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Statistical physics of two-temperature rotational energy distributions in stationary plasmas
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Two-temperature rotational energy distributions from rarefied diatomic molecules are very often observed
in laboratory plasmas. There has been much debate over the years about the physical meaning of this kind
of rotational energy distributions and the associated statistical physics. We show here that under certain
reasonable assumptions and constraints the condition of Shannon-Jaynes entropy maximization may produce
a two-temperature distribution. This may happen, for instance, when a system is simultaneously coupled to
different thermal baths. In plasmas this is possible because rarefied molecular species may be immersed in a
medium where electrons and the dominant atomic species are quasidecoupled, each of them acting as distinct
thermal baths. Considering that molecular species may interact both with electrons and heavy neutral species,
we may ask what should be the resulting molecular energy distribution. We answer this question in this paper
and give some examples on how this can be used to interpret experimental molecular distribution from partially
ionized plasmas.
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I. INTRODUCTION

The use of rovibrational emission spectra from plasma
sources is a very old and well-established technique to esti-
mate the temperature of an emitting media in thermodynamic
equilibrium [1]. Indeed, the validity of this technique requires,
at least, that rotational states are in thermodynamic equilib-
rium with the dominant species [1]. However, this condition
may not be fulfilled since many systems of interest in plasma
physics deviate from equilibrium to some degree [2,3]. For
this reason, the analysis of the validity of this technique re-
quires sufficient knowledge of the equilibrium state of the
plasma, which could be inferred from complementary experi-
mental evidence [4]. For instance, this could be achieved from
the analysis of other spectra, such as electronic emission. If
both electronic and rovibrational spectra exhibit an equilib-
rium distribution with the same temperature, then probably
the media is in thermodynamic equilibrium.

In some cases where the deviation from equilibrium is
observed, the neutral, ion, and electron velocity distributions
may be well approximated by Maxwellians having distinct
temperatures. Depending on the degree of deviation, also neu-
tral species may have distinct velocity, electronic, vibrational,
and rotational distributions. In such nonequilibrium states it
may not be possible to identify a well defined temperature.

*aridenti@ita.br

The parameter temperature may still be used is this new con-
text, but it must be given a new definition.

In partially ionized plasmas, commonly used in techno-
logical applications, ions, and electrons velocity distributions
always have different mean kinetic energies [3,5]. In the case
of low power density and partially ionized plasmas, electrons
gain energy from the electric field and lose energy in collisions
with neutral heavy species [6]. The gas of heavier particles
(mass M) will never reach thermodynamic equilibrium with
electrons (mass m) because the electron transfers only a tiny
amount of kinetic energy to its heavier collisional partner
(∼m/M) [7,8], and the density of electrons is much smaller
than the density of neutral species (partially ionized plasma).
Although heavier particles absorb energy, the electrons’ heat-
ing rate is not high enough to overcome the cooling rate, and
the resulting steady-state electron velocity distribution devi-
ates from the gas velocity distribution, having a higher mean
energy [6]. The system reaches the steady condition through
improper balances [9]. Only in the case where the electron
field is a tiny perturbation, i.e., the electric field power transfer
is much smaller than the energy exchange rate by collisions,
then the system may reach equilibrium. Only in this condition
the linear response theory applies [10].

In systems we are describing and which are commonly
found in plasma applications, electrons, and neutral heavy
species, have different mean energies. What could we say
about ions? Ions transfer a significant part of their energy to
their collisional partners and typically have a mean free path
much smaller than the one from electrons. Ions will indeed
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gain some energy from the field but at a lower rate [6]. They
also lose energy at a higher loss rate through collisions [6].
For that reason, the ion mean energy is expected to be only
slightly higher than the neutral species mean energy.

The velocity distribution of electrons and heavy species
does not need to be Maxwellian [10,11]. However, experi-
mental evidence usually confirms that very often they can be
approximated by equilibrium distributions with well defined
temperatures [12]. In the case of heavy species this is well
justified by the fact that the input energy rate from electrons
is much smaller than the energy exchange rate in collisions
between heavy species. In the case of electrons, it is expected
that a depletion of the tail of the kinetic energy distribution
function occurs near the ionization and excitation (electronic
or vibrational) threshold [3,6,11]. Below the minimum thresh-
old for inelastic collisions, the distribution is then expected to
resemble a Maxwellian with an effective temperature much
higher than the temperature of heavy species [12–15]. Above
the minimum threshold, the distribution tends to be depleted
[15,16]. If the electron density is sufficiently high, collisions
between electrons contribute to populate the depleted tail,
producing a Maxwellian distribution with a lower temperature
[16,17] but still higher than the temperature of heavy species.

The plasmas we have been describing so far have a remark-
able feature: Neutral species and electrons have quite different
mean energies so that we may call them “two-temperature”
plasmas. Indeed, a two-temperature plasma may be seen as
a composition of two thermal baths. Although there is some
coupling between electrons and neutrals, we may neglect it
and consider both systems as being independent. Any other
minor constituent of the plasma, such as excited molecules
or atoms, radicals, and ions could be coupled to both thermal
baths. In this paper we are interested in rotational states of
diatomic molecules, and we could formulate our central ques-
tion in the following way: What should be the steady-state
rotational energy distribution of a diatomic molecule present
in a two-temperature plasma at very low relative concentration
if it may couple to both thermal baths?

The physical conditions which we have just described
are common and have been observed before. Many ex-
perimental works discuss the nonequilibrium rovibrational
distributions which occur in low power density partially ion-
ized plasmas. These are mainly the rotational distributions of
OH(A), N+

2 (B), and N2(C), which give rise to the well known
OH violet system, N+

2 first negative system, and N2 second
positive system [1,18].

