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Perfectly matched layer (PML) boundary conditions are constructed for the Dirac equation and general
electromagnetic potentials. A PML extension is performed for the partial differential equation and two versions
of a staggered-grid single-cone finite-difference scheme. For the latter, PML auxiliary functions are computed
either within a Crank-Nicholson scheme or one derived from the formal continuum solution in integral form.
Stability conditions are found to be more stringent than for the original scheme. Spectral properties under
spatially uniform PML confirm damping of any out-propagating wave contributions. Numerical tests deal with
static and time-dependent electromagnetic textures in the boundary regions for parameters characteristic for
topological insulator surfaces. When compared to the alternative imaginary-potential method, PML offers vastly
improved wave absorption owing to a more efficient suppression of back-reflection. Remarkably, this holds for
time-dependent textures as well, making PML a useful approach for transient transport simulations of Dirac
fermion systems.
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I. INTRODUCTION

The Dirac equation is a partial differential equation (PDE)
which captures the relativistic quantum dynamics of (single)
spin-1/2 particles [1,2]. It is an integral part of the standard
model of particle physics and finds application in atomic,
molecular, condensed matter, and astrophysics alike [3–5]. In
solid-state physics, the Dirac equation in (2+1)D (one time
and two space dimensions) provides an effective model for
the low-energy metallic surface excitations of graphene and
topological insulators [6,7].

Although there exist analytic solutions to the Dirac equa-
tion in electromagnetic fields, in most applications the
solution must be sought numerically [8]. This makes the
development of efficient and spectrally accurate numerical
approaches desirable. The present efforts have been triggered
by the discovery of topological insulator surface states and
their potential for structural design [6,7]. Our aim is the de-
velopment of an efficient computational framework for the
description of Dirac fermion dynamics on the surface of topo-
logical insulators. We have recently developed single-cone
finite-difference schemes (FDS) for the numerical treatment
of the time-dependent Dirac equation [9]. They are explicit,
second-order accurate and, via an identified conserved func-
tional, allow an analytic analysis of stability. The underlying
multicomponent leap-frog scheme yields single-cone lattice
schemes. In other words, there is no fermion doubling on
the grid. For details we refer the reader to earlier work
[9,10]. Since this FDS does not lead to any spurious (counter-
propagating) doublers, perfectly-matched layers PMLs for the
FDS can be inferred from the continuum Dirac equation. This
has been demonstrated by Pinaud in recent work [11]. Indeed,
the construction of absorbing, transparent, or open bound-
ary conditions (BCs) is an essential part of any numerical

treatment of open quantum systems, such as quantum
transport or particle-scattering simulations. A review and
comparison of BCs for quantum wave equations can be found
in the literature [12]. Recently, this PML formulation has been
joined with a pseudospectral method for the computation of
the time-dependent Dirac equation [13,14].

The skeleton FDS has recently been extended to incorpo-
rate general electromagnetic textures [15]. The latter have a
profound influence on the electronic structure and transport
properties of TI surfaces [6,7]. The aim of this work is the
construction of PML boundary conditions in presence of elec-
tromagnetic texture in the boundary layers. Several variants of
a PML extension of the single-cone FDS will be discussed.

The paper is organised as follows. In Sec. II PML is
formulated for the Dirac equation with general electromag-
netic potentials in the absorbing layers. PML-induced spectral
modifications are explored. In Sec. III these results are used
to construct PML schemes for the single-cone FDS of the
Dirac equation. Several second-order accurate methods for
the computation of the arising PML auxiliary functions are
discussed. In Sec. III B we present a PML extension for
a FDS where the scalar potential term is added directly,
whereas the vector potential is introduced via a Peierls-
Schwinger phase factor. In Sec. III C PML is constructed
for a gauge-invariant FDS where the entire electromagnetic
potential is introduced by Schwinger substitution. Spectral
differences arising from these two formulations are discussed
in Sec. IV A. Furthermore, stability conditions of the PML
extended FDSs are derived in Sec. IV. Numerical exam-
ples and a comparison to the imaginary-potential method
(IPM) are given in Sec. V. Sections V A–V C deal with
time-independent textures. Time-dependent textures are stud-
ied in Sec. V D. Summary and Conclusions are given in
Sec. VI.
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II. PML FOR THE CONTINUUM DIRAC EQUATION (PDE)

Aiming at simulations of Dirac fermion transport on topological insulator (TI) surfaces, under open BCs, we develop PML for
the (2+1)D Dirac equation in the TI representation. Thereby the efficiency of PML for FDS in more than one space dimensions
will be exposed. An extension to the (3+1)D form, e.g., for a simulation of relativistic electrons, is straight–forward.

The free-particle Dirac equation in Schrödinger form for the two-component spinor ψ = (u, v) reads

ih̄∂t

(
u(x, y, t )
v(x, y, t )

)
=

(
m c h̄

i (∂y + i∂x )
c h̄

i (∂y − i∂x ) −m

)(
u(x, y, t )
v(x, y, t )

)
. (1)

m represents the mass term (with the speed of light co absorbed in m � 0). c > 0 denotes the phase velocity, with c = co for
relativistic electrons [1].

An electromagnetic potential may be introduced via the Schwinger phase factor [16]. The U (1) Schwinger substitution for
the spinor ψ is defined as follows [9,10,16]:

ψ (x, y, t ) → ψ̃ (x, y, t ) = exp{ia(x, y, t )}ψ (x, y, t ). (2)

The real-valued phase a(x, y, t ) is defined as the line integral of the 3-vector potential (A,�) along (s, so) in 3-vector
(Minkowski) space. Here, sx = x, sy = y, so = ct .

a(x, y, t ) = 1

h̄co

∫ (x,y,ct )

(xo,yo,cto)

[
ds′ · eA(s′, s′

o/c) + co

c
ds′

oV (s′, s′
o/c)

]
. (3)

Here q = −e for the electron charge, and we set V = −e�. The Dirac PDE in presence of electromagnetic potentials takes the
form

ih̄∂t

[
u(x, y, t )
v(x, y, t )

]
=

{
V (x, y, t ) + m(x, y, t ) c[�̂y(x, y, t ) + i�̂x(x, y, t )]

c[�̂y(x, y, t ) − i�̂x(x, y, t )] V (x, y, t ) − m(x, y, t )

}[
u(x, y, t )
v(x, y, t )

]
. (4)

�̂ j = h̄/i∂ j + e/coA j (x, y, t ), j = x, y are the components of the kinetic momentum operator in the real-space representation.
Note that the path-dependent local phase factor exp{ia(x, y, t )} was removed after partial derivatives of the spinor components
were performed.

