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Restricted Boltzmann machines (RBMs) are simple statistical models defined on a bipartite graph which
have been successfully used in studying more complicated many-body systems, both classical and quantum.
In this work, we exploit the representation power of RBMs to provide an exact decomposition of many-body
contact interactions into one-body operators coupled to discrete auxiliary fields. This construction generalizes
the well known Hirsch’s transform used for the Hubbard model to more complicated theories such as pionless
effective field theory in nuclear physics, which we analyze in detail. We also discuss possible applications of
our mapping for quantum annealing applications and conclude with some implications for RBM parameter
optimization through machine learning.
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I. INTRODUCTION

In recent decades, statistical methods based on artificial
neural networks (ANNs) have been proven extremely valuable
in studying the physical world. For a long time, experimen-
tal high energy physics has been at the forefront of these
applications [1–3] and today ANN-based methods are of fun-
damental importance in analyzing particle accelerator data
[4–7]. Thanks to the growing availability of large scale com-
putational resources, these types of approaches have started
to play an important role also in many-body theory more
generally with applications as diverse as detecting phase tran-
sitions in simulations [8,9], preparing accurate variational
states for lattice systems [10], accelerating sampling in Monte
Carlo based simulations [11–13], constructing efficient energy
density functionals [14], and performing fast approximate
quantum state tomography [15,16].

A particularly interesting class is the generative models
commonly used in unsupervised learning whose aim is to
automatically discover underlying patterns in the data that are
being analyzed (see, e.g., [17,18] for an introduction). The
main advantage of this class of methods is the possibility of
finding a compact and possibly accurate description of the
supplied data without using any predetermined labeling. On
one side, this allows the automatic discovery of appropriate
labels and on the other simplifies dramatically the process of
acquiring useful data points to train the model on. Once the
model has been trained it can be used, for instance, to generate
new data points from the reconstructed density distribution
[18].

*ermalrrapaj@gmail.com
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Our focus in this paper is a particularly simple ANN
model composed by only two layers of neurons with a very
sparse connectivity: the restricted Boltzmann machine (RBM)
[19,20]. We will describe this architecture in some detail in
Sec. II, but for now we want to anticipate that an RBM can
be used as a universal approximator for arbitrary probability
distributions (see, e.g., [21,22]). This fact, together with its
simplicity, is one of the main reasons for its widespread use
in many-body physics applications [9–11]. We note in pass-
ing that this construction is also the basic building block of
deep learning models including the deep Boltzmann machine
(DBM) and deep belief networks (DBNs) [23–25] where the
number of layers is increased to provide more flexibility to the
representation power of the model. For instance, three-layer
DBMs have been successfully used in exact representations
of ground state wave functions [26].

In this work we will use an RBM model to find simpler but
exact representations for the many-body partition function

exp(−βĤ ) ∝ Trs[exp (− Frbm({ρ̂i}, s))], (1)

in terms of the free energy Frbm of an RBM where the visible
layer is composed by quantum operators {ρ̂i} and the hidden
layer is made by a vector of classical auxiliary fields s which
we marginalize over. Exact representations of this form are
of fundamental importance for quantum Monte Carlo (QMC)
calculations of many-body systems [27,28] which approxi-
mate ground state expectation values as

〈0|Ô|0〉 = lim
β→∞

1

Z (β )
Tr[exp(−βĤ )Ô], (2)

where we introduced the partition function Z (β ) = Tr[e−βĤ ].
More specifically, given a many-body Hamiltonian Ĥ written
as a linear combination of Hermitian operators Ĥ = ∑

k Ĥk

and some initial state |�〉, the basic computational step
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needed for QMC simulations is the map

|�〉 −→ |�k〉 = exp(−βĤk )|�〉, (3)

for each one of the Ĥk terms composing the Hamiltonian
operator Ĥ . Efficient schemes to simplify the evolution oper-
ators exp(−βĤk ) using a map like Eq. (1) are key ingredients
of QMC methods. Notable examples include auxiliary field
methods such as the Hubbard-Stratonovich [29,30] and the
Hirsch’s transform [31] or the more recent approach proposed
by Körber, Berkowitz, and Luu in [32].

In this work we focus in particular to two classes of Hamil-
tonians of fundamental importance in nuclear physics:

(i) Realistic local interactions [33,34] represented by in-
teractions of the form

ĤV =
∑

i

Vi( �R)wi(�σ , �τ ), (4)

with Vi( �R) scalar coefficients dependent on the nu-
cleon coordinates �R and wi(�σ , �τ ) a functional of spin
operators �σ and isospin operators τ . Note that it is
always possible to choose the operators wi in Eq. (4)
to be involutive: wi(�σ, �τ )2 = 1.

(ii) Nuclear potentials derived in low energy effective
theories expressed in terms of two- and three-body
contact interaction [35] of the form

ĤV =
∑
i, j

vi j ρ̂iρ̂ jwi j (�σ , �τ )

+
∑
i, j,k

vi jk ρ̂iρ̂ j ρ̂kwi jk (�σ , �τ ). (5)

In this expression vi j and vi jk are scalar coefficients, ρ̂i is a
fermionic density operator [see Eq. (11) below for a more for-
mal definition], and wi j (�σ, �τ ) and wi jk (�σ, �τ ) are idempotent
spin and isospin operators as in Eq. (4). We note that these
interactions arise naturally also in the low energy description
of condensed matter systems (see, e.g., [36,37]).

Thanks to this representation it is sufficient to find an exact
mapping in Eq. (1) for idempotent operators only, and this
will be the focus of our present work. Note that it is always
possible to express any operator on a finite Hilbert space as a
linear combination of involutive operators by using (the tensor
product of) Pauli operators as an operator basis.

In the rest of the paper, we provide an introduction to
the RBM and present its application to represent many-body
forces in nuclear physics. In Sec. II we proceed to relate the
free energy Frbm of this architecture to the physical parti-
tion functions produced by many-body interactions, starting
with the familiar case of a two-body potential term. We then
present a generalization to the case of three-body forces in
Sec. II B. Further details on the construction for general terms
is provided in Appendix A for completeness. One of the ad-
vantages of our approach is that it can be easily generalized
from binary auxiliary fields to generic categorical classical
variables which take values on a larger set {0, 1, . . . ,K − 1};
in Sec. II C we discuss the advantages that this added flexibil-
ity can provide.

We then proceed in Sec. III to show how this RBM
mapping could be used to improve the representation power
of quantum annealers based on the transverse Ising model

Hamiltonian. In Sec. IV we use the exact mapping obtained
before to analyze numerically the performance of various
optimization protocols for the RBM parameters in reaching
the known optimum for the simple case of a 2D Ising model.
Note that this optimization step is not directly needed to use
our results but instead addresses the question of feasibility
of machine learning through RBMs and is of independent
interest.

We conclude in Sec. V with a summary and possible im-
plications of our results.

II. RESTRICTED BOLTZMANN MACHINES AS
HAMILTONIANS WITH AUXILIARY FIELDS

The introduction of auxiliary fields as a mean of sim-
plifying the interaction term of the Hamiltonian is common
practice in many areas of theoretical physics, and is particu-
larly popular in designing quantum Monte Carlo algorithms in
both condensed matter and nuclear physics [27,28,38–43]. In
these applications, a system of interacting particles is mapped
into a free theory coupled to a background fluctuating auxil-
iary field and the final simulations is usually performed after
integrating out the physical fields.

One famous instance of this class of mappings is the
Hubbard-Stratonovich transformation [29,30] which exploits
the Gaussian-integral relation

exp

(
τ

2
Ô2

)
= 1√

2π

∫ ∞

−∞
dhe−h2/2−√

τhÔ, (6)

with h a real auxiliary field, to provide a simpler represen-
tation for the evolution operator on the left-hand side. This
transformation is used extensively to express the evolution
under two-body interactions as a superposition of evolutions
under one-body interactions parameterized by the value of the
auxiliary field and is commonly used in auxiliary field Monte
Carlo techniques [28,41–43]. This transformation can also be
used for higher-order operators when they can be expressed
as squares; a common example is the three-neutron force
(see, e.g., [44]). When the interaction cannot be written as a
perfect square one can attempt a recursive application of the
transformation in Eq. (6) but this is usually accompanied by a
drastically reduced efficiency (for an example of this applied
to the isospin-dependent spin-orbit force, see [45]).