Some authors argue that such systems result from the
composition of two subsystems, each of them coupled to the
corresponding thermal bath [19,20]. The molecular rotational
energy distribution function of diatomic molecules would be
the result of the linear combination of two equilibrium distri-
butions, i.e.,

N (Ei ) = I1
e−Ei/kBT1

Z1
+ I2

e−Ei/kBT2

Z2
, (1)

where N (Ei ) is the population of states with energy
Ei; Z1, Z2, T1, and T2 are the partition functions and temper-
atures of the thermal baths 1 and 2, I1 and I2 are weighting
factors, and kB is the Boltzmann constant. Although this result

seems plausible, the reasoning behind this result should be
subject to greater scrutiny.

Firstly, we should ask if Eq. (1) could be derived from
first principles, i.e., the maximization of Boltzmann-Gibbs en-
tropy or the larger and powerful scheme of Jaynes predictive
statistical mechanics [21] based on the Bayesian method in
probability theory together with the principle of maximization
of Shannon-Jaynes entropy [22,23]. As far as we know, such
a distribution has always been proposed in an ad hoc fash-
ion. This approach would be perfectly valid in an experiment
where two separated plasma volumes emit rovibrational spec-
tra from the same emission system. But in this case the plasma
would not be an authentic two-temperature system; it is just
two separate systems in different thermal baths emitting light
simultaneously. The situation discussed here is quite different:
One plasma constituent interacts with two distinct thermal
baths.

The potential problems in Eq. (1) can be seen at first glance
if we consider the high and low energy limits. It is reasonable
to assume that at low energies the rotational states should be
coupled to the main neutral species via collisions [24]. The
rotational relaxation rate due to collisions with the dominant
species is known to decrease exponentially with the rotational
number [24]. The rotational energy distribution is then ex-
pected to approach equilibrium, i.e., N (Ei ) ∼ I1e−Ei/kBT1/Z1,
where Ei � kBT2. However, in this limit Eq. (1) tends to
N (Ei ) ∼ I1e−Ei/kBT1/Z1 + I2. If I2 is not too much smaller than
I1, then the estimate of T1 based on Eq. (1) could yield severely
biased values. For this reason, some authors prefer to fit a
Boltzmann distribution in the low energy limit and another
Boltzmann distribution in the high energy limit [25]. This
procedure is correct in our opinion, and it is consistent with
our results as we will show later.

Some authors used the so-called nonextensive statistics of
Tsallis to tackle the same problem [26]. Here, the entropy
Sq of Tsallis is supposed to give the correct description of
the system or, at least, a legitimate alternative description.
The distribution resulting from this method depends not only
on the temperature, but also on the so-called nonadditivity
parameter q. This distribution can be used to fit experimental
data as well as Eq. (1). However, the physical meaning of q
in this context is still obscure since it is not clear why one
should resort to a nonadditive entropy. Also, the theory does
not answer how parameter q is related to the microdynamics.
The temperature T , for instance, has a very clear physical
interpretation as a quantity proportional to the mean kinetic
energy. But what is q and what could it tell us about the
physical system?

Maybe there is a rigorous justification for the application
of Tsallis statistics in this context, which could certainly add
an insightful contribution to the understanding of the system.
However, the well-established statistical methods based on
informational Shannon-Jaynes entropy and Jaynes principle
are always valid as long as all the relevant constrained vari-
ables can be identified. One may question if the composition
law—implicit on the derivation of informational Shannon-
Jaynes entropy—should always be valid. We do not have
any evidence that this should break apart in our system, nor
the proponents of Tsallis statistics have shown why it should
break apart. Anyway, there is always some way of defining
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a complete set of microstates in such a way they are all
independent. For instance, one particle or few particle states
may indeed be correlated to other particle states. However,
the full particle states are always uncorrelated if the system
is memoryless, which is the case for almost all problems
in physics. We will not need to go too far as we will see
that the present system can indeed be described on the basis
of orthodox statistical physics considering one particle mi-
crostates. By this argument we are in no way demeaning or
criticizing Tsallis statistics; as any other method in physics,
the conditions where its application is valid, legitimate, and
useful should always be discussed.

Before proceeding, we should note that we are neglecting
an effect which could certainly affect the rotational energy
distribution: the formation process. The diatomic molecule
is usually formed in the plasma via chemical reactions or
electronic interactions, some of which may be exothermic.
Just after formation, the exceeding energy may be distributed
among the rotational energy levels in a particular way, de-
pending on the nature and statistics of the formation process.
Another similar effect is the vibrotational transfer, which ex-
cites high energy rotational states and populates the tail of the
rotational distribution. These effects could be strong enough
to compete with rotational energy redistribution via colli-
sional rotational transfer relaxation. We treated these cases
in a previous paper where we derived the rotational energy
distribution of molecules that were coupled to a thermal bath
but also subject to the energy output from formation processes
[27]. Now, in this paper, we neglect these effects. This is
valid as long as the molecular excited states created after the
formation processes are rapidly damped by collisions or the
formation process is not determined by an exoergic reaction.
Instead, the excitation/deexcitation of the rotational states is
determined by the interaction with a thermal bath, such as
the interaction with a given population of electrons or neutral
species in thermal equilibrium.

In this paper we study the rotational distribution of a
diatomic molecule in contact with two thermal baths by max-
imizing the associated Shannon-Jaynes entropy under some
constraints, which will be made explicit in the next section. In
our opinion, this is the most straightforward way to solve the
problem. In order to validate our method, we propose an al-
ternative derivation, based on the master equations, following
the method proposed in our previous work [27].

II. THEORY

A. Derivation from Shannon-Jaynes entropy maximization

Let us consider a system S which is coupled to two de-
coupled thermal baths T1 and T2 as represented in Fig. 1. The
thermal baths are assumed to have constant temperatures T1

and T2 and an arbitrarily high heat capacity so that energy
exchange with S does not change T1 and T2. Besides, thermal
baths T1 and T2 are decoupled from each other, i.e., they only
exchange energy with system S but not among themselves.
Assuming that such a system is in equilibrium, we will derive
the energy distribution of the microscopic discrete states of
the system.

