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Determination of viscosity in shear-induced melting two-dimensional dusty plasmas using
Green-Kubo relation
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Langevin dynamical simulations of shear-induced melting two-dimensional (2D) dusty plasmas are performed
to study the determination of the shear viscosity of this system. It is found that the viscosity calculated from the
Green-Kubo relation, after removing the drift motion, well agrees with the viscosity definition, i.e., the ratio of
the shear stress to the shear rate in the sheared region, even the shear rate is magnified ten times higher than that
in experiments. The behaviors of shear stress and its autocorrelation function of shear-induced melting 2D dusty
plasmas are compared with those of uniform liquids at the same temperatures, leading to the conclusion that the
Green-Kubo relation is still applicable to determine the viscosity for shear-induced melting dusty plasmas.
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I. INTRODUCTION

Viscosity, or shear viscosity, η, is an important transport
coefficient to characterize the momentum flux in fluids [1–5].
As a typical quantity of a fluid, viscosity is defined as the ratio
of the shear stress to the shear rate [1,5]. In experiments, the
viscosity can be measured using its definition. For example,
in a rheometer [6], the shear stress can be easily applied by
a moving boundary, then the liquid inside would flow with a
velocity gradient, thus the viscosity can be determined from
its definition. The Green-Kubo relation [1–5], derived from
the equilibrium statistical mechanics, is often used to measure
the transport coefficients like diffusion, viscosity, and thermal
conductivity, from the random thermal motion of individual
particles of the fluids, without any macroscopic shear stress
or shear rate. In [7], the Green-Kubo relation is used in the
Lenard-Jones liquid containing flows to determine the shear
viscosity. It is found that, in this Lenard-Jones liquid with
flows, the determined viscosity from the Green-Kubo relation
is roughly close to the viscosity definition when the shear rate
is small, however, when the shear rate is larger, the Green-
Kubo relation is not accurate any more [7] due to the fact
that the distribution of the time-averaged dissipative fluxes
deviates from the Gaussian too much, as explained in [7].

Dusty plasma, or complex plasma, refers to a collection of
highly charged micron-sized dust particles in the plasma en-
vironment [8–17]. In the typical laboratory conditions, these
dust particles are charged to ∼ − 104 e, so that they can be
suspended in the sheath forming a single layer, i.e., the two-
dimensional (2D) dusty plasma [18,19]. These dust particles
are strongly coupled, interacting with each other through the
Yukawa repulsion [20]. In dusty plasma experiments, the
dynamics of individual dust particles can be directly stud-
ied at the kinetic level using the diagnostic of the video
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imaging [8–15]. Various transport procedures are experimen-
tally investigated in dusty plasmas, like diffusion [21], vis-
cosity [22–26], and thermal conductivity [27]. In [23–26,28],
by applying two laser beams to generated two counterprop-
agating flows, the solid lattice of the 2D dusty plasma melts,
causing shear-induced melting. While using the Navier-Stokes
equation to describe the shear-induced melting (or the shear-
induced liquid) dusty plasmas, the viscosity is determined
directly from the the profile of the flow velocity [23,25,26].
In [24,29], after the flow is generated in 2D dusty plasmas,
the viscosity is determined from its definition of the ratio
of the shear stress to the shear rate. For uniformly heated
dusty plasma experiments, the Green-Kubo relation is used
to determine the viscosity [22,30] whose results are consis-
tent with those from either other methods or simulations at
similar conditions [22], although, in principle, the Green-
Kubo relation is for the equilibrium state without the friction,
not for the steady state of dusty plasmas with the frictional
gas drag.

Simulations [31–38] are widely used in the studies of dusty
plasmas, especially for the parameter ranges which cannot
be easily realized in experiments. The viscosity of 2D dusty
plasmas has been quantified in various simulations [31–36].
In [31], the Green-Kubo relation is used with the frictionless
MD simulations to determine the viscosity, which agrees with
the viscosity determined from the drift velocity profile in
shear-induced melting experiments [23]. In [32], two types of
simulations (the SLLOD [39] and the introducing momentum
methods) are performed, so that the shear viscosity values
are obtained and the shear-thinning effect of dusty plasmas
is discovered. Although the Green-Kubo relation is strictly
valid for the equilibrium state (without the friction), the data
from the Langevin simulations of dusty plasmas (including
the frictional gas drag) are also used with the Green-Kubo
relation [33], and the resulting viscosity seems to be still
accurate. However, until now, we have not find any previous
study whether the Green-Kubo relation is still applicable in
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the shear-induced melting dusty plasmas, as we will try here
with the simulation data first.

