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Laser-driven electron acceleration in nanoplate array targets
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This paper proposes a model of the laser-driven electron acceleration that occurs when a high-intensity laser
interacts with a nanoplate target. It shows that quasistatic electric Eqs and magnetic Bqs fields can be formed when
the laser, polarized normal to the nanoplates, extracts electrons from the nanoplates. Considering the physical
natures of Eqs and Bqs, the amplitude of Eqs is relatively larger than Bqs. Such a residual between static electric
and magnetic field is shown to be crucial for the electron acceleration beyond the ponderomotive scaling, as it
can cause onset of stochastic electron motion. The analysis demonstrates that the maximum electron energy in
units of ponderomotive scaling depends on a single universal parameter, which is composed of laser amplitude,
spacing between nanoplates, and electron initial conditions. The analytical results are confirmed by a series of
two-dimensional particle-in-cell simulations using EPOCH code.
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I. INTRODUCTION

Interaction of high-intensity lasers with solid targets can
result in a high yield of both x-rays and energetic electrons.
To efficiently convert the energy of the incident laser into the
energy of the radiated x-rays and emitted electrons, it is nec-
essary that the target absorbs most of the incident laser energy.
Multiple studies [1,2] indicate that flat targets typically absorb
less than 10% of the laser pulse energy, while structured
targets can absorb over 90%. Laser interaction with differ-
ent structured targets, such as nanorod arrays [2], “velvet”
targets [3], “smoked” targets [4], and “foamed” targets [5],
were studied experimentally and via computer simulations.
However, the physics of the electron acceleration during the
laser-target interaction is not yet completely described. It was
shown [6] that the interaction of the microchannel target with
the laser creates the quasistatic electric fields in the cavities
of the target. The presence of static electric and magnetic
fields can lead to the stochastic acceleration of the electrons
by the laser, as was demonstrated [7–9] with the Hamiltonian
formalism.

In this paper, we model the interaction of a laser with
a periodic nanoplate array target. We show that quasistatic
electric Eqs and magnetic Bqs fields can emerge in such setup,
and develop a semianalytic model for the formation of such
fields. We use the 3/2-dimensional Hamiltonian [9] formalism
to describe the motion of a single electron in the presence of
the laser and prescribed Eqs and magnetic Bqs fields. From the
single-electron model, we find the condition for the onset of
stochastic electron heating. We also determine when the max-
imum electron energy Emax from stochastic heating exceeds
ponderomotive energy scaling [10]. We verify our analytic
results with a series of two-dimensional particle-in-cell (2D
PIC) simulations. The maximum electron energy in our PIC
simulations can be explained with the proposed stochastic
acceleration mechanism.

The rest of the paper is organized as follows. In Sec. II we
describe the simulation setup. Extraction of the electrons from
the target by the laser pulse and formation of the quasistatic
electromagnetic fields are analyzed in Sec. III. In Sec. IV
we examine the acceleration of electrons in the laser and
quasistatic fields. The results of PIC simulations are presented
in Sec. V. Section VI is the conclusion.

II. SETUP DESCRIPTION

Laser-target interaction experiments typically involve com-
plex, often irregular structures. Direct simulation of such
structures requires a three-dimensional (3D) consideration
[5,11,12], which poses significant computational challenges.
Modeling complex structures can also make it hard to pinpoint
important physics mechanisms. In this work, we consider a
simplified 2D model of a nanoplate target as shown in Fig. 1.
We model the target by filling a region of the simulation
domain with a cold plasma, as shown with black in Fig. 1.
The nanoplates of the target are modeled as rectangular re-
gions with a length of sides d = 0.1λ along ey, and L = 20λ

along ez, where λ = 400 nm is the wavelength of the inci-
dent laser pulse propagating along ez. The backplate of the
target is modeled as a slab of size Lbp = λ along ez. The
gaps between neighboring nanoplates are all equal to D, with
different values of D from 0.25λ to 12λ considered in our
series of PIC simulations. The material of a target is modeled
by a cold plasma, composed of immobile ions pre-ionozed
to an arbitrarily chosen value Z = 5, and the electrons. The
number density of the electrons is set to ne = 50ncr, where
ncr = mω2/4πe2 = 6.97 × 1021 cm−3 is the critical plasma
density, m is the electron mass, e is the electron charge, and
ω = 2πc/λ is the laser frequency. The number density of ions
is set to ni = ne/Z ≈ 6 × 1022 cm−3, which is similar to the
number density of ions in solid copper.