FIG. 1. System S is coupled to thermal baths T1 and T2. The
total mean energy of system S is U = U1 + U2, where U1 and U2 are
the partial contributions from thermal baths T1 and T2 to the total
internal energy U .

The total mean energy of system S is U = U1 + U2, where
U1 and U2 are the partial contributions from thermal baths
T1 and T2 to the total internal energy U . This means that
the energy which populates the microscopic discrete states
of the system by means of heat exchange either comes from
thermal bath T1 or comes from thermal bath T2. The partial
energies U1 and U2 are equilibrium quantities that depend only
on the temperatures of the thermal baths and the energy flow
from the bath to the system Q̇i(t ) = TiṠi(t ). Given two thermal
baths with temperatures T1 and T2, the equilibrium values U1

and U2 do not depend on the path from some initial value
U01 or U02 (U0 = U01 + U02). These statements are proven in
Appendix A from some general assumptions that should be
valid for the present case. Since the thermal baths have well
defined temperatures T1 and T2, we may define them in terms
of the system total entropy S as(

∂S

∂U1

)
U2

= 1

T1
, (2a)

(
∂S

∂U2

)
U1

= 1

T2
. (2b)

Here we are implicitly assuming that microstates of the
system are discrete. Any energy level j has a probability of
occupation p j , and the sum over all states should be equal to
one, i.e., ∑

p j = 1. (3)

The total mean internal energy is given by the summation of
the energy Ej times the occupation probability p j ,

U =
∑

p jE j . (4)

Equations (3) and (4) are standard and straightforward, but
now we will give a step forward to add some new constraints
required by our problem.

For any occupied state j, we could define the probability
K (1)

j , which is the probability of the state being populated by
the interaction with thermal bath T1. Analogously, we define
the probability K (2)

j , which is the probability of the state being
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populated by the interaction with thermal bath T2. From these
definitions we may write the mean energies U1 and U2 as

U1 =
∑

j

K (1)
j p jE j, (5a)

U2 =
∑

j

K (2)
j p jE j, (5b)

where K (1)
j + K (2)

j = 1 for all j. We may now maximize
the Shannon-Jaynes entropy S = −kB

∑
p j ln p j subject to

the constraints given by Eqs. (3), (5a), and (5b). We recall here
that U1 and U2 are well defined and measurable quantities, so
the constraints (5a) and (5b) are valid. The functional to be
maximized may be written as

S({p j}, λ0, λ1, λ3) = −kB

∑
p j ln p j − λ0

(∑
j

p j − 1

)

− λ1

(∑
j

(
1 − K (2)

j

)
p jE j − U1

)

− λ2

(∑
j

K (2)
j p jE j − U2

)
, (6)

where λ0, λ1, and λ3 are the Lagrangian multipliers associ-
ated with the constraints given by Eqs. (3), (5a), and (5b). By
applying the variational principle we find

p j = exp

(
−1 − λ0

kB
− λ1

kB

(
1 − K (2)

j

)
Ej − λ2

kB
K (2)

j E j

)
. (7)

The normalization condition expressed by Eq. (3) may be used
to eliminate the multiplier λ0 and rewrite Eq. (7) as

p j = 1

Z
exp

(
−

∑
k=1,2

λkgk j

)
, (8)

where gk j = K (k)
j E j/kB and

Z =
∑

j

exp

(
−

∑
k=1,2

λkgk j

)
. (9)

We may now write the entropy using the expression for pj

given by Eq. (8),

S = kB ln Z + λ1

∑
j

1

Z

(
1 − K (2)

j E j
)

exp

(
−

∑
λkgk j

)

+ λ2

∑
j

1

Z
K (2)

j E j exp

(
−

∑
λkgk j

)

= kB ln Z + λ1U1 + λ2U2. (10)

From the relations between entropy and temperature ex-
pressed by Eqs. (2a) and (2b) we may determine the remaining
Lagrangian multipliers λ1 and λ2

λ1 = 1

T1
, (11a)

λ2 = 1

T2
. (11b)

The Lagrangian multipliers λ1 and λ2 are nothing but the
inverse of the thermal baths temperatures T1 and T2. Now we
can write the final expression for the probability distribution
function,

p j = exp
(−(

1 − K (2)
j

) Ej

kBT1

)
exp

(−K (2)
j

E j

kBT2

)
∑

i exp
(−(

1 − K (2)
i

) Ei
kBT1

)
exp

(−K (2)
i

Ei
kBT2

) . (12)

The distribution function of the system is actually the product
of two-exponential functions having different temperatures T1

and T2 and not the sum of two-exponential functions. The
values of K (1,2)

j are not necessarily independent of state j, and
some states can be better coupled to one thermal bath than the
other. For simplicity, let us take a particular case and assume
that for a given j = jth we have

K (1)
j = 1 and K (2)

j = 0 for j < jth,

K (1)
j = 0 and K (2)

j = 1 for j � jth. (13)

This simplified model tells that states for which j < jth couple
only to thermal bath T1 and states for which j � jth couple
only to thermal bath T2. In this particular case, the probability
distribution function reduces to a Boltzmann one with temper-
ature T1 for states satisfying j < jth and another Boltzmann
distribution with temperature T2 for states satisfying j � jth.
This model is consistent with the distribution of rotational
states of rarefied molecules in plasmas where rotational states
are better coupled to translational motion at low lying energy
levels and better coupled to electrons at upper lying energy
levels.