The formulation of PML is founded upon plane-wave solutions to Eq. (4) with a normal incidence on the simulation boundary.
Position is continued into the complex plane so that all out-propagating wave contributions are damped [11,17]. The correct sign
of the imaginary part may be determined by the ratio between group velocity and k-vector along the direction of incidence [18].
For constant electromagnetic potentials the energy dispersion is

E = h̄ω = ±[c2�(k)2 + m2]1/2 + V, �(k) = h̄k + e

co
A, (5)

with the group velocity given by

v(�x,�y) = c2�(k)

h̄ω − V
. (6)

Following a general formulation, the PML substitution for propagation along x reads [18]

�x(k)x → �x(k)

(
x + iγ (x)

vx(�x,�y)

�x

)
= �x(k)

(
x + iγ (x)

c2

h̄ω − V

)
, γ (x) � 0. (7)

Thereby the sign of the group velocity determines the complex x-coordinate extension into either the upper or lower complex
half-plane so that all out-propagating wave contributions are damped.

The PML transform for the PDE is best determined in two steps: first consider zero electromagnetic potentials, then perform
the Schwinger substitution. We shall use the notation x j = x, y for, respectively, j = x, y [9,15]. Setting x′

j = x j + iγ j (x j ) c2

h̄ω
the

(pseudo)differential form of the PML substitution is

∂x → ∂x′ = 1

1 + σ x (x)
∂t

∂x = ∂x − D̂x, D̂x = σ x(x)

∂t + σ x(x)
∂x (8)

and

∂y → ∂y′ = 1

1 + σ y (y)
∂t

∂y = ∂y − D̂y, D̂y = σ y(y)

∂t + σ y(y)
∂y. (9)

The PML damping functions σ j (x) ≡ c2dγ j (x j )/dx j (� 0) are zero in the interior domain of the computation region and grow
along x j when approaching the computation boundary [19]. This essentially is the substitution proposed by Pinaud [11].
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It is useful to introduce

Dj (x, y, t ) ≡ D̂ j

(
v(x, y, t )
u(x, y, t )

)
, Dj (x, y, 0) =

(
0
0

)
, j = x, y. (10)

Note the order of the spinor components. Under Schwinger substitution Dj (x, y, t ) is transformed into D̃ j (x, y, t ) =
e−ia(x,y,t )D̂ j (x, y, t )(eia(x,y,t )ψ ), where the factor e−ia(x,y,t ) arises from the subtraction of the local phase, as in Eq. (4). Moving the
Schwinger factor eia to the left, D̃ j may be recast

D̃ j = e−iaD̂ jψ̃ = e−ia σ j (x j )

∂t + σ j (x j )
∂x j (e

iaψ ) = σ j (x j )

∂t + iV/h̄ + σ j (x j )

(
∂x j + ie

h̄co
A j

)
ψ. (11)

Introducing

V x
I (x) = −ih̄σ x(x), V y

I (y) = −ih̄σ y(y), (12)

one obtains

[ih̄∂t − V − V x
I (x)]D̃x = − i

h̄
V x

I (x)�̂x

(
v

u

)
, (13)

[ih̄∂t − V − V y
I (y)]D̃y = − i

h̄
V y

I (y)�̂y

(
v

u

)
. (14)

For the FDS below, it will be convenient to start from(
∂t + i

V j
I (x j )

h̄

)
(eiaD̃ j ) = i

V j
I (x j )

h̄
∂x j (e

iaψ ), Dj (0) = 0. (15)

In summary, the PML transformed PDE for the entire computation domain reads

ih̄∂t

[
u(x, y, t )
v(x, y, t )

]
=

{
V (x, y, t ) + m(x, y, t ) c[�̂y(x, y, t ) + i�̂x(x, y, t )]

c[�̂y(x, y, t ) − i�̂x(x, y, t )] V (x, y, t ) − m(x, y, t )

}[
v(x, y, t )
u(x, y, t )

]

− c
h̄

i

[
0 D̃y(x, y, t ) + iD̃x(x, y, t )

D̃y(x, y, t ) − iD̃x(x, y, t ) 0

]
. (16)

The last matrix represents a dissipator. It destroys unitarity under time-evolution, as generated by the Hamiltonian of the original
Dirac Eq. (4) under suitable (e.g., zero or periodic) BCS. We note that subsystem quantum dynamics is nonunitary and non-
norm-preserving. Here it is the openness of the system, i.e., the fact that the particle may leave or enter the simulation region (the
subsystem), which brings about nonunitarity. PML overwrites zero or periodic BCs providing a proper subsystem dynamics.

The dissipator matrix elements may be computed from Eqs. (13) and (14). In integral form they read

D̃x(x, y, t ) = − 1

h̄2

∫ t

0
dτe

i
h̄ [V (x,y,τ )+V x

I (x)](τ−t )V x
I (x)�x(x, y, τ )

[
v(x, y, τ )
u(x, y, τ )

]
, (17)

D̃y(x, y, t ) = − 1

h̄2

∫ t

0
dτe

i
h̄ [V (x,y,τ )+V y

I (y)](τ−t )V y
I (y)�x(x, y, τ )

[
v(x, y, τ )
u(x, y, τ )

]
. (18)

It is instructive to explore the spectral properties of the
PML-extended PDE for constant coefficients m, V , A, and
σ j = Vo/h̄ � 0. Fourier transform of the PML modified PDE
gives the dispersion relation

(h̄ω − V )2 = (c�)2 1(
1 + i Vo

h̄ω−V

)2 + m2, (19)

leading to the fourth-order polynomial in z = h̄ω − V,

z4 + 2iVoz3 − (
V 2

o + (c�)2 + m2
)
z2 − 2im2Voz + m2V 2

o = 0.

(20)
One observes several symmetries: (z,Vo) → (z∗,−Vo) and
(z,Vo → −z,−Vo) leave the polynomial invariant. Thus
particle-hole symmetry is preserved. To study how the time-
evolution of a wave packet is modified under PML we choose
� to be real-valued. For m = 0, uniform PML amounts to the
substitution V → (V − iVo), which is just the IPM for con-
stant Vo � 0. For m �= 0 momentum-dependent modifications

arise. For small �, the solutions up to order (c�)2 are

z1,2 ≈ ±m ± (c�)2[1 − (Vo/m)2]

2m[1 + (Vo/m)2]2
− iVo

(c�)2

m2[1 + (Vo/m)2]2

(21)
and

z3,4 ≈ ± c|�|
1 + (m/Vo)2

− iVo

{
1 − (c�)2

m2[1 + (Vo/m)2]2

}
. (22)

For Vo → 0 z1,2 approaches the nonrelativistic limit of a mas-
sive particle, whereas z3,4 approaches zero. Note the sign
dependence of the real part of the kinetic energy on Vo/m
in Eq. (21), as well as the linear dispersion in Eq. (22). The
imaginary part of z1,2 and z3,4 has the proper (negative) sign
needed for exponential damping under time evolution. Imag-
inary parts of Eqs. (21) and (22) add up to −Vo. The latter
holds for all k space. Increasing Vo beyond m the real parts
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FIG. 1. Energy dispersion for the PDE under uniform PML for m = 0.02 eV and �{h̄ω − V } � 0, Vo = 0.015 eV: (a) real part, (b) imagi-
nary part; Vo = 0.15 eV: (c) real part, (d) imaginary part.

of z1 and z3 and, respectively, z2 and z4 merge. A numerical
example for z2 and z4 is given in Fig. 1 for m = 0.02eV and
Vo = 0.015 eV, as well as Vo = 0.15 eV. Shown is the lower
half-cone (negative energy sector) only. It is seen that, for
small k and increasing Vo, the original cone (z2) is increas-
ingly flattened, while its imaginary part is being reduced to
zero from below. Thus, in a PML layer where Vo gradually
increases from zero to positive values the wave packet will be
driven into states of complex energies suffering a combination
of damping and slowing down. This behavior will be found for
the FDS under PML as well.