The laser consists of a 2λ long prepulse, followed by a
15λ long main pulse and a 2λ decay, as shown in Fig. 1.
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FIG. 1. Schematic view of the simulation setup. The black re-
gion corresponds to where the target is located in the domain. The
nanoplates are separated by vacuum gaps of width D. Each nanoplate
has the width d along the y-axis and length L along the z-axis.
Nanoplates are connected on the right side at z = L with the bulk
of width λ. Top and bottom boundaries of the simulation domain are
periodic, left and right boundaries are open. The laser pulse arrives
from the left boundary. The electric field of the laser at time t = 0 is
shown by the red curve at z between −19λ and 0.

The main pulse is described by a vector potential a of magni-
tude a = −a0 cos(ξ ), where a0 = eE/mcω is the normalized
vector potential, ξ = ω(t − z/c), and c is the speed of light
in vacuum. We considered two laser polarizations, described
by a = aex (x-polarized) and a = aey (y-polarized). The value
of a0 ranged from 1.0 to 4.0, corresponding to laser intensi-
ties from 1.8 × 1019 W/cm2 to 1 × 1020 W/cm2. We chose
the frame of reference so that the laser prepulse reaches the
nanoplates at z = 0 at time t = 0, as shown in Fig. 1.

We conduct our PIC simulations with the fully relativistic
2D3V PIC code EPOCH [13]. The simulation domain has the
size 2d + 2D along the y-axis and 31λ + L along the z-axis.
Each cell has a size of 0.01λ along both the y- and z-axes.
Boundaries normal to the y-axis are periodic for both particles
and fields. Boundaries normal to the z-axis are open for both
particles and fields.

The rest of this paper uses normalized units marked with a
hat. Distances are normalized by λ/2π . Velocities of electrons
are normalized by the speed of light c. Number densities are
normalized by ncr. Time is normalized by 1/ω. The momen-
tum of electrons is normalized by mc. The magnitudes of
the electric and magnetic fields are normalized by mcω/e.
Potentials of electric and magnetic fields are normalized by
mc2/e. Electric currents are normalized by encrc.

A. Role of the laser polarization

Polarization of the laser pulse significantly affects the
laser-target interaction. In the rest of this section, we will show
that the y-polarized pulse can propagate into the gap of any
size D̂, while the x-polarized pulse is reflected if D̂ < π . Fur-
thermore, as will be discussed in Sec. III, only the y-polarized
pulse creates the quasistatic fields inside the gap.

Because of the high conductivity of nanoplates, we can ap-
proximate them as ideal conductor and explain the difference
between x and y polarization of a laser with a simple model
of a lossless multiconnected waveguide. Specifically, consider
the waveguide formed by two parallel, ideally conducting
plates located at ŷ = 0 and ŷ = D̂. Such waveguide has

three types [14] of E, B ∝ exp[i(t̂ − ẑ)] modes: purely trans-
verse (TEM) modes, modes with longitudinal components of
the electric field (TM modes), and modes with longitudinal
components of magnetic field (TE modes). Due to Ex = 0
boundary conditions, TEM modes in such a waveguide can
be polarized only along ey and have the same electric and
magnetic fields as a plane wave. Furthermore, TEM modes
can propagate in a gap of any size D̂ and have luminal phase
velocity. The electric field of such a TEM mode is normal to
the waveguide boundary, and therefore it can extract electrons
from the boundary by the electric force.

Meanwhile, the only x-polarized modes in the aforemen-
tioned waveguide are TE modes. The dispersion relation
for TE modes suggests ω � cπ/D, therefore TE modes can
propagate only in a gap D̂ > π . As a crude model for the
propagation of the x-polarized pulse inside the gap, one can
Fourier expand the plane wave at the gap entrance |E| =
|E (y, z = 0)ex| = Ẽx = const into a sum of TE modes. The
resulting expansion of Ẽx gives ETE = αlEx,l , where

αl = 2Ẽx[1 − cos(π l )]

π l
, Ex,l ∝ sin

(
π l

y

D

)
, (1)

and l is an integer. The expression for the z-component
of magnetic field BTE is BTE = αlBz,l , where Bz,l is the z-
component of magnetic field of the TE mode with electric
field Ex,l ex.