If the values of K (1,2)
j are equiprobable (i.e., K (1)

j = K (2)
j =

0, 5) and independent of the states, then the distribution
function also reduces to a Boltzmann one with an effective
temperature equal to the harmonic mean of T1 and T2. Such
a limit does not have any similarity with the problem we are
studying but may find other applications in physics.

We may need to consider a continuous transition between
thermal baths T1 and T2 when working with experimental
spectra. In this paper, we use the following function to model
K (1)

j and K (2)
j :

K (1)
j = 1

2
erfc

[(
Ẽ0 − Ej

σ̃0

√
2

)]
,

K (2)
j = 1

2
erfc

[(
Ej − Ẽ0

σ̃0

√
2

)]
,

(14)

where Ẽ0 and σ̃0 are parameters to be determined and erfc
is the complementary error function. The Ẽ0 value gives
a measure of the transition energy between thermal baths,
whereas σ̃0 determines how steep is the transition. The choice
of the K (i)

j expressions is not unique, but this particular form
[Eq. (14)] satisfies some plausible assumptions about the sys-
tem we want to investigate. The first requirement is that in
the low and high energy limits we have K (1)

j = 1, K (2)
j = 0

and K (1)
j = 0, K (2)

j = 1, respectively. The second requirement
imposes that the transition between both extreme cases could
be smooth and not necessarily steep as in the case of Eq. (13).
Because of our prior ignorance we should assume that the
transition is symmetric, which is the third requirement. Lastly,
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since the function erfc(x) may be directly linked to the prob-
ability that a given state couples to a given thermal bath, the
sums K (1)

j and K (2)
j should always be equal to unity for every

j. The erfc(x) function allows us to control the steepness of
the transition by changing the value of parameter σ̃0, and it
assures that the third and fourth requirements are met. Many
other cumulative distribution functions (CDFs) could possibly
be chosen, however, due to our prior ignorance, the erfc(x)
function is a good choice since it is the CDF of a normal dis-
tribution, the most natural choice for a probability distribution
function due to the central limit theorem.

B. Derivation using the rate equations

In this section we will derive essentially the same result
but using a different approach, which we have adopted earlier
in another paper [27]. This derivation is based on the rate
equations describing the excitation of molecular rotational
states from collisions with atoms and electrons, which we
will call rotational energy transfer (RET). As we have already
shown in our previous paper [27], the process of the RET in
an OH(A, ν = 0)1 containing plasma or gas whose dominant
species is an arbitrary atom or molecule MN may be repre-
sented by the equations

Mj + OH(A)i+1

ki+1,(+)
M, j

−−−−−⇀↽−−−−−
k′i,(+)

M, j+1

Mj+1,(+) + OH(A)i, (15)

Mj + OH(A)i

ki,(−)
M, j

−−−−−⇀↽−−−−−
k′i−1,(−)

M, j+1

Mj+1,(−) + OH(A)i−1, (16)

where the subscript j (or j + 1) means that species M has
a kinetic energy Ej (or Ej + �E (+,−)) and the subscript i
represents the rotational level OH(A, J = i). The (+) super-
script refers to a transition of the kind i + 1 � i and the (−)
superscript refers to a transition of the kind i � i − 1. This
exhausts all the possibilities of population and depopulation
of a given rotational state i by a RET process. In the case we
treat in this paper, the species M is the dominant constituent
of the background gas, which is an atom for simplicity.

We consider now the RET caused by the interaction of
the diatomic molecules with electrons, which we will call the
electronic RET. The corresponding rate equations are given
by

e j + OH(A)i+1

ki+1,(+)
e, j

−−−−−⇀↽−−−−−
k′i,(+)

e, j+1

e j+1,(+) + OH(A)i, (17)

e j + OH(A)i

ki,(−)
e, j

−−−−−⇀↽−−−−−
k′i−1,(−)

e, j+1

e j+1,(−) + OH(A)i−1. (18)

1We will only consider OH(A) molecules in the vibrational ground
state, so from now on we will drop (ν = 0) from the notation. We
use here the particular case of the OH(A), but this reasoning applies
to any electronically excited molecule.

The RET and electronic RET processes produce essentially
the same rate equations with different collision partner den-
sities and rate coefficients. Following the same procedure
we used previously [27], the time derivative of the diatomic
molecule density Ni at rotational state i may be written as

dNi

dt
=

(
dNi

dt

)(+)

+
(

dNi

dt

)(+)

e

+
(

dNi

dt

)(−)

+
(

dNi

dt

)(−)

e

,

(19)

where each term in the parentheses corresponds to the net
contribution from processes (15), (17), (16), and (18) for the
time rate variation of state Ni density. We may proceed by
taking the same steps of the derivation in Ref. [27]: (i) Use
the microscopic reversibility principle to write the inverse rate
coefficients in terms of the direct rate coefficients, (ii) look
for the steady-state solution satisfying dNi/dt = 0, and (iii)
express the solution in terms of a continuous functions of
energy N (E ). The final result is the following equation:

dN

dE
+ N

kBT
+ ke

kM

(
dN

dE
+ N

kBTe

)
= 0, (20)

where T is the temperature of species M, Te is the electron
temperature, kM is the effective rate of the RET, and ke the
effective rate of the electronic RET. This result shows that if
kM � ke the solution is a Boltzmann equation with tempera-
ture T and if ke � kM the solution is a Boltzmann equation
with temperature Te. This is physically consistent because if
the RET dominates over the electronic RET then the rotational
temperature should be closer to the gas temperature. If the
electronic RET dominates then the opposite is true and the
rotational temperature should be closer to the electron gas
temperature.