III. PML FOR THE FINITE-DIFFERENCE SCHEME

In this section we shall apply the PML substitution to the
finite difference scheme (FDS) of Refs. [9,15]. As the sign of
the ratio vg/k is preserved between PDE and this FDS, one
may start from the PML extended PDEs derived in the previ-
ous chapter. We will consider two PML approaches: The first
is based on a FDS where the scalar potential is added to the
Hamiltonian explicitly, with the vector potential introduced
via a Schwinger substitution. The second approach is based on
the free-particle FDS with the entire electromagnetic potential
added by a Schwinger substitution. This method preserves
gauge invariance (GI) on the grid [15].

A. Notation

For the introduction of PML into the FDS of Hammer et al.
we adopt their short-hand notation [9]: any field f (x, y, t )

placed on grid point (t = jo
t , x = jx
x, y = jy
y) is de-
noted by f jo

jx jy
. Here, jν takes integer and half-integer values.

Furthermore, we shall denote the central grid point for an
equation by ( jo = jx = jy = 0) and relative right-/left shifts
(by one half of the respective grid spacing) by ±. The func-
tional

E jo
rx,ry

:= ‖ũ jo+1/2‖2 + ‖ṽ jo+1‖2

+ �[((ryδy − irxδx )ũ jo+1/2, ṽ jo+1)]
( = const = E0

rx,ry

)
(23)

is conserved under time propagation within the FDS,
periodic or zero boundary conditions, and real-valued
mass m and scalar potential V . Here we use rx =
c
t/
x and ry = c
t/
y. Spatial difference operators
are written as (δx f jo ) jx, jy = f jo

jx+1/2, jy
− f jo

jx−1/2, jy
and

(δy f jo ) jx, jy = f jo
jx, jy+1/2 − f jo

jx, jy−1/2. The inner product

(u jo, v j′o ) j′ := ∑
j u jo

j v
∗ j′o
j+ j′ = ∑

j u jo
j− j′v

∗ j′o
j is defined on

the grid on l2(Z2;C). j′ denotes a primitive displacement
vector connecting the spatial sub-lattice of u with that of v.
We use the notation ‖u jo‖2 := (u jo, u jo ), with the sum over
j running over all spatial grid points on time sheet jo. The
CFL stability condition for the scheme restricts time steps to

t � 
CFL

t = 
/(
√

2c),
 = 
x = 
y. For details we refer
to the literature [9,15,20].
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The Schwinger substitution for a spinor component ψ on the grid is defined as follows [9,10]:

ψ
jo
jx, jy

→ ψ̃
jo
jx, jy

= exp
{
ia jo

jx, jy

}
ψ

jo
jx, jy

, (24)

with the real-valued phase formally given by

a jo
jx, jy

= 1

h̄co

∫ (x,y,ct )

(xo,yo,cto)

[
ds · eA(s, so/c) + co

c
dsoV (s, so/c)

]∣∣∣∣
x=x j ,y=y jt=t j

. (25)

The FDS in presence of electromagnetic potentials is obtained by replacing u, v in the free-particle FDS by ũ jo
jx jy

=
eia jo

jx jy u jo
jx jy

, ṽ
jo
jx jy

= eia jo
jx jy v

jo
jx jy

. Subsequently, the arbitrary local phase is subtracted by multiplication by the phase factor

exp{−ia0
00} associated with the central grid position of the specific FDS equation. We define the relative phases φ±

00 =
a±

00 − a0
00, φ

0
±0 = a0

±0 − a0
00, φ

0
0± = a0

0± − a0
00.

B. V in H scheme—Introduction of A via Schwinger substitution

One starts with Eq. (16) with V in H and A = 0. Setting V = 0 in the phase factor one arrives at the explicit leap-frog scheme

u+
0,0 − u−

0,0 = 
t

2ih̄
(V + m)0

0,0(u+
0,0 + u−

0,0) − ry

(
eiφ0

0,+v0
0,+ − eiφ0

0,−v0
0,− − 1

2
(D̃y|+0,0 + D̃y|−0,0)

)

− irx

(
eiφ0

+,0v0
+,0 − eiφ0

−,0v0
−,0 − 1

2
(D̃x|+0,0 + D̃x|−0,0)

)
, (26)

followed by

v+
0,0 − v−

0,0 = 
t

2ih̄
(V − m)0

0,0(v+
0,0 + v−

0,0) − ry

(
eiφ0

0,+u0
0,+ − eiφ0

0,−u0
0,− − 1

2
(D̃y|+0,0 + D̃y|−0,0)

)

+ irx

(
eiφ0

+,0 u0
+,0 − eiφ0

−,0 u0
−,0 − 1

2
(D̃x|+0,0 + D̃x|−0,0)

)
. (27)

The grid values D̃x|00,0 and D̃y|00,0 needed in Eqs. (26) and (27) must yet be defined. In the spirit of the underlying leap-frog
scheme for the mass and potential term, we apply the time-symmetric average

D̃x|00,0 ≡ 1
2 (D̃x|+0,0 + D̃x|−0,0), D̃y|00,0 = 1

2 (D̃y|+0,0 + D̃y|−0,0). (28)

The PML terms Dx| jo
jx, jy

and Dy| jo
jx, jy

, respectively, may be computed based on the PDEs (13) and (14). This approach leads
one to

D̃x|+0,0 − D̃x|−0,0 = 
t

2ih̄

(
V + V x

I

)0

00(D̃x|+0,0 + D̃x|−0,0) + iV x
I 
t

h̄

∣∣∣∣
0

00

(
eiφ0

+,0 uv0
+,0 − eiφ0

−,0 uv0
−,0

)
(29)

and

D̃y|+0,0 − D̃y|−0,0 = 
t

2ih̄

(
V + V y

I

)0

00(D̃y|+0,0 + D̃y|−0,0) + iV y
I 
t

h̄

∣∣∣∣
0

00

(
eiφ0

0,+uv0
0,+ − eiφ0

0,−uv0
0,−

)
. (30)

