induced current fluctuations.

Note that Eq. (7) expresses the MC-induced heating rate at
the instantaneous plasma temperature 7. This is because the
fluctuations of the collision current density will change as the
plasma is being artificially heated. It is convenient to explic-
itly separate out the instantaneous temperature dependence of
I'me(T) by writing

Ty
Iyme(T) = \/; Iye(To), ®)

where I'vic(7p) is the MC-induced heating rate at the initial
plasma temperature 7y. From Eq. (8) we see that the I'yc(T')
slowly decreases as the plasma is heated as /7y/T. For in-
stance, by the time the temperature of plasma has doubled,
the instantaneous MC-induced heating rate decays only by a
factor of 1/ /2. For most cases of interest, given that we want
numerical heating to be minimized, we can therefore assume
that the MC-induced heating rate remains approximately con-
stant, and we will therefore use I'vic(7p) as our main measure
for the MC-induced heating rate in the PIC-MC simulations
discussed in the next section.

III. NUMERICAL EXPERIMENTS

We have performed a series of numerical experiments to
assess the MC-induced numerical heating in PIC-MC simula-
tions using OSIRIS [22,23]. OSIRIS is a fully relativistic, fully
electromagnetic PIC code and is also equipped with a binary
MC collision module. For simplicity, in the following, we
restrict our numerical tests to regimes where subrelativistic
Spitzer collision rates are valid. In these regimes, all MC mod-
els are in agreement and we will therefore limit our numerical
experiments to the Takizuka-Abe MC model for simplicity.

1074 5
1 — Cip=0.042
] Cop = 0.015
1 —— C3p =0.005
2 1075 5
3
~
S
T
=1
~ 1076 4
® 1D PIC-MC
2D PIC-MC
® 3D PIC-MC
1077 e ————r ———
1075 1074 1073 102

Vei(To)wpe At? /Nppc

FIG. 3. MC-induced numerical heating in PIC-MC simulations
of thermal equilibrium plasma. The circles represent measurements
from OSIRIS PIC-MC simulations and the blue, orange, and red
colors represent 1D, 2D, and 3D simulations, respectively. The mea-
sured heating rates are in agreement with the theoretical prediction
of Eq. (7) (solid lines). The heating rate coefficients Cp have been
determined for 1D, 2D, and 3D simulations. Note that the intrin-
sic numerical heating rate associated with the PIC algorithm has
been subtracted from that of PIC-MC simulations to obtain these
measurements.

We begin by analyzing the MC-induced numerical heating
of thermal equilibrium electron-ion plasma. For simplicity, we
consider only collisions between electrons and ions and ne-
glect intraspecies collisions. We simulate a periodic domain in
1D, 2D, and 3D and explore MC-induced heating for different
numerical parameters and collision frequencies. Ideally, one
would choose a spatial resolution Ax that would match the
Debye length Ap of the plasma, but in most cases of dense
plasma simulations this is impracticable and the grid size is
chosen to resolve the electron inertial length ¢/, with a few
points and high-order interpolation is used to guarantee good
energy conservation [20]. In the following tests we choose
Ax = 0.25¢/wp.. As mentioned before, there is numerical
heating intrinsic to the pure PIC algorithm itself [2,3], which
will also be present in the PIC-MC simulations. We denote
the heating rate intrinsic to a pure PIC simulation by I'pjc. We
attempt to isolate the heating induced by the PIC-MC coupling
from that intrinsic to a pure PIC simulation by choosing nu-
merical parameters that keep I'pic lower (less than half) than
the I'pic.mc measured in PIC-MC simulations. We achieve this
by using fourth-order particle shapes and smoothing the cur-
rent density field with a binomial compensated filter. For each
set of numerical (Nppc, At, and Ax) and physical parameters
(temperature Tp, density n, and Coulomb logarithm A), we
perform both pure PIC and PIC-MC simulations and subtract
pic.mc — Tpic to isolate I'ye(7Tp) that stems from the PIC-
MC coupling. Assuming that the sources of noise that give
rise to I'pic and I'vic(Tp) are uncorrelated and independent,
then the difference I'pic.mc — ['pic can provide an adequate
measurement for I'yic(7p).