Now let us write the solution for Eq. (20). Before that, it
can be readily seen that Eq. (1) is not a solution of Eq. (20).
The actual solution is

N = N0 exp

[
−

∫ E

0

dE ′

kBT (1 + ξ )

]

× exp

[
−

∫ E

0

dE ′

kBTe(1 + ξ−1)

]
, (21)

where N0 is the ground state density and ξ = ke/kM is what we
will call the coupling function. This solution is consistent with
the limits we have discussed above. Indeed, if ξ = ke/kM →
∞ we recover the Boltzmann distribution with temperature Te,
and if ξ = ke/kM → 0 we recover the Boltzmann distribution
with temperature T . Note also that Eq. (21) is consistent
with Eq. (12) as both are expressed as the product of two-
exponential functions, each exponential being a function of
one of the temperatures.

In order to use Eq. (21) to model experimental data, we
need to know the coupling function ξ (E ). It is reasonable
to assume, from the previous knowledge we have from this
system, that ξ (E ) goes to zero in the limit of low energies and
goes to infinity in the limit of high energies. We may model
ξ (E ) as an exponential function, satisfying the previous limits,
i.e.,

ξ = ξ0 exp

(
E − E0

σ0

)
, (22)
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FIG. 2. Plot of the distribution given by Eq. (23), where T =
300, Te = 10000 K, ξ0 = 100.0, E0 = 1, and σ0 = 0.2 eV.

where ξ0, E0, and σ0 are fitting parameters. Although these
are fitting parameters, they give important information about
the distribution. For instance, E0 gives the limit of transition
between the two regimes of thermal bath coupling; for E0 > E
the system is better coupled to species M by the RET, and
for E0 < E the system is better coupled to electrons by the
electronic RET. The parameter σ0 gives a measure on how
fast this transition occurs. Using the model given above for
the coupling function, we may write the density N (E ) as

N = N0 exp

[
−

∫ E

0

dE ′

kBT
[
1 + ξ0exp

(E0−E
σ0

)]
]

× exp

⎡
⎢⎣−

∫ E

0

dE ′

kBTe
(
1 + 1

ξ0exp
(

E0−E
σ0

))
⎤
⎥⎦. (23)

The plot of this function is shown in Fig. 2 for the follow-
ing values of the parameters: T = 300, Te = 10000 K, ξ0 =
100.0, E0 = 1, and σ0 = 0.2 eV. The shape of the distribu-
tions follows the typical trend experimentally observed by
many authors [28,29].

III. FITTING PROCEDURE

The model described above was applied to fit some se-
lected experimental spectra, using both the discrete and the
continuous approaches. The discrete approach uses Eq. (14)
to model the population of the rotational excited states and fit
the spectrum, whereas the continuous analysis uses Eq. (23)
to fit the Boltzmann plot of a given spectrum. We have chosen
UV spectra from plasma emission where the violet OH system
was observed. The analysis was restricted to the 0 → 0 band
where only the population of rotational states needed to be
modeled, and no appreciable contribution of transitions from
other bands or systems were observed. In the next section
we give more details about the data from which the emission
spectra was obtained.

In the discrete case, we used the same method of spectra
fitting described in previous works [26,30]. Here we did not
need to model the vibrational population as in Ref. [30], but
we had to introduce a new function to describe the population
of rotational states, based on Eq. (14). The state energies and
Holn-London factors were computed using the methods and
molecular constants given by Goldman and Gilis [31].

The continuous approach, based on Eq. (23), was used
to fit the Boltzmann plot. In order to extract the Boltzmann
plot from the spectra, we used the state-to-state fitting method
[32–34]. This method basically considers the population of
the rotational states as fitting parameters and finds the optimal
solution by the least squares method. The rotational occupa-
tion number of each rotational state was determined using this
method and then used to build the Boltzmann plot.

Besides the two thermal bath model described in this paper,
we also fitted the data using the two-exponential sum model
[Eq. (1)] for both the spectrum and the Boltzmann plot. The
fitting quality and the temperature values were compared with
the results from the two thermal bath model.

The fitting routines were implemeted in MATLAB. The
codes are available to download in the GitHub repository [35].

IV. EXPERIMENTAL DATA

The A2
+ → X 2�+ band spectra of the radical OH were
produced by the emission from a negative glow of a DC dis-
charge in a water-cooled hollow cathode (75, 4.0 mm internal
diameter), analogous to that used by Callomon [36].

The discharge tube was filled with a flow of a mixture
of H2O (distilled) and N2 (99.996% purity), at a pressure of
10 torr (1.3 kPa), and operating with a current of approxi-
mately 25 mA. A BRUKER IFS 125HR Fourier transform
spectrometer (≈2 m optical path difference) at atmospheric
pressure, was used to record the UV spectrum of OH. The
optical path difference of the equipment is controlled by
a stabilized He-Ne laser, which serves as a standard for
wave number calibration. The spectrum was recorded at an
unapodized resolution of 1.0 cm−1, using a solar blind photo-
multiplier (Hamamatsu R7154) tube for energies from 30 000
to 50 000 cm−1. No optical filters were placed in front of the
detectors.

To ensure the high quality of the measured wave numbers,
the spectra have been calibrated using a mercury cadmium
spectral lamp (Hg-Cd OSRAM® HgCd/10). The estimated
absolute accuracy of our measurements of the transitions is
0.005 cm−1 for the strong and unblended lines. The signal to
noise ratio (SNR) varied from 8:1 for the weakest lines up to
90:1 for the strongest ones. For weaker lines, the SNR and
blending caused by overlapping lines limited the accuracy of
measurement to 0.06 cm−1.