Here, uv
jo
jx, jy

denotes u jo
jx, jy

for a u-grid position, and v
jo
jx, jy

for a v-grid position. Note that V enters Eqs. (29) and (30) via

v j (k) = c2 h̄k j

h̄ω−V in the PML substitution Eq. (7). For future reference, we term this FDS the VinHCN scheme.
Alternatively, starting from Eqs. (17) and (18) and using the approximation∫ 
t /2

−
t /2
f t

jx jy dt = 
t f 0
jx jy + O

(

3

t

)
, (31)

one obtains the scheme

D̃x|+0,0 = e−i 
t
h̄ (V +V x

I )0
00 D̃x|−0,0 + (

1 − e−i 
t
h̄ (V +V x

I )0
00
) V x

I

V + V x
I

∣∣∣∣
0

00

(
eiφ0

+,0 uv0
+,0 − eiφ0

−,0 uv0
−,0

)
(32)

and

D̃y|+0,0 = e−i 
t
h̄ (V +V y

I )0
00 D̃y|−0,0 + (

1 − e−i 
t
h̄ (V +V y

I )0
00
) V y

I

V + V y
I

∣∣∣∣
0

00

(
eiφ0

0,+uv0
0,+ − eiφ0

0,−uv0
0,−

)
. (33)

In the end, both versions are O(
2
t ) accurate via Eq. (31). We term the latter the VinHEXP scheme.
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Pinaud apparently proposed a slightly different O(
2
t ) accurate scheme [11]. Studying the case of zero electromagnetic

potentials, he defines Dx|00,0 and Dy|00,0 via a time-asymmetric (retarded) time average:

Dx|00,0 ≈ e−σ00
t Dx|−−
0,0 + (1 − e−σ00
t ) 1

2

(
uv0

+,0 − uv0
−,0 + uv−−

+,0 − uv−−
−,0+

)
, (34)

Dy|00,0 ≈ e−σ00
t Dy|−−
0,0 + (1 − e−σ00
t ) 1

2

(
uv0

0,+ − uv0
0,− + uv−−

0,+ − uv−−
0,−

)
. (35)

where −− denotes the relative time shift by −c
t . This scheme computes the spatial derivatives as a time average at time −,
i.e., the respective initial time for Eqs. (26) and (27), using∫ 0

−
t

f t
jx jy dt = 
t

2

(
f 0

jx jy + f −−
jx jy

) + O
(

3

t

)
. (36)

C. GI schemes—Introduction of V and A via Schwinger substitution

Setting the electromagnetic potentials V and A equal to zero in Eq. (16) and putting them into the Schwinger phase factor
one obtains

eiφ+
0,0 u+

0,0 − eiφ−
0,0 u−

0,0 = 
t

2ih̄
m

∣∣∣∣
0

0,0

(eiφ+
0,0 u+

0,0 + eiφ−
0,0 u−

0,0) − ry

(
eiφ0

0,+v0
0,+ − eiφ0

0,−v0
0,− − 1

2
(D̃y|+0,0 + D̃y|−0,0)

)

− irx

(
eiφ0

+,0v0
+,0 − eiφ0

−,0v0
−,0 − 1

2
(D̃x|+0,0 + D̃x|−0,0)

)
, (37)

followed by

eiφ+
0,0v+

0,0 − eiφ−
0,0v−

0,0 = − 
t

2ih̄
m

∣∣∣∣
0

0,0

(eiφ+
0,0v+

0,0 + eiφ−
0,0v−

0,0) − ry

(
eiφ0

0,+u0
0,+ − eiφ0

0,−u0
0,− − 1

2
(D̃y|+0,0 + D̃y|−0,0)

)

+ irx

(
eiφ0

+,0 u0
+,0 − eiφ0

−,0 u0
−,0 − 1

2
(D̃x|+0,0 + D̃x|−0,0)

)
. (38)

The PML functions may be computed from a discretisation of Eq. (15),

eiφ+
0,0 D̃x|+0,0 − eiφ−

0,0 D̃x|−0,0 = 
t

2ih̄
V x

I

∣∣∣∣
0

00

(eiφ+
0,0 D̃x|+0,0 + eiφ−

0,0 D̃x|−0,0) + iV x
I 
t

h̄

∣∣∣∣
0

00

(
eiφ0

+,0 uv0
+,0 − eiφ0

−,0 uv0
−,0

)
, (39)

and

eiφ+
0,0 D̃y|+0,0 − eiφ−

0,0 D̃y|−0,0 = 
t

2ih̄
V y

I

∣∣∣∣
0

00

(eiφ+
0,0 D̃y|+0,0 + eiφ−

0,0 D̃y|−0,0) + iV y
I 
t

h̄

∣∣∣∣
0

00

(
eiφ0

0,+uv0
0,+ − eiφ0

0,−uv0
0,−

)
, (40)

or the integral equation leading to Eqs. (32) with V moved
into the phase factors. For future reference, we term these two
versions the GICN, respectively, GIEXP scheme.

IV. SPECTRAL PROPERTIES UNDER CONSTANT
ELECTROMAGNETIC POTENTIALS

A. Introduction of the scalar potential

First we investigate how the introduction of the scalar
potential influences the spectral properties. Putting the term

tV (uv+

00 + uv−
00)/(2ih̄) into the FDS, as in Eqs. (26) and

(27), preserves all the stability and convergence features of
the scheme. However, it does not provide a strictly GI intro-
duction of V into the FDS. In particular, adding a constant
scalar potential modifies the energy dispersion and thus the
group velocity. This can be seen from the energy dispersion
obtained via Fourier analysis from the FDS with the V term
(A = 0) in place. For A �= 0 but constant one simply has to

replace h̄k by �. One finds

h̄ω = ± 2h̄


t
arcsin[B ±

√
B2 − C]1/2, (41)

B = XY + 2Z2

Y 2 + 4Z2
, C = X 2

Y 2 + 4Z2
,

X = +M2 − Z2, Y = 1 + M2 − Z2, (42)

K2
o = (rx )2 sin2

{

xkx

2

}
+ (ry)2 sin2

{

yky

2

}
,

M = m
t

2h̄
, Z = V 
t

2h̄
. (43)

The four solutions for V �= 0 correspond to V and −V and can
be associated with one or the other by inspection of the sign
of

[X − Y sin2(αω )]

sin(αω ) cos(αω )

(
= V 
t

h̄

)
, αω = ω
t

2
. (44)
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FIG. 2. Energy dispersion E = h̄ω of the VinH scheme for V = 0.04 eV: (a) m = 0 eV; (b) m = 0.02 eV; energy difference to the GI
scheme, h̄ω|V =0 + V − h̄ω|V , for (c) m = 0 eV, (d) m = 0.02 eV.