Another popular family of transformations that achieve a
similar simplification can be obtained by considering auxil-
iary fields which can only take a discrete number of values.
The prototypical example of this is the famous Hirsch trans-
formation for the Hubbard model [31] which we will discuss
in some detail in the next subsection (see also [46,47] for sim-
ilar constructions). The main purpose of our work is to show
how these discrete mappings can be described and generalized
using the language of restricted Boltzmann machines (RBMs)
[19,20]. As we briefly described in the introduction and show
pictorially in Fig. 1, the RBM is a statistical model organized
in two interconnected layers: a visible layer composed by a
vector of Nv visible units v (depicted as blue dots in Fig. 1)
which represent the dynamical variables whose statistics we
want to model, and a hidden layer composed by a vector of
Nh hidden units h (depicted as red dots in Fig. 1) which repre-
sent auxiliary variables used to create correlations among the
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FIG. 1. Restricted Boltzmann machine; visible layer below (in
blue) and hidden layer above (in red).

visible units. The RBM is an energy based statistical model,
meaning that the probability distribution associated with the
network can be conveniently expressed as a partition function

Prbm(v, h) = N exp [−Frbm(v, h)] (7)

with N a normalization constant and free energy

Frbm(v, h) = B · v + C · h +
Nv∑
i=1

Nh∑
j=1

Wi jvih j . (8)

This free energy is parametrized by the two bias vectors B and
C, which independently shift the probability density of the
variables in the two layers, and the weight matrix W which
couples the two layers. In Fig. 1 the latter is represented
by the black connections. The reason for this choice as a
network structure is linked to the conditional independence
of the variables on the two layers which allows for an efficient
sampling of the conditional probabilities

pv (v) = Prbm(v|h) and ph(h) = Prbm(h|v), (9)

which can then be used to draw efficiently samples from the
wanted marginal probability distribution

Pv
rbm(v) = Trh[Prbm(v, h)], (10)

using block Gibbs sampling. In the expression for the
marginal probability Pv

rbm above, we used Trh to denote a
summation over all the possible values of the hidden vari-
ables. As we mentioned briefly in the introduction, despite
its simplicity the RBM is a universal approximator [21,22],
in the sense that by adding a sufficiently large number of
hidden variables one can accurately approximate any marginal
probability distribution Pv

rbm of the visible variables.
By promoting the units on which the RBM is defined to

operators acting on some Hilbert space, one can also define a
quantum RBM (see, e.g., [48]) allowing statistical inference
on quantum states. We will defer a more in-depth discussion
about this model and its possible implementation using quan-
tum annealers to Sec. III.

The main contribution of our work is the use of the RBM
network structure to define a hybrid quantum-classical ar-
chitecture, where the visible unit is composed by quantum
operators and the hidden units are classical discrete variables,
to generalize the auxiliary-field decomposition of interactions
to arbitrary many-body forces. To the best of our knowledge
the closest construction to our architecture is the recently
proposed map between generalized Ising models and deep
Boltzmann machines presented in [49]. Our method over-
comes some of the difficulties encountered in that proposal by
reducing the depth of the required network (and thus simplify-

ing sampling) and removing any restriction on the numerical
value of the coupling constants.

To proceed further and present the model in more details,
we will now focus on the description of physical systems
containing Nf species1 of interacting fermions and discretized
over N modes. General contact interactions can be expressed
as powers of the density operator ρ̂a(k) for mode k and species
a as

ρ̂a(k) = c†
a(k)ca(k), {c†

a(k), cb(q)} = δk,qδa,b, (11)

with c†
a(k) and ca(k) fermionic creation and annihilation oper-

ators and {·, ·} the anticommutator. For instance 2- and 3-body
contact interactions can be written as

V̂2 = ρ̂a(k)ρ̂b(k), V̂3 = ρ̂a(k)ρ̂b(k)ρ̂c(k). (12)

Note that, due to the Pauli exclusion principle, identical
fermions cannot occupy the same quantum state within the
system. Thus, Nf species in a system allows for many-body
forces of up to Nf for a given mode. In order to simplify the
notation we will use the multi-index μ = (a, k), taking values
from 1 to M = Nf N , and use the shorthand ρ̂μ to indicate the
density operator ρ̂a(k).

Using these density operators as our visible units, we can
now write the free energy of our hybrid classical-quantum
model as

Frbm(ρ̂, h) = B · ρ̂ + C · h +
M∑

μ=1

Nh∑
j=1

Wi j ρ̂μh j . (13)

In order to simplify the exposition we will consider for the
moment the special case where the hidden units are binary
variables h j = {0, 1}, and generalize the construction to more
general categorical variables in Sec. II C.

Before describing in detail the special case of 2- and 3-
body forces, we want now to show how, by carefully choosing
the parameters that define the free energy Eq. (13), we can
obtain all the possible contact interactions up to the maximum
order M. By tracing out the hidden layer from the total proba-
bility distribution Prbm(ρ̂, h) in Eq. (7) we obtain the following
effective Hamiltonian for the visible layer:

Hrbm(ρ̂) = − ln {Trh exp [−FRBM(ρ̂, h)]}

= B · ρ̂ +
Nh∑
j=1

ln

⎛
⎝ 1∑

h j=0

e(Cj+
∑M

μ Wμ j ρ̂μ)h j

⎞
⎠, (14)

where we have implicitly added a (irrelevant) constant energy
shift in order to cancel the normalization constant. It is now
convenient to express this more compactly as follows:

Hrbm = B · ρ̂ +
Nh∑
j=1

K (2)
j

(
M∑
μ

Wμ j ρ̂μ

)
, (15)

1For instance Nf = 2 for neutrons due to the 2 possible spin pro-
jections.
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where in the last line we have defined, similarly to [50], the
cumulant generating function

K (2)
j (t ) = ln

(
1∑

h=0

e(Cj+t )h

)
= ln(1 + eCj+t ), (16)

where the superscript (2) indicates this definition is relevant to
binary hidden units only (we will generalize this in Sec. II C).
By performing a Taylor expansion we obtain

K (2)
j

(
M∑

μ=1

Wμ j ρ̂μ

)
=

∞∑
n=1

κ
(2)
jn

n!

(
M∑

μ=1

Wμ j ρ̂μ

)n

=
∞∑

n=1

κ
(2)
jn

n!

∑
k1+···+kM=n

(
n

k1, . . . , kM

)

×
M∏

μ=1

(Wμ j ρ̂μ)kμ, (17)

where in the second line we used the multinomial expansion
and we defined the (binary) cumulants κ (2)

n as

κ
(2)
jn = dn

dtn
K (2)

j (t )

∣∣∣∣
t=0

. (18)

The key observation now is noticing that, due to idempotency
of the density operators, we have ρ̂n

μ = ρ̂μ ∀n > 0. The effec-
tive interaction coupling strengths of all the interaction terms
are then given by the appropriate sums of cumulants, and can
be in principle controlled by appropriately choosing the RBM
parameters B, C, and W . In [50] the authors derived explicit
expressions for up to 3-body interactions in this way.

In this work we use instead a different approach which
allows a simpler determination of the induced coupling
strengths in the visible layer by solving a linear system of
equations obtained by working explicitly in the eigenbasis of
the density operators. As we will see more explicitly in the
next section, this approach is similar to the one used by Hirsch
to find his discrete decomposition for the Hubbard interaction
[31].

In the next two sections we describe in some detail our
approach for the special cases of 2- and 3-body interactions
and explain in Appendix A how to construct the mapping for
the general case. We comment on possible extension to non-
idempotent operators in Appendix C but, as we commented in
the introduction, this extension is not strictly needed.