This paper is organized as follows. In Sec. II, we intro-
duce our newly developed Langevin dynamical simulation
method to mimic the shear-induced melting dusty plasma
experiments. In Sec. III, we try to use the Green-Kubo relation
with our simulated shear-induced melting data to calculate the
viscosity, and compare it with the viscosity definition, i.e., the
ratio of the shear stress to the shear rate. Furthermore, we
also compare the obtained viscosity from the shear-induced
melting data with that from the uniform liquid at the same
temperature. The underlying statistics of the sheared dusty
plasmas are also discussed. Finally, it is our summary that, for
the shear-induced melting 2D dusty plasmas, the Green-Kubo
relation is still applicable to determine the viscosity, even
though the simulated shear rate is increased to ten times higher
than the maximum of the experimental value.

II. SIMULATION METHODS

Following the tradition [11,15,40,41], we use two dimen-
sionless parameters to characterize 2D dusty plasmas, which
are the screening parameter κ and the coupling parameter �.
The screening parameter is defined as κ = a/λD, where a
is the Wigner-Seitz radius [11], and λD is the Debye length.
The coupling parameter � is defined as � = Q2/(4πε0akBT ),
the ratio of the potential energy between two neighboring
particles to the averaged kinetic energy of one particle. Here,
T is the kinetic temperature of dust particles and kB is the
Boltzmann constant. The inverse of the nominal 2D dusty
plasma frequency [11], ω−1

pd = (Q2/2πε0ma3)−1/2, is used to
normalize the time scale, and the Wigner-Seitz radius a is used
to normalize the lengthscale.

We use Langevin dynamical simulations to mimic 2D
dusty plasmas. The equation of motion [33,42–44] of our
simulated particles is

mr̈i = −∇
 jφi j − νmṙi + ξi(t ), (1)

where the term of −∇
 jφi j is the particle-particle interaction,
while νmṙi is the frictional gas drag. The last term on the
right-hand side (RHS) ξi(t ) is the Langevin random kicks [40].
In our simulations, the interparticle interaction is the Yukawa
repulsion [20], φi j = Q2 exp (−ri j/λD)/4πε0ri j , where ri j is
the distance between the particles i and j.

The main purpose of our simulations is to mimic the shear-
induced melting in 2D dusty plasmas, similar to the corre-
sponding experiments [23,28]. In our simulations, we specify
the initial conditions of the system in the solid regime, so that
the simulated system is in the solid lattice initially, like the ex-
periments found in [23,28]. Then, to mimic the manipulation
from two laser beams in these shear-induced melting exper-
iments [23,28], we apply two additional forces on the RHS
of Eq. (1), which are F1 = A exp [−(y − y0)2/0.25a2]maω2

pd x
and F2 = −A exp [−(y + y0)2/0.25a2]maω2

pd x in the ±x di-
rections, centered at the locations of y = ±y0. If these two
forces are not too small, two counterpropagating flows would
be generated, so that the simulated 2D Yukawa lattice would
melt to the liquid state.

Here are some details in our simulations for the shear-
induced melting 2D dusty plasmas. In total, we simulate N =
1024 dust particles constrained within a rectangular box in
the x-y plane, with the dimensions of 61.1a × 52.9a, using
the periodic boundary conditions. The screening parameter
is specified as the constant of κ = 0.5, while the coupling
parameter is initially set as � = 1000, so that these particles
would self-organize into a solid lattice at first. Here, we keep
the value of y0 as the constant of y0 = 9.4 a, while the ampli-
tude of the shear force A is varied from 0.04 to 1.4 in units
of maω2

pd to mimic the different levels of the manipulation
laser power in experiments. The gas damping rate is chosen
as ν = 0.03 ωpd , a typical value in experiments [28]. The time
step is chosen to be small enough, so that the fastest particle
cannot move beyond the distance of a/2000 in one step, as in
[45]. When the system reaches the steady state after the shear
force is applied, the positions and velocities of all particles in
the next 4 × 108 steps are recorded for the latter data analysis.