For V = 0, B2 − C = 0 and one ends up with the single-cone
solution (one pair of solutions)

h̄ω = ± 2h̄


t
arcsin

[
K2

o + M2

1 + M2

]1/2

. (45)

There is no fermion doubling. However, h̄ω|V �= h̄ω|V =0 + V .
When introducing V via the substitution ψ (t ) →

ψ̃ = exp{iV t/h̄}ψ (t ), the variation ψ±
00 = exp{∓iω
t/2}ψ0

00
transforms into ψ̃±

00 = exp{±i(V/h̄ − ω)
t )/2}ψ0
00. Like-

wise, the introduction of Ax and Ay leads to a shift of,
respectively, kx and ky. The spectral properties of the FDS
Eqs. (37) and (38) under periodic or zero boundary conditions
for Dx = Dy = 0, V, Ax, and Ay constan are obtained from
the V = Ax = Ay = 0 case, Eq. (45), by the substitution ω →
ω − V/h̄, kx → �x, ky → �y. As a result, the single-cone is

shifted rigidly along ω, respectively, kx and/or ky, as required
under gauge invariance. In particular, the group velocity of
this scheme is GI.

For a numerical comparison of the dispersion relation
obtained from the two approaches, we consider a rectangu-
lar domain Lx × Ly and Nx × Ny grid points for storing the
spinor components uv

jt
jx, jy

at given time jt = jo − 1/2, jo.
Note that two adjacent time sheets are needed within the
leap-frog scheme. We set Lx = Ly = 1nm, Nx = Ny = 400,
c = 6.2 × 105 m/s. Figures 2(a) and 2(b) give the single-cone
energy dispersion h̄ω(V ) from Eq. (41) for V = 0.04 eV and
m = 0 eV and, respectively, m = 0.02 eV. Here k is measured
in units of π/
, 
 = 
x = 
y. We use the maximum time
step under CFL, i.e., c
t = 
/

√
2. While reduced in absolute

number, the sign of the ratio vg(k)/k in the FDS is preserved
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when compared to the exact ratio from the PDE. Just at the
four k-points (±π/
, 0) and (0,±π/
) vg approaches zero.
Figures 2(c) and 2(d) give the energy difference h̄ω|V =0 +
V − h̄ω|V between the upper bands. The maximum difference
occurs at the diagonal corners of the zone boundary and is
about 10 percent of V , with the GI scheme giving a slightly
better approximation to the PDE dispersion (larger values for
both h̄ω and vg). For PML these differences are insignificant
in that the sign of vg remains unchanged. Both schemes can
be subjected to the PML substitution derived from the PDE.

B. Spectral properties of the PML augmented schemes

First we explore the spectral changes to the FDS intro-
duced by the PML substitution, setting γ j (x j ) = σx j, x j =
x, y, with σ = iVI/h̄ � 0, V , and A constant. Thus, the PML
substitution Eq. (7) reads

�x(k)x → �x(k)

[
1 + iσ

vx(�x,�y)

�x

]
x

= �x(k)

(
1 + iσ

c2

h̄ω − V

)
x, σ � 0. (46)

This allows two equivalent interpretations: (i) x is replaced
by x′ = (1 + iσ c2

h̄ω−V )x (PML substitution), or (ii) �x(k) →
�′

x(k) = �x(k)(1 + iσ c2

h̄ω−V ).
Within scheme Eqs. (28)–(30), the modifications to

Eq. (45) are obtained by the substitution

K2
o → K2 = K2

o

[
1 + σ
t cos(αω )

2i sin(αω ) − σ
t cos(αω )

]2

= K2
o

[
1

1 + iσ 
t
2 cot(αω )

]2

. (47)

For the PML scheme based on Eqs. (28), (32), and (33) it is

K2
o → K2 = K2

o

[
1 − (1 − e−σ
t ) cos(αω )

e−iαω − e−σ
t eiαω

]2

= K2
o

[
1

1 + i tanh (σ
t/2) cot (αω )

]2

. (48)

Both Eqs. (47) and (48) lead back to Eq. (19) in the limit

t → 0. We note that the time-averaging Eq. (36) adopted
by Pinaud too leads to Eq. (48).

We start with M = 0. Replacing K2
o by K2 in Eq. (45), one

obtains

sin(αω ) + iα cos(αω ) = ±Ko, (49)

with α = σ
t/2 and tanh(σ
t/2), respectively, for Eqs. (47)
and (48). This may be recast into

sin(αω + ib) = ±Ko
1√

1 − α2
,

b = arcCosh

(
1√

1 − α2

)
(50)

or

αω = ± arcsin

(
Ko

1√
1 − α2

)
− iarcCosh

(
1√

1 − α2

)
.

(51)

For the exponential scheme one obtains

αω = ± arcsin [Ko cosh (σ
t/2)] − iσ
t/2. (52)

Therefore,

r2
x + r2

y � 1 − α2, 0 � α < 1, (53)

ensures the negative imaginary part needed for exponential
damping under forward-in-time evolution and real-valued Ko.
For rx = ry = r, one obtains the condition

r � 1√
2

1√
1 + 1

2

(

σ
2c

)2
, (54)

using Eq. (47), and

r cosh

(

σ

2c
r

)
� 1√

2
, (55)

for Eq. (48). Owing to the structure of the argument on the
right-hand side of Eq. (45), the same conditions hold for M �=
0. They replace the CFL conditions for the underlying FDS.

Respecting the new CFL conditions, the PML-induced
spectral changes within the FDS are qualitatively similar to
the ones for the PDE discussed in Sec. II. A numerical ex-
ample for the deformation of the upper half of a Dirac cone
is shown in Fig. 3. We use M = 0.02 eV and Vo = 0.15 eV
and 600 × 600 grid points for an area of 900 × 900 nm.
Figures 3(a) and 3(b) show the PML-induced changes of the
cone relative to the FDS dispersion in absence of PML. The
time step which enters the dispersion is set to the maximum
value meeting condition Eq. (55). One observes a widening
of the cone for small k, but not nearly as pronounced as for
the PDE, and a steepening for large k. The imaginary part is
near constant at value Vo, except for small k where it tends
to zero from below. Figures 3(c) and 3(d) show the effects
on the spectrum when using 
t = 
CFL

t = 
/(
√

2c). At the
corners of the Brillouin zone the cone flattens, just as it does in
absence of PML when 
t exceeds 
CFL

t . The imaginary part
now approaches zero from below at these corners as well.