A. Two-body interactions

To set the stage we consider now the familiar case of a two-
body contact interaction, and show how this can be generated
by coupling a single binary auxiliary variable (hidden unit)
h ∈ {0, 1} to a pair of density operators (the visible units) as
schematically depicted in Fig. 2. In this case the free energy
of the RBM can be written as

F (2)
rbm(ρ̂1, ρ̂2, h) = Ch + h

2∑
μ=1

Wμρ̂μ, (19)

where we neglected possible biases B = (B1, B2) on the
visible layer since they only contribute to the one-body inter-

=

FIG. 2. Two-body interaction from the RBM mapping.

action. If needed, these biases can be used to further control
the interactions generated by Eq. (19). The induced Hamilto-
nian in the visible layer takes the form

H (2)
rbm(ρ̂1, ρ̂2) = − ln

( ∑
h=0,1

e−F (2)
rbm(ρ̂1,ρ̂2,h)

)

= A(2)ρ̂1ρ̂2 + A(1)
1 ρ̂1 + A(1)

2 ρ̂2, (20)

where a direct computation (see also Appendix A 1 for addi-
tional details) leads to the relations

A(1)
μ = − ln

(
e−(C+Wμ ) + 1

e−C + 1

)
,

A(2) = − ln

(
e−(C+∑2

μ=1 Wμ) + 1

e−C + 1

)
−

2∑
μ=1

A(1)
μ , (21)

between the 3 parameters of the RBM and the 3 coupling
constants of the interactions in Eq. (20). These equations
can then inverted to determine the RBM parameters needed
to produce the wanted two-body term; further details on these
derivations are provided in Appendix A 1.

We note at this point that the discrete Hubbard-
Stratonovich transformations from Hirsch [31] are special
cases of Eq. (21) for a particular choice of RBM parameters.
For instance, the transformation useful for repulsive inter-
actions (i.e., A(2) > 0) was obtained in [31] by coupling a
classical spin σ = ±1 to the spin density ρ̂sp = ρ̂↑ − ρ̂↓; the
resulting partition function is

Zsp = 1

2

∑
σ=±

exp (2aσ ρ̂sp) = cosh (2aρ̂sp) (22)

where the coupling constant a is given by

tanh(a)2 = tanh

(
A(2)

4

)
, (23)

and Zsp contains additional one-body terms correspond-
ing to A(1)

1 = A(1)
2 = −A(2)/2. Using the RBM model of

Eq. (19) a similar transformation, with different additional
one-body terms A(1)

1 − 2a = A(1)
2 + 2a = −A(2)/2, can be ob-

tained choosing C = 0 and W1 = −W2 = 4a.
Note that there is a continuous set of RBM parameters

which will lead to the same two-body coupling A(2) and dif-
ferent induced one-body terms in Eq. (21). These possibly
unwanted one-body contributions to the visible layer Hamil-
tonian can then be removed by adding the appropriate bias
terms B in Eq. (19).

Before moving on to the results for the case of three-body
forces, we want to show how the RBM mapping is not lim-
ited to contact interactions but can be immediately applied
to situations where the operators associated with the visible
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layer are either different idempotent operators (for instance
projection operators) or, equivalently, involutive operators for
which Ô2 = 1. To the latter class belong for instance the
Pauli operators (and more generally any element of the Pauli
group formed by arbitrary tensor products of Pauli matrices)
which are routinely used to model the spin-isospin structure
of nuclear interactions. For instance, consider the case of the
following repulsive interaction acting on a pair of spins

U (�σ1 · �σ2) = U
3∑

d=1

σd ⊗ σd . (24)

The propagator associated with it can now be written using 3
binary auxiliary variables,

e−Uαt (�σ1·�σ2 ) = e−3Uαt

8

3∏
d=1

1∑
hd =0

ea(2hd −1)(σd ⊗1−1⊗σd ). (25)

In the expression above αt is the imaginary-time step size used
in the calculation, 1 is the identity matrix, and a is given by
Eq. (23) with A(2) = 4Uαt .

As we have seen, the complete generality of the mapping
Eq. (19) allows its application to simplify a large number of
pair-interacting many-body theories.

B. Three-body interactions

The presence of three-body contact interactions is of fun-
damental importance in low energy effective theories of
nuclear physics and some bosonic cold gases in order to
avoid the Thomas collapse of finite clusters [51] and ensure
renormalizability of the Hamiltonian [37,52,53]. Due to the
inability to use the standard Hubbard-Stratonovich or Hirsch’s
transformations, the inclusion of these 3-body contact inter-
actions in auxiliary field calculations is not straightforward.
Here we will briefly review the approach used in lattice effec-
tive field theory (EFT) calculations [35] as a relevant example.
In order to integrate out the fermionic degrees of freedom and
carry out the auxiliary field calculation one needs to decouple
the interacting part of the partition function

Zint = exp

(
−Uαt

2

∑
a,b

ρ̂aρ̂b − V αt

6

∑
a,b,c

ρ̂aρ̂bρ̂c

)
, (26)

which contains both a two-body and a three-body interaction,
in terms of one-body fermionic operators only. Similarly to
the previous section, αt is the size of the imaginary-time step.

The strategy proposed in [54] is to represent Zint using a
single continuous auxiliary field

Zint =
∫ ∞

−∞
dhP(h) exp

(
h

∑
a

ρ̂a

)
, (27)

for an appropriately chosen probability distribution function
P(h) of the auxiliary field. In [54] it was shown how one can
use the solution of the truncated Hamburger moment problem
to find the wanted distribution. In order for this representation
to exist one needs the interaction couplings in Eq. (26) to
satisfy

V 2 < −2αtU
3, (28)

=

FIG. 3. Three-body interaction from the RBM mapping.

which then prevents this from working for repulsive two-body
couplings U � 0. In the more common case of an attractive
two-body interaction, this mapping can be exploited only
for a weak enough three-body coupling V and large enough
imaginary-time step αt . Notably, for other classes of QMC
methods based on auxiliary fields such as auxiliary field
diffusion Monte Carlo (AFDMC; see, e.g., [28]) this is not
possible in general due to the inability to introduce explicitly
an energy cutoff as is done in a lattice formulation. We note in
passing that an alternative auxiliary field representation of the
partition function of Eq. (26) can be obtained using the DBM
mapping introduced in [49]. Also in this case the mapping can
be performed only for weak enough three-body interaction,
|V | < −3U , and attractive two-body coupling, U < 0.

Thanks to the flexibility of the RBM mapping scheme we
can instead treat the two- and three-body interactions sep-
arately using different hidden variables. In the rest of this
section we focus then directly on a mapping that reduces the
three-body term by using a single binary unit coupled to three
density operators as depicted in Fig. 3. The resulting free
energy of the RBM is similar to Eq. (19) and reads

F (3)
rbm(ρ̂1, ρ̂2, ρ̂3, h) = Ch + h

3∑
μ=1

Wμρ̂μ, (29)

while the target Hamiltonian can be written as

H (3)
rbm(ρ̂) = A(3)ρ̂1ρ̂2ρ̂3 +

3∑
μ<ν

A(2)
μν ρ̂μρ̂ν +

3∑
μ=1

A(1)
μ ρ̂μ. (30)

Since we are only interested in producing a target three-body
term A(3) while removing the unwanted interactions using
lower order mappings, it is convenient to simplify this to

H (3)
rbm(ρ̂) = A(3)ρ̂1ρ̂2ρ̂3 + A(2)

3∑
μ<ν

ρ̂μρ̂ν + A(1)
3∑

μ=1

ρ̂μ, (31)

with mode-independent one- and two-body couplings. In the
same way we set Wμ = W in Eq. (29). As we did for the two-
body interactions above, a direct calculation leads to the fol-
lowing relations between the physical couplings and the RBM
parameters (see also Appendix A for the general case):

A(1) = − ln

(
e−(C+W ) + 1

e−C + 1

)
,

A(2) = − ln

(
e−(C+2W ) + 1

e−C + 1

)
− 2A(1),

A(3) = − ln

(
e−(C+3W ) + 1

e−C + 1

)
− 3A(2) − 3A(1). (32)

013302-5



ERMAL RRAPAJ AND ALESSANDRO ROGGERO PHYSICAL REVIEW E 103, 013302 (2021)

As before, in order to find the needed RBM parameters these
relations need to be inverted and, depending on the sign of the
physical three-body coupling, one needs to make appropriate
choices for the range of the RBM parameters. For instance,
if we are interested in an attractive interaction, A(3) < 0, we
can set C = −2W , while in the case of a repulsive interaction,
A(3) > 0, we can take C = −W . In both cases we obtain
the same magnitude for the three-body coupling, |A(3)| =
ln[cosh4(W

2 )sech(W )].
The two-body interaction A(2) can be removed by ex-

pressing it in terms of additional auxiliary variables using
the identities in Eq. (21). Note that with this technique no
constraint like Eq. (28) needs to be imposed on the value
of the physical couplings. More details on these derivations,
and their extension to the case of categorical hidden units, are
provided in Appendix A 1.