Electrons subjected to ETEex and BTEez experience the pon-
deromotive force pushing the electrons from the gap into the
plasma, where there is no laser field and therefore no efficient
electron acceleration. Since this paper focuses on laser-driven
electron acceleration, in the rest of the paper we will primarily
study the y-polarization case.

III. ELECTRON EXTRACTION AND FORMATION
OF QUASISTATIC ELECTROMAGNETIC FIELD

As the y-polarized pulse propagates between the
nanoplates, it extracts some of the electrons from them.
The extracted electrons can then either return to their
parent nanoplate or stream away from it depending on the
laser phase. The counterpropagating bunches of streaming
electrons with a laser phase difference of π , extracted from
the opposite boundaries of the gap between nanoplates,
eventually pass through each other, mix up, and form an
approximately homogeneous electron density n̄ in the gap.

To have some understanding of extraction process we con-
sider the following model. We consider the electron located
at the boundary between the nanoplate and the gap. We also
assume that the field acting on this electron is the same as
the field of a plane wave, propagating along the surface of
the nanoplate. Specifically, we consider a motion of a single
electron in the plane wave described by a vector potential
−a0 cos(ξ + ξ0)ey, where ξ0 is the phase of the plane wave
at the moment of electron extraction. The electron is assumed
to be initially immobile. The motion of an initially immobile
electron in a plane EM wave has three well-known integrals
of motion:

p̂x = 0, p̂y + a0 cos(ξ + ξ0) = a0 cos(ξ0), γ − p̂z = 1,

(2)
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where γ 2 = 1 + p̂2. Without loss of generality we set the y-
coordinate of the nanoplate surface from which the electron is
extracted to ŷ0 = 0. From Eqs. (2), it follows that

dŷ

dξ
= a0[cos(ξ0) − cos(ξ + ξ0)]. (3)

Equation (3) shows that only specific values of the initial
phase ξ0 lead to the extraction of the electron into the gap.
Indeed, if the gap is in the ŷ < 0 region, the electron is
extracted only if sin(ξ0) > 0. Likewise, for the gap in ŷ > 0
region, the electron is extracted if sin(ξ0) < 0. From Eqs. (2)
we can derive the equations for electron’s trajectory,

ŷ = a0[ξ cos(ξ0) + sin(ξ0) − sin(ξ + ξ0)], (4)

ẑ − ẑ0 = a2
0

2

{
ξ

[
1 + 1

2
cos(2ξ0)

]
+ 1

4
sin[2(ξ + ξ0)]

− sin(ξ ) − sin(ξ + 2ξ0)

}
, (5)

where ẑ0 is the z-coordinate of the electron before the ex-
traction. From Eq. (4) we conclude that depending on the
phase ξ0 the extracted electron may either return to its parent
nanoplate or stream away from it. The electron bunches that
stream along the y-axis have a phase difference of �ξ = π

with the electron bunches that stream in the opposite direction.
From Eqs. (4) and (5), we can estimate the maximum angle
θ between the radius vector of the electron and the y = 0
boundary as

lim
ξ→∞

ŷ(ξ )

ẑ(ξ ) − ẑ0
= 4 cos(ξ0)

a0[2 + cos(2ξ0)]
<

√
2

a0
= tan(θ ). (6)

The estimate given by Eq. (6) neglects the effect of the
Coulomb forces between the extracted electrons and the par-
ent nanoplate and therefore is accurate only for extracted
electrons with small ŷ. As extracted electrons move away
from the parent nanoplate, the value of the streaming angle
θ becomes less than predicted by Eq. (6).