V. NUMERICAL TESTS

The level of performance of a PML scheme will be de-
termined by monitoring the time evolution of the functional
Eq. (23). Also shown will be the lattice trace which is com-
prised of the first two terms in E jo

rx,ry .
For a numerical simulation we need to select PML damp-

ing functions V x
I (x) and V y

I (y). We choose

V x
I (x) = iVo

[
1

1 + ex/W
+ 1

1 + e(Lx−x)/W

]
, 0 � x � Lx, (56)

and

V y
I (y) = iVo

[
1

1 + ey/W
+ 1

1 + e(Ly−y)/W

]
, 0 � y � Ly. (57)

Layer width W and damping potential Vo may be tuned for
optimal performance. We measure W in units of the uv grid
spacing 
/2.

The efficiency of the PML schemes is compared to the
one for the IPM. The latter consists in the substitution
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FIG. 3. Energy dispersion for the GIEXP scheme under uniform PML for m = 0.02 eV and �{h̄ω − V } � 0, Vo = 0.15 eV: PML-induced
energy difference for 
t from Eq. (55): (a) real part, (b) imaginary part; energy dispersion with PML and 
t = 
CFL

t : (c) real part, (d) imaginary
part.

V → V + VI in the FDS. Here, V denotes the physical scalar
potential energy, and VI is the imaginary potential contri-
bution. This simple method works quite well for the Dirac
equation and does not affect the original CFL condition. In
general, the sum VI (x, y) = V x

I (x) + V y
I (y) will serve for our

imaginary potential to compare with a PML simulation.

A. Uniform PML layer

In this section we compare the four schemes VinHEXP,
VinHCN, GIEXP, and GICN under uniform PML. We choose
a 600 × 600 grid for uv on a 1×1 nm sheet under uni-
form potentials V = 0.05 eV, Vo = 0.08 eV, respectively, Vo =
0.8 eV. A Dirac fermion of mass m = 0.02 eV starts in a
Gaussian-wave-packet state placed at the center of the simu-
lation region. It sets out with a kinetic energy of Ex = ch̄kx =
0.15 eV, ky = 0. The width of the wave packet is 50
. Simu-

lation time is 600
CFL
t = 2.28 × 10−12 s. The actual number

of time steps is 615 for Vo = 0.08 eV; for Vo = 0.8 eV it is
1120 and 1510, respectively, for the EXP and CN integration
schemes. Results for the GI schemes are shown in Fig. 4: blue
(solid) lines give the time evolution of functional Eq. (23), red
(dashed) lines give the lattice trace versus time. Figures 4(a)
and 4(b) give the results for scheme GIEXP for, respectively,
Vo = 0.08 eV and Vo = 0.8 eV. Figures 4(c) and 4(d) give the
results obtained within scheme GICN. Correspondingly, re-
sults from the simulations within the VinHEXP and VinHCN
scheme are given in Fig. 5. Note the logarithmic scale used
for the y axes. One observes a somewhat better performance
of the GIEXP scheme over the GICN scheme, in particular,
since the former allows the use of shorter time steps. This
holds for VinHEXP versus VinHCN as well. A comparison
between Figs. 4 and 5 shows that a GI scheme performs
slightly better than the corresponding VinH scheme. Damping
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FIG. 4. Time-evolution of the functional Eq. (23) (solid blue lines) and lattice trace (dashed red lines) under uniform PML: (a) scheme
GIEX for Vo = 0.08 eV, (b) scheme GIEX for Vo = 0.8 eV, (c) scheme GICN for Vo = 0.08 eV, and (d) scheme GICN for Vo = 0.8 eV. Note
the logarithmic scale along the y axis.

for Vo = 0.08 eV is stronger than for Vo = 0.8 eV. This is
counter-intuitive from the stand point of the IPM, however,
well in agreement with PML-induced spectral changes in form
of a flattening of the energy dispersion in the small-k region,
as seen in Figs. 3(a) and 3(b), and 1. Small to moderate Vo

leads to damping, moderate to large Vo leads to trapping. The
effective group velocity approaches zero. Stronger damping
is observed for higher k and/or zero mass m. In the case of
uniform VI , IPM outperforms PML. This changes in favour of
PML when absorbing boundary layers are considered.

B. Picture frame PML

Now we compare the four approaches using the damping
functions Eqs. (56) and (57). This corresponds to a picture

frame boundary region VI (x, y) = V x
I (x) + V y

I (y). We inves-
tigate results for W = 6(
/2) and Vo = 0.5 eV. The initial
wave packet is given a kinetic energy Ex = 0.015 eV, Ey =
0. It is heading toward the right boundary of the simula-
tion region. The simulation is carried out from time zero to
t = 1000
CFL

t . All other parameters are as in the previous
section. Our findings are collected in Fig. 6. Shown is the
log of functional Eq. (23) versus time step. One observes that
all four PML schemes lead to practically identical results,
however, the CN-based schemes accomplish the task within
1756 time steps to safely stay within stability limits, whereas
the two EXP-based schemes require merely 1500 time steps.
After less than 500 time steps the wave packet reaches the
right boundary of the simulation region and suffers absorption
and trapping, under virtually no back reflection. Decreasing
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FIG. 5. Time-evolution of the functional Eq. (23) (solid blue lines) and lattice trace (dashed red lines) under uniform PML: (a) scheme
VinHEX for Vo = 0.08 eV, (b) scheme VinHEX for Vo = 0.8 eV, (c) scheme VinHCN for Vo = 0.08 eV, and (d) scheme VinHCN for Vo =
0.8 eV. Note the logarithmic scale along the y axis.

FIG. 6. Comparison of PML scheme performance for free-
particle propagation (m = 0.02 eV) on a domain of constant scalar
potential V = 0.05 eV and picture frame PML Eqs. (56) and (57)
for W = 6(
/2), V = 0.05 eV, and Vo = 0.5 eV. Results within IPM
(red dot-dashed lines labeled Vim) are given for comparison.

values for Vo under periodic BCs eventually one observes
increasing transmission to the opposite side of the simulation
region.

For comparison we applied VI (x, y) within the IPM to
observe significantly reduced absorption in conjunction with
back-reflection. This can be seen in Fig. 6 where the two
dot-dashed lines give results within the latter method for
Vo = 0.5 eV and W = 6(
/2) and Vo = 1.6 eV and W =
8(
/2). Both cases lead to a single-impact suppression factor
of � 10−2. The pronounced nearly flat part between 400 and
800 time steps arises from reflected and transmitted wave
contributions traveling in the interior domain. Here, final time
is reached after 1000 time steps.