The results are summarized in Fig. 3, and the mea-
sured heating rates are found to increase proportionally to
Vi (To)(@pe At )? /Nppc, in agreement with Eq. (7). The heating
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rate constant Cp is found to depend on the dimensionality of
the simulation domain and decrease by a factor of approx-
imately 3 with each increasing dimension. This decrease is
related to the increasing number of cells that share the same
grid point in higher dimensions. There is thus an increasing
number of collision pairs that contribute to the collision cur-
rent density at any given grid point, effectively reducing the
fluctuations. Note that the collision frequency v,; is always
well resolved in these simulations. The range of density and
temperature parameters are varied such that v,;/w,. < %, and
given the CFL stability condition for Az for an electromag-

netic field solver, we have At < Ax/c = 0.250);61. Hence,
v At < 75 is held for all simulations.

The increase in the total energy in the simulations is ob-
served primarily as particle heating, as seen in Fig. 1(c).
This is because the electromagnetic energy produced by the
MC collisions is promptly reabsorbed by the plasma via IB.
This is verified by comparing the IB and MC-induced heating
rates. The collisional damping of electromagnetic waves of
frequency w by IB occurs at a rate I''g = (wpe J@)? (Vi /2).
Given that the highest frequency produced in the simulation
iS wmax = 7/ At, the ratio between the IB and the numerical

heating rates is

Npepc
ZJTZCD ’

e 1 Neec
Tme  Cp (wA1? ~

©))

We confirm that for the heating rate coefficients Cp observed
in Fig. 3, IB always dominates and thus the electromagnetic
energy is expected to be rapidly absorbed by the plasma par-
ticles.

Our numerical heating scaling results provide a useful
guide to choose the numerical parameters for a given PIC-MC
simulation in order to ensure that the MC-induced numerical
heating is kept at a tolerable level. Determining what level
of numerical heating is tolerable will certainly be problem
dependent, but if we are dealing with a closed physical sys-
tem we can write this condition as e = 1/T'mc(To) > Tsim,
where Ty, is the simulated time of the system. This condition
states that Ty, should be much smaller than the tyc, which
corresponds to the time taken to approximately double the
total energy of the system (A€ /ey > 1). [If one takes into ac-
count the self-consistent temperature dependence of I'yic(T')
as the system is being heated, then one finds that the energy
of the system doubles after >~ 1.22/T"\ic(Tp).] For the fourth-
order particle shapes and current density filter used in our
simulations and assuming a typical time step value of Ar =~
O.Zw;e' and Nppc ~ 100, 25, and 8 particles per cell in 1D,
2D, and 3D simulations, respectively, we find that tyvcveg >
5 x 10*. This shows that using typical numerical parameters
At and Nppc, the binary MC collisional interactions artificially
double the energy of the system after ~ 5 x 10* collision
periods (1/vgg).

As an example, we present in Fig. 4 the results of a
1D closed electron-ion plasma system with number density
no = 10?* cm ™3 and in thermal equilibrium at 7y = 100 eV,
representing typical conditions in laser-solid interactions and
inertial fusion relevant experiments. These conditions of tem-
perature and density yield v, >~ 0.3wp, (for A =3). The
black solid curve in Fig. 4 represents the deterioration of

I/ei(To)t ><104
R SR R N
104 — (A¢/eco)pic-nc — (Ae/eo)ric 7
—-= Tme(To)t /./. //’/
0891 ___ [1+ %Flv[C(To)t]g/3 - 1/.//'//’/
* v
o 0.6 2
= 2
T 041 P~
P
0.2 1
—— (A¢/eo)ric
0.0 T T T T T
0.0 0.5 1.0 1.5
Wpet x10°

FIG. 4. Deterioration of energy conservation in a PIC-MC sim-
ulation due to MC-induced numerical heating (black solid curve)
and comparison with theoretical predictions (dashed and dash-dotted
curves). The deterioration of energy conservation of a pure PIC
simulation with the same numerical parameters is represented by
the blue solid curve and remains below 2% for the simulated time.
Note that the black solid curve corresponds to the difference in global
energy variation between the PIC-MC and pure PIC simulations, in
order to isolate the heating contribution associated with the PIC-MC
coupling from the innate heating in PIC simulations.