V. RESULTS

A. Fitting based on the Boltzmann plot and
the continuous distribution

The Boltzmann plot and the fitted curves are shown in
Fig. 3. The parameters determined by adjusting the experi-
mental data to the models of two baths and two temperatures
are listed in Table I. The full line curve in Fig. 3 is obtained
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FIG. 3. Boltzmann plot built from a state-to-state algorithm ap-
plied to a high resolution spectra of the 0-0 band of the OH violet
system. The fitting based on the two bath theory is represented by the
full blue line curve whereas the fitting based on the two-exponential
sum is represented by the dashed red curve. (a) Plot on the linear
scale. (b) Plot on the logarithmic scale.

by fitting the two bath model. The data errors were adjusted
by requiring homoscedasticity of the weighted residuals and a
resulting χ2 value within a 5% confidence level. The quality
of the fitting is remarkably superior to the fitting based on two-
exponential sum fitting. For instance, the residual standard
deviation of the former is lower as shown in Table I. Also,

TABLE I. Temperatures T1, T2, transition energy E0, and resid-
ual standard deviation σfit determined from the Boltzmann plot fitting
for both models. Fitted values are accompanied by the estimated
errors.

Two bath Two-exponential sum

T1 (K) 1116 ± 64 1108 ± 38
T2 (K) (5.90 ± 0.21) × 103 (5.23 ± 0.17) × 103

E0 (eV) 4.334 ± 0.022
σfit 1.0 × 10−5 1.6 × 10−5

TABLE II. Temperatures T1, T2, transition energy E0, and resid-
ual standard deviation σfit determined from the direct spectra fitting
for both models. Fitted values are accompanied by the estimated
errors.

Two bath Two-exponential sum

T1 (K) 1239 ± 62 1076 ± 83
T2 (K) (4.5 ± 0.3) × 103 (8.75 ± 1.0) × 103

E0 (eV) 4.247 ± 0.025
σfit 4.49 × 10−2 4.51 × 10−2

the residuals plot in the two bath case show evenly scattered
points, whereas the residuals plot in the other case show some
trend.

The two-exponential sum model may be rejected consider-
ing the present data. Despite that, the estimated values for T1

and T2 in the two-exponential sum is statistically compatible
with the corresponding parameters estimated using the two
bath theory. It suggests that the two-exponential model may
not give the best fit, but it could eventually yield consistent
estimates for the temperatures.

We will now discuss if the estimated values for the tem-
peratures are reasonable. By comparing these values with
reported results from literature, we see that the estimated value
for the T1 temperature T1 = 1116 ± 64 K is consistent with
typical gas temperatures in the bulk of low pressure hollow
cathode discharge at similar operating pressures [37]. The
higher temperature T2 = (0.508 ± 0.018) eV, converted here
to eV, is also consistent with typical electron temperatures
found in similar discharges [37]. Therefore, we may asso-
ciate the T1 temperature with the gas temperature and the
T2 temperature with the electron temperature. We should not
discard other interactions contributing to the shaping of the
highly populated tail of the distribution, and the T2 may be
an effective temperature resulting from interactions with other
species besides the electrons. What we may say for now is
that the distribution seems to behave as if governed by two
independent thermal baths with different temperatures.

B. Fitting based on the rovibrational spectrum and
the discrete distribution

The emission spectra dominated by the ν ′ = 0 → ν = 0
OH violet band is shown in Fig. 4 where both fitting curves
are presented in separate plots. In this case we did not note
appreciable differences between the models, although the fit-
ting based on the two bath theory yielded a lower standard
deviation of residuals. We note in both plots that R-branch
lines are consistently underestimated. The same was observed
in the state-to-state fitting. This result suggests that there may
be some inaccuracy in the Honl-London factors, which may be
due to the limitations of commonly used approximations, such
as the Born-Oppenheimer approximation. However, the Q and
P branches are described reasonably well by both fittings.

Table II shows the temperatures and other parameters from
both fittings. The values of the discrete fitting are compatible
with the values of the continuous fitting, showing consistency
between both approaches. The T2 temperature determined us-
ing the two-exponential sum is numerically higher than its
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FIG. 4. Spectra fitting of a high resolution spectra 0-0 band of the OH violet system. Plot (a) fitting based on the two bath theory. Plot
(b) fitting based on the two-exponential sum model.

counterpart in the continuous fitting (Table I), but the uncer-
tainty is large enough to explain the difference.

C. Discussion

We may ask now, in light of the present theory, which
method should be used in ordinary and routine experimental
evaluations of plasma temperature by means of OH violet
spectra. If the goal is only the determination of the gas tem-
perature, the theory ensures that T1 values should have the
best correspondence to the gas translational temperature. The
theory shows that states with very low J values may be almost
uninfluenced by the second thermal bath as long as the σ0

parameter is not too large. This means that, in principle, one
could select only low J states resulting in straight lines in the
Boltzmann plot or very good fittings of the spectra. In these
cases, it is possible to simply assume that state occupancy
is governed by the Boltzmann distribution, provided that this
assumption is restricted to states with low J values. If the
spectra is too entangled due to low resolution and the peaks
cannot be easily estimated, the state-to-state fitting is recom-
mended if one wishes to make use of the Boltzmann plot to
estimate the temperature. Besides, depending on the shape of
the distribution, there may not be a well defined straight line
in the low energy sector of the Boltzmann plot. In terms of
the present theory, this could happen for large values of the

parameter σ0 or σ̃0. In this case, a fitting using the two bath
theory would be preferred rather than arbitrarily selecting a
threshold J value.

One could eventually ask if the current theory could be
used to estimate the electron temperature. Although the the-
ory predicts this possibility, it would only be valid if the
high energy sector of the OH rotational distribution was gov-
erned only by interactions with electrons. This means that
this method cannot be used to estimate directly the electron
temperature, although it can be used in routine measurements
if the correlation or equivalence with electron tempera-
ture is previously assessed using an accurate measurement
technique.

Although the application of the theory was restricted to
the analysis of the OH violet spectra, it can be applied to
any rovibrational spectra generated by plasmas where similar
behavior may occur. The OH spectra have the advantage of be-
ing common in plasmas and having well separated lines. The
application of the present theory on other molecular spectra
will be explored in future works.