In summary, PML leads to significantly improved absorp-
tion behavior over the IPM, however, at the price of an
increased number of iterations. From the analysis of uni-
form layers in the previous chapter the reasons are readily
identified. Pure damping within the IPM is independent of
dispersion and as such superior to PML. However, PML
combines damping and trapping, thereby, it clearly wins out
in the suppression of unwanted back-reflection from graded
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FIG. 7. (a) Imaginary potential corresponding to picture frame PML Eqs. (56) and (57) for W = 2(
/2), V = 0.8 eV. (b) Time evolution
under scheme GIEXP and time step 
EXP

t under variation of frame width W and Vo: dotted lines: W = 2(
/2), dashed lines: W = 4(
/2),
solid lines: W = 8(
/2); Vo = 0.2 eV: blue lines ending after 1132 time steps, Vo = 0.8 eV: red lines ending after 1867 time steps. IPM
simulations for W = 8(
/2) and Vo = 0.8 eV: black dot-dashed lines.

simulation boundaries. Discrete transparent BCs have been
formulated for the (1+1)D Dirac equation under constant
potentials at the boundaries [21]. For a given FDS they give
the best results possible, being limited by numerical or round-
off errors only. However, their application in higher space
dimensions and/or under space- and time-dependence at the
boundaries becomes numerically highly expensive, if not un-
feasible. PML, however, can be tailored to give sufficiently
accurate results, can readily be extended to higher dimensions,
and, as will be illustrated below, works well under space-time-
dependent potentials at the simulation boundaries.

Next we explore the effects of the variation of PML width
W and Vo. For illustration we use the GIEXP scheme with

t = 
EXP

t , use Vo = 0.2 and 0.8 eV, and increase the layer
width from W = 2(
/2), 4(
/2) to 8(
/2). Figure 7(a) dis-
plays the imaginary potential VI (x, y) for W = 2(
/2) and
Vo = 0.8 eV. Again we use m = 0.02 eV and a simulation
time of t = 1000
CFL

t . We set Ex = Ey = 0.01 eV, so that
the Gaussian now propagates from the center toward the up-
per right corner of the simulation region. The evolution of
functional Eq. (23) is given in Fig. 7(b). For Vo = 0.2 eV, sim-
ulations terminate after 1132 iterations and results are given
in blue. For Vo = 0.8 eV they terminate after 1867 steps and
results are given in red. For comparison, results for two IPM
simulations using Vo = 0.8 eV, W = 8(
/2), 
t = 
CFL

t and,
respectively, 
t = 
EXP

t are shown using black dot-dashed
lines. For PML the use of a moderate Vo = 0.2 eV requires
more than one physical layer (corresponding to two simu-
lation layers) for a single-impact suppression factor of less
than 1 percent. However, four or eight simulation layers per
interface give excellent results in conjunction with a moderate
increase in the minimum number of time steps. If grid size is
the limiting factor, then larger Vo values allow the use of re-
duced PML width, as seen for Vo = 0.8 eV. Here, an increase
in layer thickness from W = 2(
/2) to W = 8(
/2) gives
but a moderate further increase in absorption. IPM works well
and rather independently from step size, allowing completion
after 1000 iterations. The use of 
t = 
CFL

t for the GIEXP

scheme for Vo = 0.8 eV indeed leads to instability. We found
that initial damping down to about 10−5 after about 900 itera-
tions is followed by divergence.

C. Particle propagation under discontinuous
simulation boundaries

Now we turn to a more challenging situation where, under
periodic BCs, artificial discontinuities occur at the simulation
boundaries. Such a situation arises, for example, when an
electric bias is applied across the system. Since the concept
of a group velocity across such a boundary is ill defined
(unphysical), it is safer to join the PML formulation proposed
above with zero—rather than periodic—BCs. Alternatively,
one can set the group velocity across the boundary equal
to zero, effectively, working with left- and right-sided group
velocities.

First we shall consider a static Klein step V (x, y), Fig. 8(a),

V (x, y) = VK
1

1 + e(Lx/2−x)/WK
. (58)

For m = 0 Dirac fermions it provides a tunnel junction
between particle and antiparticle states. On a 1 × 1 μm simu-
lation region of uniform mass m = 0 eV we place a 600 × 600
grid for uv storage and use zero BCs. The PML layer has a
width of 
. We set VK = 0.05 eV and WK = 
 and investigate
a head-on impact by a Gaussian wave packet, m = 0, Ex =
0.025 eV, Ey = 0, width 25
 released at grid position (Nx =
100, Ny = 200). It is time evolution is investigated from time
zero to t = 800
CFL

t . At the potential step the central part of
the Gaussian is predominantly transmitted (spectral focusing),
while the contributions with larger ky suffer partial reflection,
shown in Fig. 8(c). The first main impact at the simulation
boundary occurs at t ≈ 350
CFL

t . In Fig. 8(b) we compare
the performance of the GIEXP scheme for Vo = 0.5 eV and
Vo = 0.75 eV to that of the IMP for Vo = 1 eV. The IPM leads
to a single impact damping down to less than one percent.
The remaining wave contribution suffers back-reflection. It
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FIG. 8. Scattering at a static Klein step of height VK = 0.05 eV, width WK = 
: (a) electric potential profile; (b) time-evolution of functional
Eq. (23) under GIEXP for Vo = 0.75 eV (solid blue line) and Vo = 0.5 eV (dashed red line), and under IPM for Vo = 1 eV (dot-dashed black
line). Wave packet evolution under GIEXP (Vo = 0.5 eV): shortly after impact (c), at final time (d).

propagates almost freely across the interior domain, as evi-
denced by the near horizontal time evolution between impacts.
In contrast, PML shows steady wave absorption to below
10−4 once the first impact has occurred, providing evidence
for efficient suppression of back-reflection under PML. The
wave distribution at final simulation time for Vo = 0.5 eV is
shown in Fig. 8(d). Owing to the trapping action of PML, it is
confined largely to the boundary region.

For a second example of this kind we consider a planar
ferromagnetic vortex

M(x, y) = Mo(cos(�o + νφ), sin(�o + νφ), 0),

φ = arccos (y/x), (59)

coupling to the particle spin via the Pauli term

HM =
(

0 Mx − iMy

Mx + iMy 0

)
(60)

in the Hamiltonian. M is the effective magnetization of mag-
nitude Mo. Phase �o and integer core charge ν characterise
the vortex type. For a 1 ×1 μm simulation region for a Dirac
fermion of mass m zero we use a 600 × 600 uv grid. The eye
of a planar vortex Eq. (59) with M0 = 0.03 eV and ν = 1
is placed into the center of the simulation region. Within

GIEXP we investigate scattering of a Gaussian wave packet,
Ex = Ey = 0.015 eV and width 25
 released at grid position
(100,100). The boundary layer widths W is 4 grid positions.
In Fig. 9 we show results for �o = 0 (hedgehog type), which
turned out to be the most challenging type. Figure 9(a) gives
a comparison between the damping of functional Eq. (23)
for Vo = 0.75 and Vo = 0.50 eV with damping under IPM
for Vo = 1.00 eV. Figure 9(b) gives the particle density upon
collision with the vortex core region and prior to impact at
the boundaries. The vortex is seen to apply a torque onto
the incident particle and deflecting it in counter-clockwise
direction. Thereby, the wave packet is spread out considerably
before impinging upon the boundaries. Figures 9(c) and 9(d)
give the remnant density at the respective final time step for
time-evolution under GIEXP and IPM, respectively. For the
former it is trapped near the boundary whereas, for the latter,
remnant back-scattered wave contributions are found to be
spread over the entire simulation region. All of the simulations
give good results, however, GIEXP wins out by about two
orders of magnitude. Simulations show that an ever increasing
value for Vo does not lead to improved damping. We know
from the analysis above that large values of Vo lead to trapping
rather than damping. Thus a good balance between width
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FIG. 9. Central collision of a Dirac fermion with a planar magnetic vortex (�o = 0): (a) time-evolution of functional Eq. (23) under GIEXP
for Vo = 0.75 eV (solid blue line) and Vo = 0.5 eV (dashed red line), and under IPM for Vo = 1 eV (dot-dashed black line); wave packet prior
to impact upon the boundaries (b), remnant wave packet under GIEXP (c), and remnant wave packet under IPM (d).