As bunches of the electrons propagate away from their par-
ent nanoplates along the y-axis, they eventually meet a bunch
of counterpropagating electrons. From Eq. (6), we conclude
that the length L̂ of the gap needs to be at least L̂ > a0D̂/

√
2

for the first extracted bunches of electrons to start mixing with
the counterpropagating bunches. When the mixing occurs,
mixed electron bunches form the homogeneous electron den-
sity n̄ inside the gap. The charge density inside the gap creates
the electric field Eqs. The current of the extracted electrons in
the gap ĵ = ˆ̄nv̂z creates the magnetic field Bqs. Velocity v̂z can
be estimated from Eqs. (2) as

v̂z = p̂2
y

2 + p̂2
y

∼ a2
0

2 + a2
0

. (7)

Since v̂z < 1, the magnitude of the magnetic field Bqs is
weaker than the magnitude of the electric field Eqs. In Sec. IV
we will show that the difference between Eqs and Bqs is im-
portant for the onset of stochastic electron acceleration.

Assuming that electron extraction stops when the electric
field Eqs from the electrons in the gap compensates for the

electric field of the laser pulse at the boundary, the density of
the electrons ˆ̄n after mixing can be estimated as

ˆ̄n = 2a0

D̂
. (8)

The analysis above assumes ions are immobile. Mobile ions
will expand into the D̂ gap when subjected to the Eqs field,
closing the gaps between nanoplates. For nonrelativistic ion
motion the time τi to cross the gap D̂ is τi ∼

√
2D̂m̂i/Za0,

where m̂i is the ion mass in units of electron mass. There-
fore, our immobile ion analysis with the y-polarized pulse
will be applicable only during times shorter that τ̂i. For the
copper target with parameters from Sec. II, τ̂i > 100 and the
immobile ions assumption holds. In our PIC simulations with
a y-polarized laser, the time it takes for the laser pulse to reach
the back wall is less than τi and hence the immobile ions
assumption applies. For larger a0 ∼ 100 the motion of ions
can no longer be neglected for practical D̂ ∼ 10 gap sizes.

Concluding this section, we note the differences of the
quasistatic electric and magnetic fields in the gap from the
quasistatic fields in another laser-plasma interaction setup, the
evacuated ion channel [15]. As a matter of fact, the quasistatic
electric and magnetic fields in the gap can be called “electron”
channel, where the Eqs × Bqs force is along the direction of
laser propagation, whereas, in the ion channel, the Eqs × Bqs

force is directed against the laser propagation.

IV. STOCHASTIC ACCELERATION

In this section we examine the electron acceleration in
laser and quasistatic fields. Based on the results from Sec. III,
fields Êqs and B̂qs between two neighbor nanoplates can be
described with scalar Û (ŷ) and vector ÂB(ŷ) potentials as
Êqs = ∇Û (ŷ) and B̂qs = −∇ × (ÂBez), where

Û (ŷ) = κU

2

[
D̂2

4
−

(
ŷ − D̂

2

)2]
, (9)

ÂB(ŷ) = κB

2

[
D̂2

4
−

(
ŷ − D̂

2

)2]
, (10)

where κU = ˆ̄n and κB = κU v̂z. The signs of Û and ÂB defined
in (9) and (10) are chosen to be positive so they are opposite
to the conventional electrostatic and vector potential. In the
rest of the section, we will neglect the size of each nanoplate
d̂ = 0, so the structure of the Êqs and B̂qs fields in the target is
described by a chain of Û (ŷ) and AB(ŷ)ez potentials defined in
(9) and (10). The motion of a single electron in the presence
of the Êqs and B̂qs fields and the laser wave with vector
potential a = −a0 cos(ξ )ey is described by a 3/2-dimensional
Hamiltonian [8] as

dP̂y

dξ
= −∂Ĥ

∂ ŷ
,

dŷ

dξ
= ∂Ĥ

∂P̂y
, (11)

Ĥ = 1

2

{
1 + [P̂y − a0 cos(ξ )]2

C − W (−)(ŷ)
+ W (+)(ŷ) + C

}
, (12)

W (±)(ŷ) = Û (ŷ) ± ÂB(ŷ), (13)

C = γ + W (−)(ŷ) − p̂z = const, (14)
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FIG. 2. Unperturbed trajectories of energetic electrons (17) for
Ĥ = 50, W (−)

max = 1, and various values of C. Red lines that cross at
D̂/2 show the trajectory with C = 1/2Ĥ + W (−)

max = 1.01, separating
bounded and unbounded trajectories. Dots show the stroboscopic
portrait of the motion.