energy conservation in the PIC-MC simulation due to the
MC-induced numerical heating, which is much greater than
that associated with the innate numerical heating of the pure
PIC simulation with the same physical and numerical param-
eters (blue solid curve). Note that we have subtracted the
contribution of the pure PIC heating from the total variation in
energy in the PIC-MC simulation, under the assumption that
the PIC contribution remains the same in the PIC-MC case,
and thus allowing us to isolate the MC-induced numerical
heating. We see that at early times, the MC-induced heating is
well characterized by the linear growth rate given by Eq. (7)
at the initial system temperature 7 (dash-dotted line). The
MC-induced heating rate is seen to slow down at later times
when the system has significantly heated, as predicted by
Eq. (8). By integrating the MC-induced heating rate using the
instantaneous temperature 7 of the system, one obtains the
expression represented by the dashed curve in Fig. 4, which
is in good agreement with the behavior observed at late times
in the PIC-MC simulation. We also verify that the energy of
the system artificially doubles (A€ /ey = 1) after tpcvei(Ty) =
4.5 x 10*. This corresponds to Tycwpe > 1.5 X 10° or Tyc =~
6.5 x 10° At for these parameters. For most cases of interest,
numerical heating needs to be controlled to values < 1%. In
such cases, the MC-induced heating could limit the simulation
time to only 500 collision periods (1/vg).

Our analysis has been restricted to thermal equilibrium
plasmas and we have not yet addressed the MC-induced nu-
merical heating in nonequilibrium configurations. In nonequi-
librium plasmas, the finite variance of the MC collision
current density will be modified by the local distribution
function of the particles and hence impact the numerical MC-
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induced heating rate. However, unless the system is being
continuously driven out of equilibrium, the system will even-
tually relax to thermal equilibrium through the MC collisions
and undergo the numerical heating at the rate predicted by
Eq. (7). Since the equilibration occurs on a much shorter
timescale than the heating timescale (I'vic < vyg), as was ver-
ified by the results above, it is expected that the MC-induced
heating will have a negligible effect during the transient
nonequilibrium stage.

An example of such a scenario is presented in Fig. 5,
where the results of a 1D simulation of a two-stream insta-
bility are shown. In this simulation, two populations of cold
electrons are symmetrically counterstreaming in a background
of stationary ions and electron-ion collisions are turned on.
Figure 5(a) shows the evolution of the system at early times
(wpet < 400), capturing the exponential development and de-
cay of the two-stream instability as seen by the rise and
decay of the electrostatic component of the electromagnetic
energy density (orange curve). The global energy variation,
represented by the blue solid curve, is shown to remain at
a very low level during this stage (Ae/ey >~ 10™*) and is
identical to the level observed in the pure PIC simulation
where collisions are turned off (blue dashed curve). At much
later times around @t >~ 2 x 10%, the system has thermalized
at temperature Teq (such that ZnO%kB Teq = €p). At around this
time the electron-ion collision frequency increases, since the
average relative speed between particles decreases, and we
observe the steady numerical MC-induced heating rate given
by I'mc(Teq) [black dash-dotted line in Fig. 5(b)]. Note that the
pure PIC simulation (blue dashed curve) of the same physical
and numerical parameters reveals a much improved energy
conservation compared to the PIC-MC case, highlighting that
this deterioration is indeed due to the coupling between the
PIC and MC algorithms.

IV. NUMERICAL HEATING MINIMIZATION STRATEGIES

Mitigation of the MC-induced numerical heating in PIC-
MC simulations requires controlling the stochastic component
of the current density associated with the MC collisions. In a
thermal plasma, the collision current fluctuations are random
and independent at each cell and effectively act as a source
of white noise in the system [Fig. 6(a)]. We have evaluated
its effect on the emitted radiation by explicitly simulating the
electromagnetic field produced by a stochastic current density
distribution that mimics that due to MC collisions. We observe
that the spectrum of the radiated electromagnetic energy is
also broad, but is more pronounced at high spatial frequencies
[Fig. 6(b)]. This suggests that applying a low-pass filter to the
fields may be effective in mitigating the MC-induced heating.
We have tested this strategy by using a compensated five-pass
binomial filter (applying a 1,2,1 stencil 4 times, followed by a
—5, 14, —5 stencil) on the electromagnetic fields every =~ 30
collision periods (=~ 500 time steps) on the same simulation
presented in Fig. 1(c). The results are presented in Fig. 6(c)
and confirm that the heating rate can be effectively reduced
(~ 25x lower) by periodically filtering the electromagnetic
fields. Note that the details of the filtering prescription will
depend on the physics of interest in a particular simulation.