Besides the shear-induced melting simulations described
above, we also perform the traditional uniform simulations
of 2D Yukawa liquids, as in [33,46]. In these uniform liquid
simulations, the equation of motion is just Eq. (1), without any
other forces on the RHS. The screening parameter is set as the
constant of κ = 0.5, while the � value is specified to various
values in the liquid regime, as we will describe later. The gas
damping rate is unchanged as ν = 0.03 ωpd . Other simulation
details are identical with [46].

III. RESULTS AND DISCUSSIONS

A. Shear viscosity of shear-induced melting systems

Two steady sheared flows are generated from our simulated
shear-induced melting 2D dusty plasmas, as one example
shown in Fig. 1. The profiles of the drift velocity along the
flow direction, and the kinetic temperature calculated from
the steady state flow data are presented in Fig. 1. To calculate
the drift velocity Vx, as in [25], first we divide the total simu-
lation box into 54 bins (with the width of a) in the y direction.
Then, for each bin, we use the cloud-in-cell algorithm to av-
erage the x velocity, i.e., the velocity along the flow direction
[25,26,28]. In the drift velocity profile of Fig. 1(a), clearly,
there are two prominent peaks in the positive and negative di-
rections, corresponding to a pair of counterpropagating flows
generated in the simulations. In our data analysis, we mainly
focus on the central region of the laminar flow, where the drift
velocity is nearly linear, as magnified in Fig. 1(b).

The kinetic temperature of our simulated shear-induced
melting 2D dusty plasma can be obtained by removing the
drift flow motion, as shown in Fig. 1(b). We calculate the
kinetic temperature due to the motion in the x direction using

kBTx = m(vx − Vx )
2

averaged for all particles within each bin,
where Vx is the corresponding drift velocity obtained from
the combination of the linear fit of Vx in Fig. 1(b) and the
y location of each particle. However, since there is no drift

motion in the y direction, we use kBTy = m(vy)2 directly to
determine the Ty. Here, the symbol of ¯ in these equations
for Tx and Ty means the cloud-in-cell algorithm averaging,
as in the calculation of the drift velocity Vx. Our obtained
kinetic temperature results in Fig. 1(b) show that, in the
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FIG. 1. Profiles of the drift velocity with two counterpropagating
flows in (a) our simulated shear-induced melting 2D dusty plasma
and (b) the magnified central portion. The kinetic temperatures due
to the motions in two directions are also plotted in (b). In the
central region, the kinetic temperature does not vary much, while
the drift velocity profile is nearly linear, as the linear fit shown
in (b). This linear fit can be used to quantify the shear rate there.
Here, the obtained shear rate, or the drift velocity gradient, is γ =
0.0078 ωpd , and the corresponding kinetic temperature at the cen-
tral bin is Ty = 0.017 ma2ω2

pd . In our simulations, when we apply
different magnitudes of the force, A, the amplitude of the generated
counterpropagating flows would be modified, however, the drift ve-
locity profile in the central region of −3 a < y < 3 a is always linear.
Thus, in our data analysis, we always choose the analyzed region as
−3 a < y < 3 a.

central region, the kinetic temperatures does not spatially vary
too much, and this region is nearly isotropic in the kinetic
temperatures of Tx and Ty. To simplify the presentation, we
will directly use Ty at the central point, and the corresponding
�y, to represent the kinetic temperature of the studied central
region later. Note, in Fig. 1, the flow velocity and kinetic
temperature are both normalized to be dimensionless.

