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Vibrational model of thermal conduction for fluids with soft interactions
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A vibrational model of heat transfer in simple liquids with soft pairwise interatomic interactions is discussed.
A general expression is derived, which involves an averaging over the liquid collective mode excitation spectrum.
The model is applied to quantify heat transfer in a dense Lennard-Jones liquid and a strongly coupled one-
component plasma. Remarkable agreement with the available numerical results is documented. A similar picture
does not apply to the momentum transfer and shear viscosity of liquids.
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I. INTRODUCTION

An accurate general theory of transport process in liquids
is still lacking, despite considerable progress achieved over
many decades [1–3]. As a result we often have to rely (when
experimental data are not available) on phenomenological ap-
proaches, semiquantitative models, and scaling relationships.
In this context one can mention the activated jumps theory of
self-diffusion in simple liquids [4], the Stokes-Einstein rela-
tion between the self-diffusion and shear viscosity coefficients
[4–8], the excess entropy scaling of transport coefficients
[9–12], their freezing temperature scaling [13–17], and many
others.

The focus of this paper is on thermal conduction in sim-
ple liquids. Perhaps the simplest expression for the thermal
conductivity coefficient λ is the Bridgman’s expression [18]
proposed about one century ago,

λ = 3csn
2/3, (1)

where cs is the sound velocity and n is the density (we assume
kB = 1 and measure temperature in energy units throughout
this paper). It can be derived by assuming that the atoms of
the liquid are arranged in a cubic quasilattice with the mean
interatomic separation � = n−1/3 and that the energy between
quasilayers perpendicular to the temperature gradient is trans-
ferred with the sound velocity cs. An additional assumption,
that the heat capacity at constant volume of a monoatomic
liquid is about the same as for a solid at high temperature
and is given by the Dulong-Petit law, cV � 3, gives rise to
the prefactor in Eq. (1) [19].

Another simple model proposed by Horrocks and
McLaughlin [20] considers the same idealization of the liquid
structure, but assumes that the energy between successive
layers is transferred due to vibrations with a characteristic
Einstein frequency of the liquid’s quasilattice �E. Omitting
numerical coefficients of order unity, which contain geomet-
rical factors and the probability that energy is transferred
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when two vibrating atoms collide, the coefficient of thermal
conductivity is evaluated as

λ = cV
�E

2π�
. (2)

More recently, Cahill and Pohl [21,22] reanalyzed the Ein-
stein model of lattice heat conduction dating back to 1911
(and republished in 2005 [23]). In Einstein’s picture heat
transport in crystals was a random walk of the thermal energy
between neighboring atoms vibrating with random phases.
Building on these ideas and assuming a Debye-like density
of vibrational states, Cahill and Pohl proposed a so-called
minimal thermal conductivity model [21,22], which is in
good agreement with the measured thermal conductivities of
many amorphous inorganic solids, highly disordered crystals,
and amorphous macromolecules [24]. In the high-temperature
limit the model yields

λ � 0.40n2/3(cl + 2ct ), (3)

where cl and ct are the longitudinal and transverse sound ve-
locities, respectively. The applicability of this model to liquids
was not discussed in Refs. [21,22].

The purpose of this work is to put forward a generalization
of the vibrational model of heat transfer in soft interacting
particle liquids. A single general expression is derived, which
reduces to Eqs. (1), (2), or (3) under special simplifying as-
sumptions regarding the system vibrational properties. The
reliability of the derived expression is then checked against
recent numerical data on the thermal conductivity coefficient
of a dense Lennard-Jones (LJ) liquid and a strongly coupled
one-component plasma (OCP) fluid. It is demonstrated that
the model describes accurately the numerical data with no
free parameters. Relations between the coefficients of ther-
mal conductivity and viscosity in the liquid state are briefly
discussed. It is shown that the mechanisms of momentum and
heat transfer in liquids are different.
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FIG. 1. Two-dimensional slice of a quasilayered three-
dimensional fluid model under consideration. The average
interparticle separation within one quasilayer and between
quasilayers is � = n−1/3. The temperature increases from bottom to
top.