VI. CONCLUSION

In this paper we derived the distribution of rotational
states of diatomic molecules in a medium where they can
be modeled as a subsystem interacting with two distinct and
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uncoupled thermal baths. This theory is particularly suitable
to describe the rotational distribution of diatomic molecules
in low temperature and weakly ionized plasmas where each
thermal bath may be interpreted as a population of species
in the plasma that interacts with the molecules—e.g., neutral
atoms and molecules in the ground state, electrons, etc. A
discrete version of the rotational distribution function was
derived using the principle of maximum entropy and con-
straints consistent with the problem. We also derived a
continous version of the rotational distribution function using
the master equations and detailed balancing. We showed that
the two distribution functions are equivalent.

We applied the present method in the analysis of a high
resolution rovibrational spectra of the OH violet system, pro-
duced by the emission of a low-pressure DC hollow cathode
discharge. Using the state-to-state method we obtained the
Boltzmann plot, and we demonstrated that the present theory
gives a better description of the experimental data than the
conventional procedure of describing the distribution as a sum
of two Boltzmann distributions with different temperatures. In
light of the present theory, we showed that the lower tempera-
ture, associated with the colder bath, should be interpreted as
an estimate of the translational energy of the gas. The higher
temperature, on the other hand, should be interpreted as an
estimate of the effective temperature of the more energetic
species, such as electrons and excited species. Therefore, the
method we propose here is specially relevant for the study and
diagnostics of low temperature and weakly ionized plasmas
where heavy species and electrons kinetic energies are not
equipartitioned and electron mean energies are much higher.
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APPENDIX A: PARTIAL INTERNAL ENERGIES ARE
WELL DEFINED AND MEASURABLE QUANTITIES

Let us assume that the internal energy U (t ) of the system
S coupled to two thermal baths is given, at any instant, by
the sum of the energy introduced by thermal bath T1 and
the energy introduced by thermal bath T2 so that U (t ) =
U1(t ) + U2(t ). Energy Ui is defined as the internal energy
content which was introduced in the system by thermal bath
Ti exclusively. For any instant of time, the value of Ui may
be increased by the energy input from Ti or may be decreased
by energy loss for both thermal baths. Therefore, the energy
budget equation may be written as

dU1

dt
= dQ(+)

1

dt
− dQ(−)

11

dt
− dQ(−)

12

dt
, (A1a)

dU2

dt
= dQ(+)

2

dt
− dQ(−)

21

dt
− dQ(−)

22

dt
, (A1b)

where dQ(+)
1 /dt and dQ(+)

2 /dt are the input heat flows from
thermal baths T1 and T2, dQ(−)

11 /dt , and dQ(−)
12 /dt are the

FIG. 5. Representation of the energy exchange between system
S and baths T1 and T2. We assume that for a given small time
interval, heat amounts δQ(+)

1 and δQ(+)
2 are introduced into the system

by thermal baths T1 and T2, and heat amounts δQ(−)
1 and δQ(−)

2 are
removed from the system by thermal baths T1 and T2.

output heat flows to thermal baths T1 and T2, respectively,
decreasing U1 internal energy, and dQ(−)

21 /dt and dQ(−)
22 /dt are

the output heat flows to thermal baths T1 and T2, decreasing
U2 internal energy. Figure 5 gives a schematic of the system
energy exchange. In this equation, we assumed that the net
input heat from the thermal baths is entirely converted into
internal energy. Before the stationary equilibrium is reached,
the net heat flow could also be negative, depending on the
instantaneous state of the system. Since the thermal baths are
assumed ideal, the energy input is constant and depends only
on the temperature and entropy loss rate of the thermal bath,
i.e.,

dQ(+)
1

dt
= �

(+)
1 (T1) = cte., (A2a)

dQ(+)
2

dt
= �

(+)
2 (T2) = cte., (A2b)

where �
(+)
i (Ti ) is the constant energy input from thermal bath

Ti, which depends only on the temperature and the coupling
characteristics of the thermal bath, but not on time or the state
of system S. Analogously, we may write the energy loss of
the system to the thermal baths as

dQ(−)
1

dt
= dQ(−)

11

dt
+ dQ(−)

21

dt
= �

(−)
1 (t ), (A3a)

dQ(−)
2

dt
= dQ(−)

12

dt
+ dQ(−)

22

dt
= �

(−)
2 (t ), (A3b)

where �
(−)
1 (t ) and �

(−)
2 (t ) are now functions that may depend

on time and state of system S. We now assume that in the
limit of long times after some initial condition, the system will
reach stationary equilibrium, which requires that

lim
t→∞ �

(−)
1 (t ) = −�

(+)
1 , (A4a)

lim
t→∞ �

(−)
2 (t ) = −�

(+)
2 . (A4b)

We will also assume that heat flows are slow and the
system evolves towards stationary equilibrium slowly so that
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internal energy U (t ) varies uniformly.2 After some introduc-
tion of heat from the thermal baths we may consider that
heat energies are equally partitioned among every subsystem.
Therefore, any subsystem should have the same proportion
of U1 and U2 at a given time t , although this proportion may
uniformly change in time. The prior assumptions allow us to
write the energy losses as

dQ(−)
11

dt
+ dQ(−)

12

dt
= ν1U1 + ν2U1, (A5a)

dQ(−)
21

dt
+ dQ(−)

22

dt
= ν1U2 + ν2U2, (A5b)

where we introduced the rate coefficient νi which quantifies
how fast heat is transferred from system S to thermal bath Ti.
This quantity depends on the properties of the thermal bath
and its coupling to system S and should be strictly positive,
greater than zero and should not depend explicitly on time.
We may now rewrite Equations (A1a) and (A1b) as a system
of first order ordinary differential equations,

dU1

dt
= �

(+)
1 − (ν1 + ν2)U1, (A6a)

dU2

dt
= �

(+)
2 − (ν1 + ν2)U2. (A6b)