Just like the previous dusty plasma experiments [23], as the
shear rate increases, the kinetic temperature of the simulated
shear-induced melting dusty plasma increases monotonically,
as shown in Fig. 2, although there is a slightly anisotropic fea-
ture, as shown in the inset of Fig. 2. In our simulations, when
the amplitude of the applied force A increases, the shear rate
would be larger, as a result, the kinetic temperature around the

0.00 0.04 0.08 0.12
1

10

100

1000

1 10 100

0.6

0.8

1.0

1.2

1.4

T 
   

T/
y

x

y

y

pd
-1

FIG. 2. The coupling parameter �y for the sheared region, as the
function of various shear rates. As the shear rate γ increases, the
coupling parameter �y decreases monotonically, due to the viscous
heating effect [23,28]. The inset show the ratio of the kinetic tem-
peratures due the motions in the two directions, which varies from
0.92 to 1.04. Clearly, for our simulated shear-induced melting dusty
plasmas, the anisotropy feature is small, suggesting that the coupling
parameter �y can be used to represent the system.

central region would be higher, probably due to the viscous
heating effect [25,26,28]. Thus, the corresponding coupling
parameter �y would reasonably diminish with the shear rate,
as shown in Fig. 2. In our simulations, the shear force is ap-
plied in the x direction, and the resulting kinetic temperatures
due the motions in the two directions might be not exactly
the same, i.e., the system contains some anisotropic feature,
as shown in Fig. 1(b). In the inset of Fig. 2, we plot the ratio
of our obtained Ty to Tx at the central point. Clearly, the ratio
of the obtained Ty to Tx varies from 0.92 to around 1.04, i.e.,
although the anisotropic feature in Tx and Ty exists, but not too
much. Thus, it is reasonable to use Ty, and the corresponding
�y, to represent the kinetic temperature there. Note it seems
that, when the shear rate is larger, the obtained Ty is slightly
higher than Tx, probably due to the less collision opportunity
in the flow direction, or the x direction.

The time series of the shear stress, or the off-diagonal
element of the stress tensor [1,5], in the central melted region
from our simulation data are calculated, as two examples
shown in Fig. 3. We calculate the shear stress per unit area
in the central region using

Pxy = 1

A

N∑
i=1

[
m(vix − Vx,i )viy − 1

2

N∑
j �=i

xi jyi j

ri j

∂φ(ri j )

∂ri j

]
, (2)

where A is the area of the analyzed central melted region,
Vx,i is the corresponding drift velocity at the location of the
particle i, obtained from the linear fit of Vx in Fig. 1(b), and
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FIG. 3. Time series of the shear stress per unit area Pxy, calcu-
lated using Eq. (2), from two runs of our shear-induced melting
simulations of (a) γ = 0.0078 ωpd and (b) γ = 0.051 ωpd . Clearly,
for shear-induced melting dusty plasmas, when the shear rate γ is
higher, the fluctuation of Pxy would be more severe, and the averaged
value of Pxy, as the dashed line shown, would also be larger.

the y coordinate of the particle i. Here, we follow the tradition
in [1] to remove the drift velocity while calculating the shear
stress per unit area Pxy for the systems containing flows. In
our simulations, this central melted region refers to −3a �
y � 3a in the simulation box, containing about 117 particles,
where the flow velocity profile is nearly linear as shown in
Fig. 1(b). Two panels of Fig. 3 correspond to the time series
of shear stress for two values of the shear rate γ = 0.0078 ωpd

and 0.051 ωpd , respectively. From Fig. 3, it seems that, when
the shear rate increases, the fluctuation level and the averaged
value (dashed lines) of the shear stress would both increase,
probably due to the increase of the kinetic temperature in the
melted region.

The autocorrelation function of the shear stress fluctuation
Cs(t ) can be obtained, as examples shown in Fig. 4. Here, we
use

Cs(t ) = 〈[Pxy(t ) − Pxy(t )][Pxy(0) − Pxy(t )]〉 (3)

to calculate this autocorrelation function of the shear stress
fluctuation. Clearly, the averaged value of the shear stress is
removed while calculating since only the fluctuation infor-
mation is needed in the Green-Kubo relation [7]. In Fig. 4,
a few Cs/Ty results corresponding to different shear rates are
plotted. Here, we verify that, the decay of Cs/Ty is much faster
than 1/t , i.e., the long-time tail problem does not exist in our
simulations here [47].
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FIG. 4. Shear stress autocorrelation function Cs/Ty, calculated
using Eq. (3), from our shear-induced melting simulations, for
four different shear rates of γ = 0.0078 ωpd , γ = 0.034 ωpd , γ =
0.051 ωpd , and γ = 0.093 ωpd . These obtained Cs/Ty results are used
in Eq. (4) to calculate the viscosity later. Note our obtained Cs/Ty

decays faster than t−1, indicating that the long-time tail problem does
not exist here [47].