II. MODEL

Similar to the approaches by Bridgman and Horrocks and
McLaughlin, a liquid is approximated by a layered structure
with layers perpendicular to the temperature gradient and
separated by the distance � = n−1/3. The particle density
in each such quasilayer is �−2. A sketch of the considered
idealization is shown in Fig. 1. In contrast to the situation in
a crystalline solid, the atomic positions in the liquid’s quasi-
layers are not fixed. The atoms can migrate within one layer
as well as between different layers, however, the timescale
of these migrations is relatively long. Considering the acti-
vated jump theory of self-diffusion in the liquid state, the
following picture can be adopted. An atom oscillates almost
harmonically about a local equilibrium position (determined
by the interaction with other atoms), until it suddenly finds
a “free” place among its nearest neighbors and jumps there,
rearranging equilibrium positions of the neighboring atoms.
An important point is that the average waiting time between
such rearrangements is much longer than the period of os-
cillations in a temporal equilibrium position. This picture
is clearly more appropriate for sufficiently soft interatomic
interactions and much less adequate for hard-sphere-like sys-
tems.

Now, if a temperature gradient is applied, the average
difference in energy between the atoms of adjacent layers is
�(dU/dx), where U is the internal energy. In the considered
model, the energy between successive layers is transferred
when two vibrating atoms from adjacent layers “collide” (this
should not be a physical collision; the atoms just need to
approach by a distance that is considerably shorter than the
average interatomic separation). The characteristic vibrational
frequency of the liquid’s quasilattice is ν and this defines
the characteristic energy relaxation frequency, according to
Einstein’s picture [22]. Then, the energy flux per unit area is

dQ

dt
= − ν

�

dU

dx
, (4)

where the minus sign indicates that the heat flow is down the
temperature gradient. On the other hand, Fourier’s law for the

heat flow reads

dQ

dt
= −λ

dT

dx
, (5)

where λ is the thermal conductivity coefficient, which is a
scalar in isotropic liquids. Combining Eqs. (4) and (5) we
immediately get

λ = dU

dT

ν

�
= cV

ν

�
= cV

〈ω〉
2π�

. (6)

It has been implicitly assumed that the characteristic fre-
quency of energy exchange is equal to the average vibrational
frequency of an atom, ν = 〈ω〉/2π (which is a factor of two
smaller than in the Cahill and Pohl model [22]). The re-
maining step is to evaluate this average vibrational frequency.
Since the actual frequency distribution can be quite complex
in liquids, and can vary from one type of liquid to another,
some simplifying assumptions have to be employed.

In the simplest Einstein approximation all atoms vibrate
with the same (Einstein) frequency �E (on timescales shorter
than the rearrangement waiting time) and, hence, 〈ω〉 = �E.
We recover immediately the expression by Horrocks and
McLaughlin, Eq. (2).

As an improvement, let us consider a Debye spectrum,
characterized by the vibrational density of states that is pro-
portional to ω2, g(ω) ∝ ω2. We get

〈ω〉 =
∫ ωD

0
g(ω)ωdω

[∫ ωD

0
g(ω)dω

]−1

= 3

4
ωD, (7)

where ωD is the cutoff Debye frequency. The latter can be
estimated from the condition

�2
E = 〈ω2〉 = 3

5
ω2

D,

which yields 〈ω〉 = 0.968�E, which is again close to the
result by Horrocks and McLaughlin.

As an alternative, we can use an acoustic spectrum, ω =
csk, supplemented by an appropriate cutoff of the wave num-
bers kmax. Then, the standard averaging procedure results on
an analog of the Bridgman equation (1), to within a numerical
coefficient.