We now turn to the discussion of categorical variables and
provide a justification for their use in practical applications.

C. Categorical hidden variables

We proceed now to generalize the RBM mappings derived
above for hidden binary variables to the more general case
of categorical hidden variables which take values on a larger
range {0, 1, 2, . . . ,K − 1}. From the form of the general
RBM free energy Eq. (13) we can expect that the effect of
increasing the magnitude of the hidden variable, controlled by
K, is to correspondingly increase the energy term proportional
to C and W . This, in turn, will increase the magnitude of
the induced physical coupling at fixed RBM parameters. We
expect this property to be useful for instance in the sampling
process as it allows for smaller energy gaps when updating
the hidden layer. Another instance when this could possibly
be useful is to minimize the systematic error introduced by
Trotter like decompositions of the imaginary-time propagator
(see, e.g., [28]) but we leave a more detailed exploration of
these possibilities to future work.

The modified expression for the induced one- and two-
body coupling when coupling a pair of visible units with a
single categorical hidden variable, corresponding to the gen-
eralization of Eq. (21), can be compactly written as

A(1)
μ = − ln

(
e−K(C+Wμ ) − 1

e−(C+Wμ ) − 1

)
+ ln

(
e−KC − 1

e−C − 1

)
, (33)

for the one-body term, while for the two-body we have

A(2)
K = − ln

(
e−K(C+∑2

μ=1 Wμ) − 1

e−(C+∑2
μ=1 Wμ) − 1

)

+ ln

(
e−KC − 1

e−C − 1

)
−

2∑
μ=1

A(1)
μ . (34)

Note that whenever the argument of the exponentials in
Eq. (33) and Eq. (34) becomes 0, one needs to take the limit
continuously. To show the effect of increasing the range of the
hidden variable on the induced coupling constant, we plot in
Fig. 4 the magnitude of the two-body coupling as a function
of K for two one-parameter families of RBMs:

FIG. 4. Two-body coupling as a function of K. The dashed line
corresponds to the lower bound in Eq. (37).

(i) for attractive interactions A(2)
K < 0 we take

W1 = W2 = −C = α2 > 0; (35)

(ii) for repulsive interactions A(2)
K > 0 we take

W1 = −W2 = α2 > 0, C = 0. (36)

Note that these choices were motivated only by the need
to obtain all possible two-body coupling by tuning a single
parameter α2 so that we could present the results compactly
in Fig. 4. This is therefore a completely general construction
and it is possible that similar results could be obtained by
performing different choices.

As the results show, the magnitude |A(2)
K | increases almost

linearly with K for a fixed choice of the RBM parameter α2.
As an easier proxy to understand the expected behavior, and
especially the apparent asymptotically linear growth with K,
we also show in Fig. 4 the following lower bound,∣∣A(2)

K
∣∣ � (K − 1)α2 − 2 ln (K), (37)

valid for both parametrizations Eqs. (35) and (36). Indeed we
find the approximately linear increase with K together with a
mild logarithmic correction. A complete proof of this lower
bound, and the one for three-body interactions, is provided
Appendix B.

Next, we turn our attention to the more complicated case
of the three-body interaction induced by a single categorical
variable. The mapping between physical coupling constants
and RBM parameters remains the same as Eq. (33) at the one-
body level while the two- and three-body couplings become
(see also Appendix A 1 for a full derivation)

A(2)
μν = − ln

(
e−K(C+Wμ+Wν ) − 1

e−(C+Wμ+Wν ) − 1

)

+ ln

(
e−KC − 1

e−C − 1

)
− Aμ − Aν,

A(3)
K = − ln

(
e−K(C+W1+W2+W3 ) − 1

e−(C+W1+W2+W3 ) − 1

)

+ ln

(
e−KC − 1

e−C − 1

)
−

3∑
μ=1

3∑
ν>μ

Aμν −
3∑

μ=1

Aμ, (38)

and similarly to above the induced physical coupling grows
approximately linearly with K. This is shown in Fig. 5 where
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FIG. 5. Three-body coupling as a function of K. The dashed line
corresponds to the lower bound in Eq. (39).

we plot both the actual magnitude |A(3)
K | and the lower bound∣∣A(3)

K
∣∣ � (K − 1)α3 − 3 ln (K) (39)

for two values of the RBM parameter, α3 = 1, 2. In the three
body case we have also chosen a simple one-parameter family
of RBMs given by the following choices:

(i) for attractive interactions A(3)
K < 0 we take

W1 = W2 = W3 = α3 > 0, C = −2α3; (40)

(ii) for repulsive interactions A(3)
K > 0 we take

W1 = W2 = W3 = α3 > 0, C = −α3. (41)

As for the case of the two-body term in Fig. 5, we see that
the lower bound is relatively tight. A complete derivation of
Eq. (39) is also provided in Appendix B.

Similarly to the results described in the previous two sec-
tions [see Eq. (25)], this more general construction can be
easily extended to many-body operators composed by invo-
lutive operators with minimal changes.

Before concluding this section, we want to also point out
that it is relatively straightforward to use the expansion of the
cumulant generating function to get the effective Hamiltonian
for the visible layer as proposed in [50] and explained in
detail at the beginning of Sec. II. Since this can be of more
general interest, we provide here the necessary generalization
to the cumulant generating function of Eq. (16) which for
categorical variables becomes

K (K)
j (t ) = ln

{K−1∑
h=1

exp [−h(Cj + t )]

}

= ln

{
1 − exp [−K(Cj + t )]

1 − exp [−(Cj + t )]

}
. (42)

After this change the polynomial expansion from Eq. (17)
remains essentially equivalent, with the only difference that
the value of the cumulants κ

(K)
jn will now need to be extracted

by taking appropriate derivatives of K (K)
j (t ).

III. MANY-BODY FORCE IMPLEMENTATION ON
QUANTUM ANNEALERS

Quantum annealing is an algorithm for finding approx-
imate solutions to nonconvex optimization problems using

a quantum generalization of classical simulated annealing
[55–57]. This approach has been applied in the past to hard
optimization problems ranging from computing Ramsey num-
bers [58] to finding low energy configurations of proteins [59].
Used as an analog simulator, a quantum annealer was also
recently used to study phase transitions in lattice models [60].

The underlying idea of quantum annealing based optimiza-
tion is to first encode the solution of the problem at hand
in the ground state of a k-local Hamiltonian acting on spins.
This Hamiltonian is then simulated by a physical system that
is cooled down to reach a low energy state which provides
a good approximate solution to the optimization problem. In
order to decrease the time required to find a solution of this
approach, the physical system is initialized as the ground state
of an auxiliary Hamiltonian HA and then adiabatically evolved
to the ground state of the problem Hamiltonian HP. If this
is done slowly enough to avoid nonadiabatic transitions, the
final state will be the ground state of HP corresponding to
the optimal solution [61]. In some situations fast nonadiabatic
transitions can also be used to accelerate the convergence to a
close approximation to the final ground state [62,63].

Here we will focus more specifically on the class of quan-
tum annealers that uses a tunable transverse field Ising model
to implement this idea. An example of this is the device
manufactured by D-Wave Systems [64]. The time-dependent
spin Hamiltonian is given by

H(τ ) = Bx(τ )HA + Bz(τ )HP,

HA = −
∑

i

σ x
i ,

HP =
∑

i j

Ji jσ
z
i σ z

j +
∑

i

hiσ
z
i , (43)

where σ x,z
i are Pauli matrices that operate on spin or qubit i.