0.10 +
0.05 A
0.00 =
— A¢/e
—0.05 1|V PIC-MC Aepn/eo
— (A€ + Agp) /e
—0.10 1 PIC ---- Ae€/eo
0 1 2 3 4
Wpel x 102
b
0.06 (b)
0.04 4
0.02
0.00 +
—0.02 A
PIC-MC Aepm/eo
—0.04 - —— (Aec+ A¢p) /€0
PIC ---- A€/e
—0.06 . . ' '

0.0 0.2 0.4 0.6 0.8 1.0
Wpet x10°

FIG. 5. MC-induced numerical heating in a two-stream unstable
plasma. (a) Early time evolution (wt < 400) of the system, where
the exchange between particle kinetic energy (green solid curve) and
electrostatic energy (orange solid curve) due to the development of
the instability is observed. During this time, identical global energy
conservation curves are obtained for both PIC-MC (blue solid) and
pure PIC (blue dashed) curves. This is because the effective MC-
induced heating time is much larger than this timescale. When the
system relaxes to thermal equilibrium at around w,.t >~ 2 x 10*,
the effective electron-ion collision frequency increases and the MC-
induced heating rate also increases. After this time we observe in
(b) the linear increase in particle energy and associated deteriora-
tion of energy conservation at the rate given by I'vc(7,) (black
dash-dotted curve), where T, is the temperature reached at thermal
equilibrium.

Therefore, the optimal filtering strategy will need to be evalu-
ated on a case by case basis.

Alternative to filtering techniques, improvements to the
PIC-MC coupling may be possible by performing explicit
corrections to the electromagnetic field or the current density
on the grid, effectively subtracting the artificially produced
radiation or the collisional current density and eliminating the
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FIG. 6. (a) Fourier spectrum of white noise current density fluctuations that mimic the effect of MC collisions and (b) Fourier spectrum
of electric field fluctuations produced by the same noisy current density distribution. These spectra are obtained by integrating Maxwell’s
equations in one dimension using a finite-difference time domain solver in the presence of a noisy current density distribution. (c) Using a
low-pass filter on the electromagnetic fields at every 30v,i~! (every 500 time steps), a large fraction of MC-induced electromagnetic fluctuations
is suppressed, leading to a strong reduction in the MC-induced heating rate. This is illustrated for a 1D spatially uniform electron-proton
plasma in thermal equilibrium with the same physical and numerical parameters used in Fig. 1. The black solid (dashed) and blue solid curves
correspond to the PIC-MC simulation without (with) filtering on the fields and a pure PIC simulation without MC collisions, respectively.

heating. However, special care must be taken to ensure that
such corrections do not deteriorate charge conservation.

It is interesting to note that for the special case of binary
collisions between species of the same charge to mass ratio
g/m, one can employ a different strategy to reduce the MC-
induced heating rate. In this case, one sees from Eq. (2) that
the collision current is proportional to the spatial separation
between the collision pairs x,3 = X — xg. For collision pairs
that are randomly paired within a cell, the average spatial
separation in one dimension is (x,g) = Ax/3. However, if one
were to employ a different pairing strategy such as pairing
nearest-neighbor (NN) particles, the average spatial separa-
tion would be (x,s) = Ax/Nppc, which is much less than
Ax/3 for commonly used numbers of particles per cell. In
this case, the MC-induced heating using NN pairing becomes
proportional to 1/Ngpc,

Vaa (TO)(wpe At )2

3 9
N, PPC

Iymenn(To) o (10)

allowing one to effectively suppress the numerical heating
with a moderate number of particles per cell.

An illustration of this effect is shown in Fig. 7, where the
MC-induced heating is measured in a 1D simulation of an
electron-ion plasma where only electron-electron collisions
are captured (electron-ion and ion-ion collisions are turned
off). This simulation uses 100 particles per cell, and one
clearly observes that the MC-induced heating rate is strongly
suppressed in this case when using the NN pairing strategy
(black dashed curve). The remaining heating observed in the
PIC-MC-NN case is that associated with the PIC method itself
(blue solid curve).