W and Vo leads to optimal results. For the present case, an
increase in W would improve results further. Similar results
have been found for vortices with �o = π/4 and �o = π/2.

D. Numerical simulations for time-dependent textures

PML based on the concept of group velocity bears an adi-
abatic character, in both space and time. Having established
that PML can be adapted to abrupt potential changes (changes
in the coefficients of the PDE, respectively, FDS) we now
explore PML under time-dependent electromagnetic poten-
tials at the boundary. This is relevant for transient transport
analysis. For this purpose we first employ a time-dependent

Klein step,

V (x, y, t ) = VK
1

1 + e(Lx/2−x)/WK
sin(ωt + φV ). (61)

We repeat the Klein step simulation from above and set ω =
0.1/
CFL

t , φV = 0. Again we use the GIEXP PML scheme in
conjunction with zero BCs. A comparison between evolution
under GIEXP, Vo = 0.5 eV and IPM Vo = 1 eV is given in
Fig. 10 which shows functional Eq. (23) versus time.

For final examples we study particle propagation in seesaw
electric potentials for zero magnetization and a hedgehog vor-
tex sketched, respectively, in Fig. 11(a) and 11(b). The seesaw
electric potential is V (x, t ) = 0.05(x − Lx/2)/Lx sin(ωt ) eV.
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FIG. 10. Dynamic Klein step under the GIEXP and IPM scheme. Simulation parameters are given in the main text.

The oscillation frequency ω is 0.1/
CFL
t . The wave packet’s

initial conditions and the magnetic texture are the same as for
the hedgehog vortex investigation above. The time evolution
for functional Eq. (23) for Mo = 0 and Mo = 0.03 eV are
shown, respectively, in Figs. 11(c) and 11(d). While PML with

Vo = 0.5 eV (solid lines) clearly outperforms the IPM with
Vo = 0.5 eV (intermitted lines) in the first example, damping
is comparable for the second case, where the IPM was ap-
plied for 
t = 
CFL

t , corresponding to 800 time steps, and
the maximum time step under scheme GIEXP, corresponding

FIG. 11. Propagation of a Dirac fermion in see-saw potentials: (a) and (c) for zero magnetization; (b) and (d) for a hedgehog planar
magnetic vortex.
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to approximately 1200 time steps. In the latter example, the
electromagnetic texture leads to a prolonged trapping of wave
packet components within the simulation region and there-
fore both methods lead to similar damping behavior. In fact,
whenever impact on the boundary or back-reflection from the
simulation boundary is suppressed by the electro-magnetic
texture itself, IPM and PML perform comparably well. The
latter is the case, for example, when a chiral domain wall
channel crosses the simulation boundary [22].

VI. SUMMARY AND CONCLUSIONS

A general group-velocity-selective formulation of PML
was applied to the Dirac equation in presence of space-time-
dependent electromagnetic potentials. PML extensions were
derived for the (2+1)D PDE and two single-cone finite dif-
ference schemes (FDSs) of the latter. Several methods for the
construction of PML auxiliary functions regarding both their
integration in parallel and the incorporation of the electromag-
netic fields were proposed. CFL conditions were derived for
the FDS cases under PML. They are more stringent than the
one for the original FDS and depend on the PML damping
parameter(s), as well as the integration scheme for the PML
auxiliary functions. Formulation was based on the (2+1)D
case with numerical examples geared toward topological in-
sulator surface states. The presented approach, however, is
readily applied to standard relativistic fermions in three space
dimensions.

An investigation of PML-induced spectral changes for
uniform layers was undertaken to demonstrate the proper
damping behavior for out-going wave contributions for both
PDE and FDS. Selected basic numerical studies within
uniform PML and picture-frame PML were performed to
confirmed the latter. For moderate damping parameter, PML
primarily leads to attenuation of out-going wave contribu-
tions. An increase of the former turns increased attenuation
into trapping: a large PML damping parameter tends to flatten
the energy dispersion in large portions of k space. Further im-
provement can be achieved by an increase in the width of the
absorbing layers. A layer width corresponding to about 4–6

grid points (corresponding to about 1 percent of the sample
length) was found to be sufficient.

Numerical tests performed under space- and time-
dependent electromagnetic potentials have shown that the
PML BCs hold up robustly, clearly outperforming the imag-
inary potential method regarding the overall absorption
behavior. PML is significantly more effective by a suppression
of back-reflection in a combination of damping and trapping.

Competing with PML is the method of discrete transparent
BCs (DTBCs) [12]. It is based on BCs which feed in ghost
values taken from analytic solutions for the exterior regions,
for which constant in space- and time- PDE (FDS) coefficients
are assumed to make this method tractable. BCs enter in form
of convolutions in time. Thus the DTBC method invests in
time whereas PML based on absorbing layers invests in space.
The DTBC method is formally exact and limited only by
round-off errors since the determination of growth factors as
well as the required inverse Z–transform, in general, must
be done numerically [21]. This may be the reason why this
method has, to our knowledge, by and large been limited
to effective (1+1)D models only. Indeed we have applied
this technique to the (1+1)D Dirac equation in the past to
demonstrate its effectiveness [10]. One may expect that, under
constant exterior conditions, it would work well in higher
space dimensions, however, at a high numerical cost.

We note that a position- and time-dependent group velocity
is an adiabatic concept. Therefore, abrupt potential disconti-
nuities at simulation boundaries artificially arising from the
use of periodic BCs should be avoided. The latter lead to un-
physical group velocities across the boundaries which in turn
can lead to numerical instability. In this case, zero BCs should
be used in conjunction with PML. Remarkably, PML was
found to be applicable to Dirac systems with time-dependent
textures at and beyond the simulation boundaries. The latter
are difficult to handle with spectral methods, such as the
transparent BC approach [12]

Formulation was based on the (2+1)D case with numerical
examples geared toward topological insulator surface states.
The presented approach, however, is applicable to relativistic
fermion simulations in three space dimensions as well.
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