Note that the optimization problem is encoded in the diagonal
Hamiltonian HP by tuning appropriately both the pairwise
couplings Ji j as well as the on-site fields hi. The auxiliary
Hamiltonian HA is chosen for two reasons: its ground state
is a complete superposition of all the basis states and it is
easy to prepare by applying a physical transverse field. The
time evolution is then performed by modifying the applied
magnetic fields Bx and Bz starting from Bx(0) � Bz(0) and
evolving to Bx(1) � Bz(1). Here τ = t/ta, where t is the
physical time and ta is the annealing time: the time that it
takes to perform the transition from the Hamiltonian HA into
the problem Hamiltonian HP.

Due to the presence of two-body spin coupling in HP, this
system can be employed to approximately solve quadratic
unconstrained binary optimization (QUBO) problems. The
goal of this section is to show how the RBM mapping we
derived in this work can be used to increase the representa-
tion power of the problem Hamiltonian HP by implementing
higher-order diagonal interactions using some of the available
qubits as auxiliary spins in the hidden layer. This process of
reducing many-body interactions to two-body terms has been
extensively explored in the past (see, e.g., [65–67] and [68]
for a recent summary). Known mappings are limited in their
application to specific signs of the many-body coupling, for
instance only interactions with positive cubic terms are known
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FIG. 6. Cell of Chimera graph in D-Wave systems.

to embed into the Chimera topology without using additional
auxiliary qubits for the embedding [68]. Here we show that
our RBM construction can be applied at the same cost for
cubic terms of both signs. The technique can also be easily
extended to higher-body interactions.

For illustration purposes, we will consider a simple ex-
tension to the QUBO model to contain also cubic terms
implemented as effective couplings among three spins. In
particular consider the following cost function,

E = a
3∑
i

qi + b
3∑

i< j

qiq j + c q1q2q3, (44)

with only 3 binary variables qi. This can be converted into a
generalized classical Ising model by introducing the spin vari-
ables si = 2qi − 1, and then mapped to a diagonal quantum
Hamiltonian acting on physical spins (si → σ z

i ):

H = A
3∑
i

σ z
i + B

3∑
i< j

σ z
i σ z

j + Cσ z
1σ z

2σ z
3 ,

A = 2(a + b − c), B = 4(b − c), C = 8c. (45)

Using the notation from Ref. [68], this Hamiltonian corre-
sponds to the K4 gadget.

Due to hardware restrictions the topology of the interac-
tions between qubits is restricted to only a finite set. In this
exploratory work we consider the Chimera graph [69] found
on D-Wave devices; the scheme can however be generalized to
different topologies. In the Chimera graph topology, all qubits
in one partition are linked to the qubits in the other partition
but not among themselves as shown in Fig. 6.

Given the coupling map in Fig. 6, we can implement the
K4 gadget using 4 ancilla qubits:

(i) qubits 1, 2, 3 represent the logical qubits;
(ii) qubit 4 mediates the pair interaction between (1,3);
(iii) qubit 5 mediates the pair interaction between (2,3);
(iv) qubit 6 mediates the pair interaction between (1,2);
(v) qubit 7 mediates the cubic interaction.
This is also depicted in Fig. 7. The full Hamiltonian takes

the following form,

HP =W1

3∑
i=1

σ z
i − sgn(C)W3σ

z
7

+ |W2|
[
σ z

1 + sgn(A3)σ z
2

]
σ z

4

+ |W2|
[
σ z

2 + sgn(A3)σ z
3

]
σ z

5

σz
1

σz
2

σz
3

σz
4

σz
5

σz
6

σz
7

0

FIG. 7. Three-body interactions implemented on the Chimera
topology.

+ |W2|
[
σ z

1 + sgn(A2)σ z
2

]
σ z

6

+ W3

3∑
i=1

σ z
i σ z

7 , (46)

where the first line represents on-site energy shifts, the sec-
ond through fourth represent the pair interactions induced by
qubits 4–6, and the last one contains the pair interactions with
qubit 7 responsible for the three-body term. The coupling
terms can then be obtained using the RBM mapping described
above (see also Appendix A). In practice we first compute the
coefficient W3 from the relation

|C| = 1
8 ln[cosh4(2W3)sech(4W3)], (47)

and the other parameters can then be found using

A2 = sgn(C)

4
ln[cosh(4W3)] − 2B,

W2 = sgn(A2)

2
ln[cosh(A2)],

W1 = − sgn(C)

8
ln[cosh(4W3)] − A. (48)

This mapping was derived from Eqs. (A9) and (A14) by
replacing 0 with −1. If we trace out the auxiliary qubits
belonging to the hidden layer we recover the effective Hamil-
tonian Eq. (45). Furthermore, one could reduce the ancilla
requirement even further by using a single ancilla to embed
direct pair interactions between qubit 1 and qubits 2 and 3
while using a single ancilla to represent the missing two-body
term between qubit 2 and qubit 3 (qubit 5 in the mapping
above). This would have the same qubit overhead as the best
method from Ref. [68] while requiring only one ferromagnetic
coupling for the embedding.

Note that the RBM identities are valid for any direct prod-
uct of Pauli matrices σ x,y,z as we discussed in the introduction.
This means that extensions like the one presented here for the
simple Hamiltonian Eq. (43) can be generalized to the inter-
esting situation where non-stoquastic physical interactions are
available.

In practical applications an effective temperature Teff is
usually introduced to properly describe the generated statis-
tical distribution [70,71]. Since the effective Hamiltonian is
obtained by tracing over the global partition function includ-
ing the auxiliary spins, one will need to estimate Teff first
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(see, e.g., [72]) in order to appropriately tune the RBM pa-
rameters. We leave the exploration of these issues for future
work.

Before concluding we note that the RBM mapping derived
in this paper can also be used to show the equivalence between
various gadgets presented in Ref. [68]. For instance, it is sim-
ple to use the RBM mapping to show that the gadget K6 − e is
equivalent, upon appropriate rescaling of the interactions, to
the simpler gadget K5.

IV. ON TRAINING THE RBM FOR PHYSICAL SYSTEMS

In this final section we turn our attention to machine learn-
ing, specifically on training neural architectures for physical
systems with many-body interactions. The relative entropy
is commonly used in the literature as an objective function
which measures the discrepancy between the target data distri-
bution and the approximation given by the neural architecture;
the smaller the discrepancy, the smaller its value. For energy
based models like the RBM, the probability of the model
depends on the accurate evaluation of the partition function
in Eq. (1), which is intractable as it requires all possible
data samples. The inability to have a reliable estimate of the
relative entropy makes it impossible to get its gradients with
respect to the RBM parameters. These gradients are needed
to update the parameters toward optimal values. In practice,
approximate gradients are obtained through contrastive di-
vergence (CD) [73]. This procedure was employed in [50]
to learn the Ising model from samples generated with the
Swendsen-Wang algorithm. However, CD might not always
be a good approximation [74,75] and the lack of a point
estimator for an objective function makes it harder to assess
whether training has converged. In addition, in many cases of
interest, Monte Carlo sampling can be highly autocorrelated,
so we might not be able to find algorithms that provide sam-
ples which reliably represent the physical distribution.

In this section we provide several suggestions for how to
improve training. We can use our knowledge of the original
Hamiltonian to design a network with only a small number
of parameters, independent of system size. As a first step,
borrowing from the results presented in previous sections,
we construct a sparse RBM whose architecture is based on
the interaction order in the physical Hamiltonian. For each
interaction in the physical system there is a corresponding
auxiliary variable. This architecture is compared to an RBM
with the number of auxiliary variables equal to the number
of visible variables with all-to-all connection between the two
layers.

We then devise an objective function that does not depend
on the partition function and is inspired by Monte Carlo ac-
ceptance and rejection method. As we demonstrate through
experiments, this objective function makes training much
easier as it makes use of our understanding of the physical
system. Furthermore, since it can be easily evaluated during
training, this objective function can serve as an indicator for
convergence.

Lastly, we explore the scenario when we cannot rely on
Monte Carlo samples collected for training and show that
learning is still possible.

TABLE I. Numerical values of the physical couplings for the
Ising model of Eq. (50).