These equations are uncoupled and can be solved sepa-
rately using well known analytical methods. We will impose
the initial condition at some time t0—arbitrarily set to zero
(t0 = 0)—for which the initial internal energy is known and
given by U1(t0) = U10, U2(t0) = U20, and U (t0) = U10 + U20.
The solution for this differential equation for this initial con-
dition is given by

Ui(t ) = Ui0

μ(t )
+ �

(+)
i

μ(t )

∫ t

0
μ(t ′)dt ′, (A7)

where i is the index of the thermal bath (e.g., 1 for thermal
bath T1) and μ(t ) = exp [(ν1 + ν2)t]. Let us now take the
limit t → ∞ of the equation above. Before that, we should
note that μ(t ) → ∞ as t → ∞, so the first term of the right
hand side of Eq. (A7) will be zero. So all we need to do now is
to compute the limit of the second term. It can be readily seen
that both the integral in the numerator and the function in the
denominator go to infinity, so we may apply the l’Hôpital rule
to compute it,

lim
t→∞Ui(t ) = lim

t→∞
ζ ′(t )

μ′(t )
= lim

t→∞
�

(+)
i μ(t )

(ν1 + ν2)μ(t )
= �

(+)
i

(ν1 + ν2)
,

(A8)

2The system as a whole (system S plus thermal baths) may not
be in thermal equilibrium, but the internal energy is supposed to
have a uniform and well defined mean value for every instant t .
The stationary equilibrium is reached when the net heat exchange
in any given thermal bath is zero, a condition usually referred to
as zeroth thermodynamic law. This condition is also assumed in the
conventional case of thermal equilibrium for one thermal bath, but in
the case of two or more thermal baths, system S may not have a well
defined temperature.

where ζ (t ) = �
(+)
i

∫ t
0 μ(t ′)dt ′ and use was made of the Leib-

nitz rule to compute the derivative of the integral function
ζ (t ). We immediately conclude from the above limit that the
partial internal energy Ui converges to a constant value which
does not depend on the initial condition nor the thermody-
namic path. This constant value depends on the heat input
flow from the bath and the heat flow rate coefficients from
both baths. The condition of stationary equilibrium allow us
to write νi as a function of the total internal energy and the
input heat flow of the ith thermal bath, i.e., νi = �

(+)
i /Ueq.

Substitution on Eq. (A8) gives us the equilibrium energy Ui,eq,

Ui,eq = Ueq
�

(+)
i∑

j �
(+)
j

. (A9)

The sum in the denominator of this equation is just the sum
of the heat flow input from the two thermal baths, but we see
that this result may be readily generalized to any number of
thermal baths. The ratio between the partial value Ui,eq and
the total internal energy is nothing but the ratio between the
input heat flow of the ith thermal bath and the total input heat
flow. Since the heat flow from an ideal thermal bath may be
assumed constant, one may clearly see that the value of Ui,eq

is unique in thermal equilibrium conditions. In our derivation
of the rotational energy distribution function in Sec. II, this
thermal equilibrium state was implicitly assumed. This means
that the energies U1 and U2 should be interpreted as the
equilibrium energies U1,eq and U2,eq. Since these quantities
have well defined mean values, which depend only on the
thermal bath characteristics, they can be used as constrained
quantities in the entropy maximization procedure. We also
note that the partial derivatives of the entropy S from Eqs. (2a)
and (2b) must be interpreted as a derivative in the domain
of equilibrium values U1,eq and U2,eq. This is valid since we
search a solution after the stationary equilibrium is reached.
Again, we recall that stationary equilibrium is defined here
as the condition where the net exchange of heat is zero, and
system S may not have a well defined temperature.

APPENDIX B: RELATION OF THE PRESENT
THEORY TO SUPERSTATISTICS

We include here a brief note on the relation of the present
theory with superstatistics. Superstatistics describe systems
where temperature may fluctuate and whose value is not
unique, although some value may be eventually measured
within some prescribed distribution [38]. One may ask if
the present theory could eventually be easily related to the
formalism of superstatistics. Although a detailed analysis of
this question is outside the scope of the present paper we
think that some discussion about this would be worthwhile for
a greater audience. Superstatistics describes systems where
temperature may fluctuate in timescales greater than the relax-
ation time. The temperature value can be measured but may
vary according to some prescribed distribution. This would
be the case, for instance, in an experiment that measures
temperature from light emitted from two distinct and uncou-
pled plasmas in the same line of sight of the apparatus. It
could also be a time resolved measurement of an oscillating
plasma alternating between two equilibrium states. In these
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cases, the temperature probability distribution function could
be simply two Dirac δ’s, one centered at T1 and the other
centered at T2. Analogously, we may consider another ex-
periment where the emission of a plasma is also measured,
but for some reason some microscopic states of the plasma
couple only to one thermal bath and the other couple only to
the other thermal bath. In this case, our distribution could be
defined as a conditional Dirac δ, depending on some energy
threshold. However, in general, our problem is different. It
is not only that the temperature may fluctuate in time or
space; actually, the system temperature is not well defined,

and it cannot be measured except for some special cases.
Only the thermal bath temperatures are well defined, and
we may only allow fluctuations of these temperatures. For
this reason, maybe the usual “univariate” expression for Z in
conventional superstatistics may have to be generalized to a
“multivariate” expression to describe systems similar to ours,
e.g., Z = ∫∫

f (β1, β2) exp (−β1E ) exp (−β2E )dβ1dβ2. This
should not be seen as a definitive answer, but it may guide
new developments if the present theory indeed could find
more applications beyond the specific problem of diatomic
rotational distributions in plasmas.
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