As a more general approximation, assume that a dense
liquid supports one longitudinal and two transverse modes.
Averaging in k space yields

〈ω〉 = 1

6π2n

∫ kmax

0
k2dk[ωl (k) + 2ωt (k)], (8)

where the cutoff kmax is chosen to provide n oscillations for
each collective mode, so that

4π

3

(
kmax

2π

)3

= n.

If we deal with acousticlike dispersion relations,

ωl (k) � clk, ωt (k) � ct k,

the integration is trivial and we immediately get

λ � 1

4

(
3

4π

)1/3

cV n2/3(cl + 2ct ). (9)
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If we additionally assume cV � 3, the formula similar to that
of Cahill and Pohl is recovered, but with a slightly larger
numerical coefficient, λ � 0.47n2/3(cl + 2ct ).

Thus, all three simple expressions appearing in the Intro-
duction can be considered as just special cases of the more
general expression (6). Note also that averaging in Eq. (8)
can be applied to systems with deviations from the acoustic
dispersion. A remarkable example corresponding to the OCP
fluid will be considered later in this paper.

An important remark should be made before we conclude
this section. In Eq. (8) the integration over k is performed
all the way from zero to kmax for both the longitudinal and
transverse modes. In this way the existence of a k-gap for
the transverse collective mode is not taken into account. This
“k-gap” implies a minimum (critical) wave number k∗, below
which transverse (shear) waves cannot propagate, which is a
well-known property of the liquid state [1,25–29]. However,
since the contribution from the small k region to the integral
in Eq. (8) is not essential (〈ω〉 ∝ ∫

k3dk), the existence of the
k-gap is not significant as long as k∗ � kmax. As the liquid
temperature increases and (or) density decreases, the k-gap
widens and should be properly accounted for. However, in
this regime the applicability of the vibrational model itself
becomes questionable so we do not elaborate on this further.
It should be additionally mentioned that since the k-gap width
is directly related to the magnitude of cV [30], the k-gap and
λ are nevertheless implicitly related.

In the following we verify the proposed model against the
available results on heat conduction in a dense LJ liquid and
in a strongly coupled OCP fluid.

III. LENNARD-JONES LIQUID

The Lennard-Jones potential, which is often used to ap-
proximate interactions in liquefied noble gases, reads

φ(r) = 4ε
[(σ

r

)12
−

(σ

r

)6]
, (10)

where ε and σ are the energy and length scales (or LJ units),
respectively. The density, temperature, pressure, and energy
expressed in LJ units are n∗ = nσ 3, T∗ = T/ε, p∗ = Pσ 3/ε,
and u∗ = U/Nε.

The LJ system is one of the most popular and extensively
studied model systems in condensed matter physics. Many
results on transport properties have been published over the
years. Here, we use the numerical results by Meier, who tab-
ulated very accurate thermal conductivity coefficients along
a close-critical isotherm T∗ = 1.35 [31]. These results are
particularly suitable in the present context, because in addi-
tion to the thermal conductivity coefficient, the data for the
thermodynamic properties (i.e., specific heat cV , the reduced
energy u∗, and the reduced pressure p∗) as well as other
transport coefficients (diffusion, shear, and bulk viscosities)
for investigated state points were also tabulated. This is a rare
case when all the necessary information to perform a detailed
comparison is immediately at hand.

Both the longitudinal and transverse modes of the LJ liquid
exhibit an acousticlike dispersion and therefore Eq. (9) is
used for comparison. The sound velocities cl and ct were not
tabulated in Ref. [31], but they can be easily expressed (for
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FIG. 2. Reduced thermal conductivity coefficient λ∗ vs the re-

duced density n∗ of a Lennard-Jones fluid along an isotherm T∗ =
1.35. Symbols correspond to numerical results from Ref. [31]. The
solid curve is calculated using Eq. (9).

the LJ system) in terms of the system pressure and energy
[31–33], and this is how they have been evaluated.