Using our simulation data, in the central melted region, the
shear viscosity determined from the Green-Kubo relation is

η = A

kBT

∫ ∞

0
Cs(t )dt . (4)

While using our simulation data, we follow the tradition
[22,48] to replace the upper limit of the integration from
infinity to the time when Cs(t ) crosses zero for the first time.
For comparison, we also use the viscosity definition [1–5]

η = Pxy(t )

γ
(5)

to determine the value of viscosity. In Fig. 5, the viscosity
values calculated from these two methods, Eqs.(4) and (5), are
plotted together. Clearly, the results from two methods agree
with each other very well since all data points in Fig. 5 overlap
with each other. As the coupling parameter �y increases from
around 1, the viscosity diminishes first, and then increases.
For both of the methods here, the viscosity would have a
minimum when the coupling parameter �y is around 15, well
consistent with the previous uniform simulations [31,49]. For
the typical shear-induced melting dusty plasma experiments
[23,28], the shear rate is not very big, at most about 0.0078ωpd

in [28] or 0.012ωpd in [23], thus the maximum shear rate
in our simulations is about ten times higher. Note that, like
the previous shear-induced melting experiments [23,28], the
temperature and shear rate are not independent in Figs. 5(a)
and 5(b).
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FIG. 5. The obtained viscosity of our simulated shear-induced
melting 2D dusty plasmas using two different methods of Eqs. (4)
and (5), as the function of (a) the coupling parameters and (b) the
shear rate. Clearly, the viscosity values calculated from these two
methods agree with each other, since the obtained data points overlap
with each other. Note that, for our simulated shear-induced melting
dusty plasmas, the coupling parameter � and the shear rate γ are not
independent, like the previous experiments [23].

B. Comparison with viscosity of uniform liquids

For comparison, we also calculate the shear stress per
unit area Pxy of the simulated uniform liquid at the similar
temperature as the shear-induced melting system, as shown in
Figs. 6(a) and 6(b). Although the values of the coupling pa-
rameter �y of these two runs are nearly the same of about 35,
the fluctuation level of Pxy for the uniform liquid of Fig. 6(a)
is substantially smaller than that for the shear-induced melting
system of Fig. 6(b). Furthermore, from Fig. 6, the averaged
value of Pxy for the shear-induced melting system of Fig. 6(b)
clearly deviates from zero, while this averaged value for the
uniform liquid is just zero, as often seen from the previous
studies [22,31]. For the uniform liquid, the fluctuation of the
shear stress comes from the random thermal motion itself, or
the temperature of the system. However, for the shear-induced
melting system, the overall flow would also further contribute
to the fluctuation of Pxy, and this overall flow also cause the
nonzero averaged value of Pxy.
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FIG. 6. Time series of the (a,b) shear stress per unit area Pxy

and (c) the corresponding autocorrelation function Cs/Ty for the
uniform liquid and the shear-induced melting system, for the same
coupling parameter of �y = 35. The results show that the fluctuation
of Pxy in the shear-induced melting system is larger, however, the
corresponding Cs/Ty decays much faster.

To quantify the shear viscosity using the Green-Kubo re-
lation, we calculate the autocorrelation function of the shear
stress Cs for the comparison of the two types of simulations,
as shown in Fig. 6(c). Note, here the nonzero averaged value
of Pxy for the shear-induced melting system is removed while
calculating Cs using Eq. (3). Clearly, due to the higher fluc-
tuation level of Pxy for the shear-induced melting system, the
corresponding Cs has a larger initial value. Of course, for the
uniform liquid, the initial value of Cs is smaller. The decay rate
of the shear stress autocorrelation function for these two types
of systems are different. As seen in Fig. 6(c), the decay of Cs

for the shear-induced melting system is clearly quicker than
that for the uniform liquid, probably due to the nonzero overall
flow in the shear-induced melting system. The autocorrelation
function Cs describes the memory effect of the stress, so that
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FIG. 7. The viscosity values calculated from our simulated
shear-induced melting and uniform liquid data, as the functions of
the coupling parameter. Clearly, these obtained viscosity values from
these two simulated systems are consistent with each other.

this effect would be reasonably more shortened by the overall
flow in the shear-induced melting system.