Coupling Numerical Value

�X 0.017857
�T 2.01273

As an illustration, we consider a classical anisotropic 2D
Ising model in the eigenbasis of σ z|s〉 = s|s〉,

Z2D =N exp

(
LX∑
i=1

LT∑
j=1

�X si, j si+1, j + �T si, j si, j+1

)
. (49)

This partition function approximates the 1D Ising model with
a transverse field through Trotter expansion [76],

H1D = −J
∑

i

σ z
i σ z

i+1 − B
∑

i

σ x
i ,

�X = β

LT
J, �T = 1

2
ln

[
coth

(
β

LT
B

)]
. (50)

The Hamiltonian of this system is a simpler version of
Eq. (43). LX is the length of the Ising chain, and LT is the
number of Trotter steps and is the second dimension in the
classical model. From Appendix A 1 we can derive the map-
ping between the physical couplings �X,T and the respective
RBM parameters.

To verify the RBM learning procedure we compare the
relative error in reproducing these couplings, δ� = |�−�RBM

�
|.

The results from [50] show that CD training can have a good
performance for the Ising model, but this is not guaranteed in
more complicated settings.

Following the procedure outlined in [50], we generate
data of 105 samples with LX = LT = 28 and J = B = 2β = 1
through local Monte Carlo sampling and train in batches of
500 samples with a learning rate of 0.001 using CD with 10
Gibbs updates. The values of the physical couplings are given
in Table I. To make sure there is little autocorrelation in the
data, we collected a sample every 103 Monte Carlo updates.

In Fig. 8 we plot both the average error in energy per
configuration and the obtained couplings as function of

FIG. 8. Training by CD of fully connected (solid lines) and
sparse (dashed lines) RBM; the average energy difference in black,
and relative errors in couplings �X,T . For the fully connected RBM
we also show the average values for spurious couplings denoted
by �̃.
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FIG. 9. Training by minimizing the difference in energy of fully
connected (solid lines) and sparse (dashed lines) RBM; the average
energy difference in black, and relative errors in couplings �X,T .
For the fully connected RBM we also show the average values for
spurious couplings denoted by �̃.

training epochs. One epoch consists of batch training the
entire data once. As Fig. 8 shows, while the error in the
couplings decreases with training, it is about two orders of
magnitude lower for the sparse RBM. In addition, while in
the Ising model there are only interactions among neighboring
spins, the fully connected RBM includes couplings between
spins that are distant and which should decrease to 0 when
the training converges. These are denoted by �̃ in Fig. 8
and are set to 0 by default for the sparse RBM which has
auxiliary variables coupled only to neighboring spins. While
the architecture choice greatly helped the training process, we
still need to find an objective function we can easily compute
and optimize for.

Having access to the probability (up to an overall norm) of
a given configuration S for the physical Hamiltonian allows us
to cast the optimization process as supervised learning by con-
sidering this probability as a label to be learned by the neural
architecture. In [11] the authors train the RBM by minimizing
the difference in free energies, which is the difference between
the Hamiltonian of the physical system and the RBM Hamil-
tonian for the visible layer,

∑
S |H (S ) − HRBM(S )|. Due to

the similarity in functional form between the two, for the
system studied in [11] the authors were able to engineer the
one-body coupling for the visible layer by directly matching to
the physical system and the other parameters were optimized
by minimizing the objective function. As an overall constant
shift in the energy has no impact on the physics, the authors
added a constant to the energies of the physical system to
make them non-negative. In general, one is not able to perform
a direct matching like in [11], so we opted to implement the
same objective function and training procedure, but we do
not engineer any RBM parameter. We trained the RBM using
various constant energy shifts and the results displayed here
are the best ones obtained, for which no energy shift was used.

The training in Fig. 9 is faster than CD training in Fig. 8
as the average energy difference decreases rapidly until it
reaches a steady value. In addition, spurious interactions �̃X,T

decrease rapidly as well. However, the errors in the couplings
�X,T do not decrease to 0. To improve convergence using this
objective function, one would need to also optimize for the
constant energy difference, either through grid search through
all possible values or by other means. We recall that the con-

FIG. 10. Training by minimizing the relative importance of fully
connected (solid lines) and sparse (dashed lines) RBM; the average
energy difference in black, and relative errors in couplings �X,T .
For the fully connected RBM we also show the average values for
spurious couplings denoted by �̃.

stant energy difference is related to an overall normalization
factor in the RBM which can be computed exactly only by
summing the probabilities of all configurations. In our experi-
ment there are many of them, 2LX ×LT � 10236, and systems of
physical interest are typically much larger.

To remove any dependence on the normalization factors,
we introduce an objective function which we call relative
importance,

α(P, PRBM) =
∑
SεπS

∑
S ′επS′

∣∣∣∣ln
(

P(S ′)PRBM(S )

PRBM(S ′)P(S )

)∣∣∣∣
=

∑
SεπS

∑
S ′επS′

|�H (S,S ′) − �HRBM(S,S ′)|,

(51)

where �H (S,S ′) = H (S ) − H (S ′) is the difference in en-
ergy between two configurations. We sample S,S ′ from two
separate uniform distributions πS �= πS ′ defined over disjoint
subsets of the training data set �,

�S ∪ �S′ = �, �S ∩ �S′ = ∅. (52)

If the two distributions were equal, the objective function
would be identically 0, so they must be chosen to be different.
In our experimental setup, for simplicity, we pick a random
batch in the beginning of the training to be the support of πS ′

and the rest of the data is reserved for πS . The ratio inside the
logarithmic function is the Metropolis-Hastings acceptance
rate to apply the Monte Carlo update from S to S′ using the
RBM distribution to sample the new configuration [11]. In
Fig. 10 we plot the error in relative importance and errors in
couplings during training. Similarly to the previous training
experiments, the sparse RBM produces much smaller errors
than the fully connected RBM. In addition, the training for
the sparse RBM is quite rapid and unlike the free energy
difference, the relative importance error decreases rapidly to
0 (numerically almost 0) at the same time as the errors in the
coupling decrease to 0. By combining a sparse RBM with our
new objective function we have obtained complete learning
and done so rather quickly in the number of training epochs.

To compare how the 3 optimization methods perform, in
Fig. 11 we plot the relative error in the physical couplings
for the sparse RBM for each of them. In all cases we have
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FIG. 11. Relative errors in couplings �X,T for the sparse RBM
for each of the 3 optimization methods discussed in this section.

employed the same batch size and learning rate. Relative
importance training converges quickly to the exact values
while the two other methods either fail to converge or require
training for many more epochs.

We conclude this section with a consideration on the data
used for training, which is usually assumed to represent the
physical distribution one is trying to learn. However, Monte
Carlo sampling used to generate the data might suffer from
autocorrelation which invalidates this assumption. In [50]
this was circumvented by employing the the Swendsen-Wang
cluster algorithm. In our case we had to run very long lo-
cal Monte Carlo chains and discard more than 99% of the
samples. In cases of practical interest, one might not have
any clustering algorithm available and running long Monte
Carlo chains to be discarded afterwards is computationally
expensive. Since in our calculations we can evaluate the target
distribution for any configuration S (up to some normalization
factor), the role of the training set is redundant when using the
relative importance as objective function. In fact, we can even
take the sampling distributions πS and πS′ that define the rel-
ative importance to be uniform over the whole configuration
space instead of just the training set �. As a proof of concept,
we perform the optimization by uniformly sampling the full
configuration space with πS′ having a smaller support than πS .
In Fig. 12 we plot the error in relative importance for a sparse
RBM by uniform sampling the configuration space. The inset
displays the objective function and Gaussian fit (N e−ax2

) for
training from the data collected with local Monte Carlo up-

FIG. 12. Training by minimizing the relative importance of the
sparse RBM; the average energy difference in black, and relative
errors in couplings �X,T .

dates and from uniform sampling.2 As the figure shows, this
procedure works quite well and the results are very similar
(almost identical) to those obtained by the the sparse RBM
with preprocessed data displayed in Fig. 10. The Hamiltonian
studied in this section is rather simple and mainly serves as
an illustration since we can derive an exact RBM mapping
of the physical couplings. In complicated settings where such
mapping might not be feasible, the RBM can still be a useful
approximation and the respective parameters can be obtained
by the optimization procedure outlined here.