The comparison between the vibrational model of Eq. (9)
and numerical results from Ref. [31] is shown in Fig 2.
The heat transport coefficient is made dimensionless using
the LJ units: λ∗ = λσ 2√m/ε. The agreement is excellent in
the dense liquid regime, but becomes poor at low densities
(n∗ � 0.2), as can be expected. Note that in the vicinity of
the critical density, some (modest) critical enhancement of
the thermal conductivity coefficient is reproduced in both
simulation and theory.

IV. ONE-COMPONENT PLASMA

The OCP model is an idealized system of point charges
immersed in a neutralizing uniform background of opposite
charge (e.g., ions in the immobile background of electrons or
vice versa) [34–37]. This model is of considerable practical
interest as it is relevant to a wide class of physical systems,
including, for example, laboratory and space plasmas, plan-
etary interiors, white dwarfs, liquid metals, and electrolytes.
There are also relations to various soft matter systems such
as charged colloidal suspensions and complex (dusty) plas-
mas [38–40]. From the fundamental point of view, OCP is
characterized by a very soft and long-ranged Coulomb inter-
action potential, φ(r) = e2/r, where e is the electric charge.
This potential is much softer than the Lennad-Jones potential
considered above and this results in important differences
regarding the collective mode properties. For this reason OCP
represents a very important reference system to verify the
validity of the vibrational model of thermal conductivity dis-
cussed here.

The transport properties of the OCP and related system are
very well investigated in classical molecular dynamics (MD)
simulations. Extensive data on the self-diffusion [41–44],
shear viscosity [17,45–48], and thermal conductivity [45,49–
51] have been published and discussed in the literature. Sub-
stantial progress in ab initio studies of related systems has
been also achieved [52,53]. A large collection of data on the
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shear viscosity of strongly coupled plasmas has been analyzed
in connection to the lower bound on the ratio of the shear
viscosity coefficient to the entropy density, obtained using
string theory methods [54].

Before we proceed further, let us quickly summarize some
important properties of the OCP. The particle-particle correla-
tions and thermodynamics of the OCP are characterized by a
single dimensionless coupling parameter � = e2/aT , where
a = (4πn/3)−1/3 is the Wigner-Seitz radius, and T is the
temperature in energy units (kB = 1). The coupling parameter
essentially plays the role of an inverse temperature or inverse
interatomic separation. In the limit of weak coupling (high
temperature, low density), � � 1, the OCP is in a disordered
gaslike state. Correlations increase with coupling and, at � �
1, the OCP exhibits properties characteristic of a fluidlike
phase (low temperature, high density). The fluid-solid phase
transition occurs at � � 174 [37,55,56].

The dynamical properties of the OCP are determined by
the plasma frequency ωp =

√
4πe2n/m, which plays the role

of the inverse timescale. All other important frequencies are
proportional to ωp. For example, the Einstein frequency �E

can be quite generally expressed using the pairwise interaction
potential φ(r) and the radial distribution function g(r) [57]:

�2
E = n

3m

∫
dr∇2φ(r)g(r). (11)

In the OCP case, g(r) should be substituted by g(r) − 1 due
to the presence of the neutralizing background. The poten-
tial satisfies ∇2φ(r) = −4πe2δ(r), by virtue of the Poisson
equation. From this we immediately get the familiar identity
�E = ωp/

√
3 � 0.577ωp.

The actual spectrum of OCP collective excitations is differ-
ent from that of a LJ liquid. At sufficiently strong coupling we
also have one longitudinal and two transverse modes. How-
ever, the longitudinal mode does not exhibit an acousticlike
dispersion, but rather it is a plasmon mode (for an example
of numerically computed and analytical dispersion relations,
see, e.g., Refs. [58–60]). We approximate the long-wavelength
dispersion relations of these modes with

ω2
l � ω2

p − c2
l k2, ω2

t � c2
t k2. (12)