Our determined results of the shear viscosity from the
shear-induced melting and the uniform liquid data are pre-
sented in Fig. 7. Clearly, from Fig. 7, the obtained viscosity
values from these two simulated systems are consistent with
each other. Besides the overall consistency, we can still ob-
serve a clear and systematic trend that the obtained viscosity
of the uniform liquid data is always lower than that of the
shear-induced melting system for the weaker coupling pa-
rameter, i.e., �y < 20, however, for the stronger coupling
parameter of �y > 20, this trend seems to be reversed. Here
we would like to mention that our simulated two systems are
not the same: the simulated uniform liquid is isotropic, while
the shear-induced melting system has a slightly anisotropic
feature, as we quantify in the inset of Fig. 2. Following the
method in [25,26], we also convert the individual particle data
to continuum data using the spatial average of the particle data
within those 54 rectangular bins, as described above. From
the calculated particle number density profiles, as presented
in [50], we find that the number density around the stronger
sheared region is much smaller. The density gradient of par-
ticle would definitely induce an additional steady momentum
transport, similar to the gas viscosity mechanism [51]. Thus,
for the higher particle density gradient of the stronger sheared
system, the momentum transport is enhanced and the obtained
viscosity should be higher. On the other hand, for the typical
liquid dusty plasmas, the shear thinning effect has already
been discovered [32], which means that the viscosity dimin-
ishes when the shear rate increases. Our explanation about the
systematic variation trend in Fig. 7 is probably the competi-
tion of these two mechanisms, the shear-thinning effect and
the number-density gradient induced momentum transport.
When the shear is lower, the number density gradient is tiny,
the shear thinning effect dominates, so that the viscosity of the

shear-induced melting system is smaller, for the data points of
�y > 20 in Fig. 7. However, when the shear is stronger, the
temperature of the system is higher, and the number density
gradient is also higher as presented in [50], leading to the
stronger number-density gradient induced momentum trans-
port [51], thus the obtained viscosity value is higher, for the
data points of �y < 20 in Fig. 7.

From all above, we conclude that, for the shear-induced
melting 2D dusty plasmas, the Green-Kubo relation is still
applicable to quantify the shear viscosity, and the quantified
viscosity well agrees with the viscosity definition of Eq. (5).
While calculating the shear stress of the shear-induced melt-
ing 2D dusty plasmas, the drift motion should be removed, as
in Eq. (2). We also find that, these viscosity values from the
shear-induced melting dusty plasmas are consistent with the
viscosity of the uniform liquids at the same temperatures.

IV. SUMMARY

We perform Langevin dynamical simulations of shear-
induced melting 2D dusty plasmas to study the shear viscosity.
We find that the Green-Kubo relation is still applicable to
determine the shear viscosity for the shear-induced melting
dusty plasmas, and the determined viscosity using this method
well agrees with the value obtained from the viscosity defi-
nition, i.e., the ratio of the shear stress to the shear rate. In
our simulations, we magnify the shear rate about ten times
higher than the maximum of the experimental value [23,28],
and the determined viscosity results from the Green-Kubo re-
lation still well agree with those from the viscosity definition.
To further verify our finding, we also compare the obtained
viscosity values of the shear-induced melting dusty plasmas
with those of the uniform liquids at the same temperatures.
Our simulation results show that the viscosity from these two
simulated systems are consistent with each other.

Our developed method of using the Green-Kubo relation
with the shear-induced melting dusty plasmas, after removing
the drift motion, provides a different approach to determine
the shear viscosity. Especially for the higher sheared flows
when the drift velocity profile is not linear, in which the
viscosity definition cannot be directly used, this modified
Green-Kubo relation method is more useful. In addition to
this methodology, our findings here also provide understand-
ings of the underlying statistics of the studied system. For
the shear-induced melting dusty plasmas, it seems that the
fluctuation of the shear stress still can be used to determine
the shear viscosity, although the corresponding fluctuation
behaviors are modified by the drift motion.
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