V. CONCLUSION

Computational methods based on neural networks have
seen many successes in computer vision and natural language
processing in recent years. In this work we used a particu-
larly simple architecture, the restricted Boltzmann machine,
as a tool to represent the partition function of fermionic sys-
tems with many-body interactions in terms of noninteracting
fermions coupled to an external auxiliary field. This gener-
alized Hubbard-Stratonovich transformation is obtained by
introducing a hybrid quantum-classical RBM model where
the visible layer is composed by quantum operators while the
hidden layer represents the (classical) auxiliary fields.

Due to their importance in effective field theories in nuclear
physics, we focus most of our discussion in Sec. II to contact
interactions among fermions like Eq. (5) but also discuss in
detail how this can be generalized to any interaction of the
form Eq. (4) (see, e.g., the discussion at the end of Sec. II A).

In order to provide support to the implementation of the
RBM-based scheme we propose here, we provide details of
the construction for the most common situation of two- and
three-body interactions in Secs. II A and II B, respectively (see
also Appendix A for the general case).

Thanks to the generality of the scheme, we expect the iden-
tities we have obtained here to prove useful in applications to
quantum Monte Carlo simulations based on auxiliary fields
like lattice-EFT and AFDMC.

An interesting application of these ideas is in finding ef-
ficient mappings of optimization problems into the native
Hamiltonian of a quantum annealer as we discuss in Sec. III.
Since the mapping is at the level of partition functions, robust
techniques to extract the effective temperature will need to be
used in this case.

In situations where exact representations cannot be used,
we hope the optimization procedure outlined in Sec. IV could
be helpful in finding useful approximations.
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APPENDIX A: MAPPING BETWEEN THE RBM
AND MANY-BODY INTERACTIONS

In this Appendix we provide further details on the ap-
proach we followed in producing the RBM representations
for specific many-body interactions. Due to the fact that our
visible layer is composed of operators, and therefore the RBM
mapping is at the level of the quantum partition function,
it is useful to fix a basis to work with. After the mapping
is established for every element of the complete basis, we
are guaranteed that it will work on any superposition state
living in the same Hilbert space. A convenient basis to carry
out the calculations is, not surprisingly, the eigenbasis of the
operators that define the visible layer. For fermionic density
operators, which are the main focus of this work, this is the
Fock, or occupation number, basis for which

ρ̂k|ρ〉 = ρk|ρ〉, ρk = 0, 1. (A1)

Here the number of possible orbitals, elements in the real
vector ρ, is M as in the main text. As we have discussed in
Sec. II of the main text it is easy to see that, upon tracing out
the hidden layer of the RBM, the induced Hamiltonian in the
visible layer,

Hrbm(ρ̂) = − ln {Trh exp [−FRBM(ρ̂, h)]}, (A2)

contains all possible terms up to the maximum M-body in-
teraction. This can be shown for instance using the cumulant
generating function. Here we will rewrite Hrbm(ρ̂) in a form
which will simplify further manipulations. If we denote by

C(M, k) the set of k combinations from the set of orbital
indices I = {1, . . . , M}, we can express the Hamiltonian as

HA
rbm(ρ̂) =

M∑
μ=1

∑
P∈C(M,μ)

A(μ)
P

∏
ν∈P

ρ̂ν, (A3)

which makes evident the presence of 2M − 1 coupling terms.
Note that we removed an irrelevant constant energy shift from
Eq. (A3) since it only affects the overall normalization of the
partition function.

We can also express the right hand side of Eq. (A2) ex-
plicitly in terms of the RBM parameters; for a single hidden
variable we find

HB
rbm(ρ̂) = − ln

(K−1∑
h=0

eh(C+∑M
μ=1 Wμρ̂μ)

)
, (A4)

where we set the visible biases B to 0 as it is easy to rein-
troduce them if need be. As discussed at the beginning of
this section, we will now match these two energy functionals
HA

rbm and HB
rbm on the states that span the fermionic Fock

space. This allows us to replace the vector of operators ρ̂

with a vector of eigenvalues ρ. Furthermore, if we want the
RBM to represent the physical system exactly, the two energy
functionals can only differ by a constant. In order to take this
possible difference into account, we introduce the shift A(0) in
Eq. (A3) and fix its value by performing the matching in the
vacuum state |0〉. This immediately yields

A(0) = − ln

[K−1∑
h=0

exp (hC)

]
. (A5)

The matching condition becomes now

M∑
μ=1

∑
P∈C(M,μ)

A(μ)
P

∏
ν∈P

ρν = − ln

{∑K−1
h=0 exp

[
h
(
C + ∑M

μ=1 Wμρμ

)]
∑K

h=0 exp (hC)

}
, (A6)

where for simplicity we have subtracted the constant term A(0)

on both sides. For practical purposes we can use this compact
relation to construct a simple linear system for the unknown
induced couplings A(μ)

P using the remaining 2M − 1 basis
states (note that for the applications discussed in the main text
M is usually not large) and considering the right hand side
as fixed for a given choice of RBM parameters. If we want a
specific value for the some induced coupling we can then use
the solution to this simple linear system (which is guaranteed
to be nonsingular) together with a root-finding algorithm to
determine a possible solution for the RBM parameters that
satisfy the constrain. This is the procedure we used throughout
our work.

In the next subsection we show in more detail this pro-
cedure for the physically relevant cases of the two and three
body forces we mention in the main text. This procedure can
be repeated for higher many-body forces, and at each step,
we can represent the lower-order couplings in term of RBM
parameters from the identities already found for them.

Similar relations can be obtained when the visible layer
is composed by (for instance) spin operators by ensuring
that the matching condition is enacted for every state in the
corresponding eigenbasis. For Pauli matrices this will lead to
the change ρi → σi = ±1.

1. Derivation of RBM mapping for two- and
three-body interactions

Having set up the system of linear equations that allows
one to solve for the many-body couplings in the previous
section, we proceed to derive the identities presented in the
main text for the two- and three-body interactions in a way
that makes easy the generalization to arbitrary categorical
hidden variable h = {0, . . . ,K − 1}.

We start by denoting by Z2 the general partition function
with one- and two-body interactions,

Z2 = exp
(− A(2)ρ1ρ2 − A(1)

1 ρ1 − A(1)
2 ρ2

)
. (A7)
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We can express the equation that maps the physical system to
an RBM with free energy given by Eq. (19) as

Z (2)
rbm = N2

K−1∑
h=0

e−h(W1ρ1+W2ρ2+C), (A8)

where N2 is an overall normalization factor. As discussed
above, the matching condition Eq. (A6) can be converted to
a system of linear equations. The result is

⎛
⎝0 0 1

0 1 0
1 1 1

⎞
⎠

⎛
⎝A(2)

A(1)
1

A(1)
2

⎞
⎠ =

⎛
⎝L(2)(0, 1)

L(2)(1, 0)
L(2)(1, 1)

⎞
⎠, (A9)

where the entries of the right hand side vector are

L(2)(ρ1, ρ2) = − ln

[K−1∑
h=0

exp

(
−hC − h

2∑
μ

Wμρμ

)]

+ ln

[K−1∑
h=0

exp (−hC)

]
.

By solving this linear system we can find that the general
expression for the one-body term

A(1)
μ = − ln

{∑K−1
h=0 exp [−h(C + Wμ)]∑K−1

h=0 exp (−hC)

}
, (A10)

and the two-body coupling is obtained as

A(2) = L(2)(1, 1) − L(2)(1, 0) − L(2)(0, 1)

= − ln

{∑K−1
h=0 exp [−h(C + W1 + W2)]∑K−1

h=0 exp(−hC)

}

− A(1)
1 − A(1)

2 . (A11)

Note that the three parameters (W1,W2,C) define a hypersur-
face of equivalent RBMs corresponding to the same two-body
coupling and different one-body counterterms.