The NN pairing strategy employed in our tests was
achieved by sorting particles by their position within a cell
in one dimension. In two- and three-dimensional simulations,
one can improve the locality of the collisions by using col-
lision cells smaller than the PIC cell and perform random
pairing within these smaller collision cells. This would reduce

the heating rate by the square of the ratio of the collision cell
size to the PIC cell size.

Finally, we note that it can be shown that low-energy
(thermal) electrons can contribute significantly more to
the MC-induced heating than high-energy (suprathermal)

I/ee(T())t ><103
0 2 4 6 8
0.0159 —— PIC — MC
| --—= PIC—MC-NN
0.010-
< i
4
0.005 -
0.000 4 —eem=""""""" —— PIC
0.0 0.5 1.0 1.5 2.0
Wpet x10%

FIG. 7. Illustration of the effect of using different pair selec-
tion strategies for the MC collisions on the MC-induced numerical
heating. In this example, we simulate a 1D spatially uniform
electron-proton plasma in thermal equilibrium with the same phys-
ical and numerical parameters used in Fig. 1. However, in this case
collisions were only performed between electrons. Electron-proton
and proton-proton collisions were turned off. Shown are the deteri-
oration of energy conservation for the PIC-MC simulation with the
standard random pairing strategy (black solid curve), the PIC-MC
simulation with NN pairing (black dashed curve), and the pure PIC
simulation (blue solid curve). The MC-induced heating is strongly
reduced when using the NN pairing strategy, remaining only the
innate PIC heating level. Note that the NN pairing strategy only
reduces the MC-induced heating when collisions are performed be-
tween particles of the same charge-to-mass ratio.
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electrons in a thermal plasma. This is a consequence of
low-energy electrons being more numerous and experienc-
ing stronger collisional interactions than high-energy particles
and thus contributing more to §Jymc on the grid. For instance,
electrons with v < 24/T /m, contribute ~100x more to the
variance of §Jyc (and hence to the MC-induced heating) than
electrons with v > 2/T /m,. Thus, depending on the problem
of interest, it may be viable to artificially lower the collision
frequency of low-energy particles to mitigate the MC-induced
heating without significantly impacting transport properties,
which are governed by high-energy particles. These different
strategies are left for future study.

V. CONCLUSION

We have shown that the coupling between the (energy-
momentum-conserving) binary MC collisions algorithm and
the PIC algorithm leads to artificial heating of the system that
is not present when these algorithms operate independently.
We have shown that the numerical heating results from the in-
consistency between the particle motion due to MC collisions
and the value of the collective electromagnetic fields on the
PIC grid. The motion of the particles due to MC collisions
results in the artificial production of electromagnetic radiation
that heats the surrounding plasma particles. For typical numer-
ical parameters used to model large-scale collisional systems
(At ~ O.2w;el , Nppc = 100, 25, and 8 particles per cell in 1D,
2D, and 3D simulations, and using high-order particle shapes
to minimize numerical heating effects intrinsic to PIC itself),
the MC-induced numerical heating can exceed 1% after only
500 collision periods (1/vgg).

Using a large enough number of particles per cell and small
enough time step, it is possible to keep the heating rate at
a tolerable level for a given simulation. However, if using
more computational resources is unfeasible, we have shown
that it may be possible to reduce the MC-induced heating
rate by periodically filtering the high-frequency electromag-
netic fluctuations produced by the MC collisions. We have

also shown that for the special case of collisions between
particles of equal charge-to-mass ratio, the collision-induced
current can be effectively suppressed by modifying the col-
lision pairing strategy. By selecting collision pairs that are
closest to each other, the collision-induced current is reduced
and the associated numerical heating rate is significantly
diminished.

While the work presented here focused on the coupling be-
tween binary MC collisions with PIC simulations, we expect
that the coupling between grid-based collision methods and
PIC simulations may suffer from a similar problem. In grid-
based methods, a stochastic current density is also expected
to be injected into the system, resulting in a rate proportional
to At Var(8Jmc). The derivation of the heating rate for grid-
based methods should follow a procedure similar to the one
outlined in this work.

The scalings obtained here for the MC-induced heat-
ing rate provide an important guide to determine suitable
numerical parameters for large-scale PIC simulations of
collisional plasmas. Future effort should focus on the de-
velopment of alternative strategies to minimize the variance
of the stochastic current density that underlies this parasitic
effect.
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