Here, cl is not the true acoustic velocity—this notation is
only kept for simplicity. From the identity ω2

l + 2ω2
t = ω2

p

(valid for the OCP system) we get c2
l = 2c2

t . The quantities
cl and ct can be evaluated using the quasilocalized charge
approximation, where they appear as functions of the reduced
excess energy [58,61]

c2
l = − 4

15
v2

Tuex, c2
t = − 2

15
v2

Tuex, (13)

where uex = U/NT − 3/2 (note that uex is negative at strong
coupling due to the presence of the neutralizing background).
For uex we use a simple three-term equation proposed in
Ref. [62], based on extensive Monte Carlo simulation data
from Ref. [63],

uex � − 9

10
� + 0.5944�1/3 − 0.2786. (14)

The first term corresponds to the so-called ion sphere model
(ISM) [37,55,64], which provides a dominant contribution at
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FIG. 3. Reduced thermal conductivity coefficient λ∗ of a strongly
coupled OCP vs the coupling parameter �. Symbols correspond to
numerical results from Ref. [51]. Curves are calculated using the
vibrational model discussed in this work: Solid curve: Eqs. (6) and
(8). Dashed curve: Eq. (2).

strong coupling. If we keep only this term in the expressions
for cl and ct in Eq. (13), then the integration in Eq. (8) results
in 〈ω〉 � 0.523ωp. It was verified that keeping terms beyond
ISM does not lead to any appreciable deviations from this
result in the strongly coupled regime.

It should be pointed out that the kinetic terms (i.e., the
Bohm-Gross term in the plasmon dispersion and a similar
term in the transverse dispersion) are not included in Eq. (12).
These are numerically small at strong coupling and can be
safely neglected. From a pragmatic point of view this is well
justified away from the point where the negative dispersion of
the plasmon mode sets in (dω/dk < 0 at k → 0). The onset
of negative dispersion takes place at � � 10 [65–68] and this
limits the applicability of the approach from the side of weak
coupling (in addition to neglecting the k-gap in the transverse
mode).

The main dependence on � in the strongly coupled regime
is expected from the variation of cV with �. Expressing con-
ventional thermodynamic identities in terms of � [69,70], we
get

cV (�) = 3

2
+ uex − �

∂uex

∂�
� 3

2
+ 0.3936�1/3 − 0.2786,

(15)
where the equation of state of Eq. (14) has been employed.

The theoretical model is compared with the numerical re-
sults from Ref. [51] in Fig. 3. Following the standard plasma
physics nomenclature, the reduced thermal conductivity co-
efficient is defined as λ∗ = λ/nωpa2. Two theoretical curves
are plotted. The solid one corresponds to the averaging using
Eqs. (6), (8), and (12). The dashed curve is plotted using a
simpler Eq. (2). The theoretical curves are relatively close,
with the former curve demonstrating better agreement as
could be expected. Overall, the agreement between the theory
and simulation in the strongly coupled regime � � 50 is re-
markably good, especially taking into account the absence of
free parameters. For weaker coupling the model overestimates
the thermal conductivity coefficients, but its applicability be-
comes questionable there for the reasons discussed above.
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FIG. 4. The ratio of the reduced thermal conductivity to the vis-

cosity coefficients λ∗/η∗ vs the reduced density n∗ in a LJ liquid.
Symbols correspond to numerical results tabulated in Ref. [31]. The
solid curve shows the dependence of cV on n∗. Note a pronounced
critical enhancement in the vicinity of the critical density.

V. SHEAR VISCOSITY

It is tempting to assume that the same vibrational mecha-
nism can be responsible for the momentum transfer in liquids
and thus determines their shear viscosity coefficient. Consider
a fluid flowing from left to right in the sketch of Fig. 1
and having a uniform velocity gradient du/dx. By definition,
the force between adjacent layers per unit area (the stress)
is σ = η(du/dx), where η is the shear viscosity coefficient
[3]. On the other hand, the difference in momenta between
neighboring fluid quasilayers is m�(du/dx). Vibrating parti-
cles transfer this momentum with a characteristic frequency
〈ω〉/2π . The number of particles per unit area is �−2. The
force per unit area, related to this vibrational process, is
σ = m〈ω〉(du/dx)/2π�. Combining this with the definition
of shear viscosity we get

η = m〈ω〉
2π�

. (16)

This essentially coincides with Andrade’s point of view on the
viscosity of liquids [71,72].