We now turn to the more involved three-body case, as we
will see the structure of the mapping between physical and
RBM coupling follows a similar pattern to the two-body case.
Let us first introduce, in analogy to Eq. (A7), the three-body
partition function

Z3 = e−A(3)ρ1ρ2ρ3−
∑

μ<ν A(2)
μνρμρν−

∑
μ A(1)

μ ρμ . (A12)

The relation between physical and RBM parameters for the
three-body case is now given by

Z3 = Z (3)
rbm = N3

K−1∑
h=0

e−h(W1ρ1+W2ρ2+W3ρ3+C), (A13)

with N3 an overall normalization factor. As before we can
convert this to a system of linear equations,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 1 0 1 1
0 0 0 0 1 0 0
0 0 1 0 1 0 1
0 1 0 0 1 1 0
1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A(3)

A(2)
12

A(2)
13

A(2)
23

A(1)
1

A(1)
2

A(1)
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

L(3)(0, 0, 1)
L(3)(0, 1, 0)
L(3)(0, 1, 1)
L(3)(1, 0, 0)
L(3)(1, 0, 1)
L(3)(1, 1, 0)
L(3)(1, 1, 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(A14)
where, similarly to before, we have defined

L(3)(ρ1, ρ2, ρ3) = − ln

[K−1∑
h=0

exp

(
−hC − h

3∑
μ=1

Wμρμ

)]

− ln

[K−1∑
h=0

exp (−hC)

]
.

The solution for the one-body couplings is the same as
Eq. (A10), while the two-body term is generalized to

A(2)
μν = − ln

{∑K−1
h=0 exp [−h(C + Wμ + Wν )]∑K−1

h=0 exp (−hC)

}

− A(1)
μ − A(1)

ν . (A15)

We can now move to the solution for three-body term which
reads

A(3) = − ln

{∑K−1
h=0 exp

[− h
(
C + ∑3

μ=1 Wμ

)]
∑K−1

h=0 exp (−hC)

}

−
∑
μ<ν

A(2)
μν −

∑
μ

A(1)
μ , (A16)

and, again, the four parameters (W1,W2,W3,C) define a hy-
persurface of equivalent RBMs. Note that the sums that appear
in the definition of the physical couplings can be summed
directly using standard relations for geometric progressions
as we did for the two-body case in Eqs. (34) and (38) of the
main text. We will make use of this in the next section.

APPENDIX B: DERIVATION OF THE BOUNDS FOR
GENERAL CATEGORICAL HIDDEN UNITS

In this section we provide the proof for the two lower
bounds Eq. (37) and Eq. (39) presented in the main text to
explain the rate of growth of the induced couplings with the
maximal value K that defines the range of the categorical
auxiliary variable h ∈ {0, . . . ,K − 1}.

Given the fact that for a given target value of the physical
couplings like A(2)

K and A(3)
K there is a continuous space of

solutions for the RBM parameters, in this section we will
restrict the discussion to just a one-parameter subspace for
convenience. For the two-body case we choose the RBM
parameters (W1,W2.C) according to the following:

(i) for attractive interactions A(2)
K < 0 we take

W1 = W2 = −C = α2 > 0; (B1)
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(ii) for repulsive interactions A(2)
K > 0 we take

W1 = −W2 = α2 > 0, C = 0. (B2)

For the three-body case,
(iii) for attractive interactions A(3)

K < 0 we take

W1 = W2 = W3 = α3 > 0, C = −2α3; (B3)

(iv) for repulsive interactions A(3)
K > 0 we take

W1 = W2 = W3 = α3 > 0, C = −α3. (B4)

Note that, as we mention in the main text, these parametriza-
tion choices do not have any particularly useful property other
than being able to generate the desired couplings with the
adjustment of a single real parameter α. Depending on the
particular application one is interested in, different choices
might be closer to optimal but this will need to be assessed
on a case-by-case basis.

Using the general expressions found in the previous sec-
tion, Eqs. (A10) and (A11), together with the choice of
parametrization for attractive interactions Eq. (B1), we find
that the induced one-body couplings are all equal to

A(1)
K = − ln(K) + ln

[
1 − exp (Kα2)

1 − exp (α2)

]
, (B5)

while we find for the two-body term

A(2)
K = (K − 1)α2 + 2 ln (K) − 2 ln

(
1 − eKα2

1 − eα2

)

� −(K − 1)α2 + 2 ln (K), (B6)

where we used the fact that for α2 > 0 we have

ln

(
1 − eKα2

1 − eα2

)
� (K − 1)α2. (B7)

In the case of a repulsive interaction, the parametrization
Eq. (B2) leads to the following one-body terms

A(1)
1 = − ln

[
exp (−Kα2) − 1

exp (−α2) − 1

]
+ ln(K),

A(1)
2 = − ln

[
exp (Kα2) − 1

exp (α2) − 1

]
+ ln(K)

= A(1)
1 − (K − 1)α2. (B8)

For the induced two-body coupling, we first note that the first
term in Eq. (A11) vanishes when taking the parametrization

Eq. (B2). The final result reads

A(2)
K = −A(1)

1 − A(1)
2 = −2A(1)

2 − (K − 1)α2

= (1 − K)α2 − 2 ln (K) + 2 ln

(
1 − eKα2

1 − eα2

)

� (K − 1)α2 − 2 ln (K). (B9)

These results can then be summarized in a single lower bound
for the magnitude of the two-body coupling,∣∣A(2)

K
∣∣ � (K − 1)α2 − 2 ln (K). (B10)

As we mention in the main text, Eq. (B10) shows that we have
an almost linear dependence of the magnitude of the two-body
coupling on the maximal value of the auxiliary variable.

Next, we turn our attention to the three-body coupling.
Using the parametrization for the attractive case Eq. (B3) we
find the one-body terms are all equal to

A(1)
K = − ln

[
1 − eKα3

1 − eα3

]
+ ln

[
1 − e2Kα3

1 − e2α3

]

= ln

[
1 + exp (Kα3)

1 + exp (Kα3)

]
, (B11)

and similarly for the two-body terms we find

A(2)
K = − ln(K) + ln

(
1 − e2Kα3

1 − e2α3

)
− 2A(1)

K , (B12)

for all pair interactions. The final result for the induced three-
body term in the attractive case is then

A(3)
K = 3 ln (K) + (K − 1)α3

− 3 ln

(
1 − eKα3

1 − eα3

)
+ ln

(
1 + eKα3

1 + eα3

)
. (B13)

Moving now to the repulsive case, the parametrization
Eq. (B4) implies that the one- and two-body couplings are
the same as what we found for the attractive two-body case
in Eq. (B5) and Eq. (B6) but with α2 replaced with α3. The
three-body interaction is instead given by

A(3)
K = − 3 ln (K) − (K − 1)α3

+ 3 ln

(
1 − eKα3

1 − eα3

)
− ln

(
1 + eKα3

1 + eα3

)
, (B14)

and together with the result for the attractive case we have∣∣A(3)
K

∣∣ = − 3 ln (K) − (K − 1)α3

+ 3 ln

(
1 − eKα3

1 − eα3

)
− ln

(
1 + eKα3

1 + eα3

)

� (K − 1)α3 − 3 ln(K). (B15)

To obtain the lower bound, we used the fact that

ln

(
1 − eKα3

1 − eα3

)
− ln

(
1 + eKα3

1 + eα3

)
� 0, (B16)

together with the inequality Eq. (B7). This concludes the proof
for the bounds referenced in the main text.
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APPENDIX C: GENERAL QUANTUM OPERATORS
IN THE VISIBLE LAYER

The RBM network structure in our work is a hybrid
quantum-classical architecture with quantum operators in the
visible layer and classical categorical variables in the hidden
layer. Up to now our main focus has been the fermionic
density operator ρ̂, and we have also provided an example for
Pauli matrices in Eq. (25). In the first case, the RBM mapping
was made possible due to the idempotency of the operator,
ρ̂2 = ρ̂, and in the second case the Pauli matrix is involutory,
σ 2 = I . These properties are special cases of operators with
generalized idempotency

ÔR = Ô, (C1)

for some integer R > 1 (for Pauli matrices R = 3). Due to
Eq. (C1), the highest exponent present in the Taylor series
expansion of the cumulant generating function in Eq. (17) is
bounded above, kμ � R − 1, effectively truncating the order
of operator products that can be generated by the RBM. Note
that for more general operators not satisfying the idempotency
condition of Eq. (C1), the induced operators may not have
any particularly useful structure to be exploited to match to
some target partition function. However, this is not a problem
since, as already mentioned in the main text, any operator on
a finite Hilbert space can be represented by direct products
of Pauli matrices. The general idempotency described here,
while not necessary, could be useful if present in a given
Hamiltonian.
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