Comparing Eqs. (6) and (16) we immediately obtain η =
mλ/cV , or, in appropriately reduced units, λ∗/η∗ = cV . In
Fig. 4 we plot the ratio λ∗/η∗ in a LJ liquid along the
isotherm T∗ = 1.35 as obtained from the numerical simulation
[31]. The ratio λ∗/η∗ exhibits a pronounced nonmonotonous
dependence on n∗. Although an average value of this ratio
predicted by theory is approximately correct (�cV ) at high
density, the density dependence is not reproduced. A similar
picture takes place for the OCP fluid as shown in Fig. 5.
This provides a strong indication that the mechanisms of mo-
mentum and heat transfer in liquids are different. Momentum
transfer is not so effective as the vibrational model predicts.
This correlates well with the conventional assumption that
the mechanisms of mass and momentum transfer in fluids
are convective, that is, involving atomic hopping (activated
jumps) from occupied sites to holes. An average waiting time
between such rearrangments is considerably longer than the
vibrational period. The coupling between the diffusion and
viscosity coefficients is also evidenced by the Stokes-Einstein
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FIG. 5. The ratio of the reduced thermal conductivity to the vis-

cosity coefficients λ∗/η∗ vs the coupling parameter � in a OCP fluid.
Symbols correspond to numerical results tabulated in Refs. [48,51].
The solid curve shows the dependence of cV on �.

(SE) relation Dη(�/T ) � αSE, where D is the self-diffusion
coefficient and αSE is the SE coefficient [5]. The SE relation
is satisfied in both LJ and OCP with αSE � 0.15 for the dense
LJ liquid [7,8] and αSE � 0.14 for the strongly coupled OCP
fluid [41,48].

On the other hand, Figs. 4 and 5 demonstrate that the
relation λ∗/η∗ � 4 holds with an accuracy of about 50% in
the LJ case and about 30% in the OCP case. This “average”
value is also close to the ideal monoatomic gas limiting result
λ∗/η∗ � 3.75 [73,74] (shown by the horizontal dashed lines
in Figs. 4 and 5), which should be appropriate at low densities
(weak coupling). Note that the density window corresponding
to the LJ liquid in Fig. 4 is about nmax/nmin ∼ 20, while for
the OCP fluid it is much broader, nmax/nmin ∼ 107, because
� ∝ n1/3.

VI. CONCLUSION

To summarize, we have presented a vibrational model of
heat transfer in simple liquids with soft interatomic interac-
tions and derived a general expression for the heat transfer
coefficient with no free parameters. The model has been tested
on recent accurate MD data on the heat transfer in a dense
LJ liquid and a strongly coupled OCP fluid and a remarkably
good agreement has been documented. We also demonstrated
that a similar mechanism for the momentum transfer in liquids
does not lead to satisfactory results for the shear viscosity
coefficient, except very near the freezing point.

The excellent agreement with MD results for two quite
different model systems illustrates the success of the model
for soft interaction potentials. The model is likely to become
invalid for sufficiently steep hard-sphere-like interactions.
Finding the demarcation line between soft and hard interac-
tions in the context of the vibrational model of heat transfer
would be an interesting task for future research (a similar
demarcation in the context of instantaneous elastic moduli
constitutes an ongoing line of research [75–78].) It would be
also interesting to perform a comparison of the theory with
numerical and experimental results on other model and real
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liquids and to look into potential applications to lower space
dimensionality. This work is in progress and will be reported
elsewhere.
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