where P̂y = p̂y + a0 cos(ξ ) is the canonical momentum, and
p̂x = const is set as zero. The Hamiltonian (12) is equal to the
total electron energy Ĥ = γ + Û . Without the laser a0 = 0,
the energy is conserved Ĥ = const and the corresponding
unperturbed electron motion is periodic with some frequency
̂. To heat the electron efficiently, the laser pulse has to res-
onate with the harmonics of unperturbed electron, motion [16]
which is possible only for ̂ < 1. For ̂ < 1, the resonances
of laser with harmonics of electron motion can occur, and
overlap of such resonances enables stochastic acceleration.

Stochastic electron motion can be imagined as a series of
“kicks” separated by adiabatic motion. These kicks can lead
to stochasticity [9] if

K ≈
∣∣∣∣∂T̂e

∂Ĥ
�Ĥ

∣∣∣∣ � 1, (15)

where T̂e = 2π/̂ and �Ĥ are, respectively, the time and
change of electron Hamiltonian between two consecutive
kicks. In this section we will use condition (15) to estimate
the maximum energy of the stochastic electron motion.

Since we are interested in energetic electrons, we consider

Ĥ � max

(
1,C,W (+)

max = κU + κB

8
D̂2

)
. (16)

Using Eq. (8), we estimate W (+)
max ∼ a0D̂/2. Under assumption

(16), the Hamiltonian (12) can be approximated as

Ĥ ≈ 1

2

{
1 + [P̂y − a0 cos(ξ )]2

C − W (−)(ŷ)

}
. (17)

Unperturbed trajectories described by (17) are shown in
Fig. 2. These unperturbed trajectories are bounded if
C < 1/2Ĥ + W (−)

max , where W (−)
max = (κU − κB)D̂2/8, and un-

bounded otherwise.
To examine the unperturbed motion frequency ̂ of

bounded and passing electrons, we use action-angle variables
(I, ϑ ). Let æ= ((2Ĥ )−1 + W (−)

max − C)/W (−)
max characterize the

FIG. 3. Frequency ̂ = (dĤ/dI ) of unperturbed electron mo-
tion (17) for Ĥ = 50, W (−)

max = 2, D̂ = 8π , and various æ values. The
bifurcation at æ=0 corresponds to the separatrix, where ̂ = 0.

distance form the electron’s trajectory to the separatrix, in
a range from −∞ to 1. Indeed, æ=0 corresponds to the
separatrix, æ>0 is bounded motion, æ=1 is the equilibrium
point at ŷ = 0, P̂y = 0, and negative æ correspond to passing
trajectories. For bounded motion, 2πI = ∮

P̂y dŷ, and for the

passing electrons 2πI = ∫ ŷ+D̂
ŷ P̂y dŷ. The frequency is calcu-

lated as ̂ = (dI/dĤ )−1, and the resulting ̂(æ) dependence
is shown in Fig. 3. As æ goes to zero, the frequency ̂ also
goes to zero. Transformation to canonical variables allows us
to determine how ̂ depends on W (−)

max , D̂, and particle energy
Ĥ . We will get these dependencies in an easier way later in
this section. We will now determine the maximum stochas-
tic energies for the cases when unperturbed electron motion
is unbounded C � W (−)

max , close to separatrix C ∼ W (−)
max , and

bounded C 	 W (−)
max .

For the C � W (−)
max case, Hamiltonian (17) can be approxi-

mated as

Ĥ ≈ Ĥ1 = 1

2

{
1 + [P̂y − a0 cos(ξ )]2

C

}
, (18)

which is equivalent to the Hamiltonian (12) for the pon-
deromotive acceleration ÂB = Û = 0 case. Hamiltonian (18)
corresponds to linear equation of motion, meaning that no
stochasticity is possible. Another way to see that the system
with Hamiltonian (18) has no stochasticity is to note that
the spectra of the oscillations described by Hamiltonian (18)
consist of a single harmonic, and therefore a Chirikov’s res-
onance overlap criterion cannot be satisfied. Ponderomotive
acceleration Êpond = a2

0/C described by Hamiltonian (18) is
efficient only for the small dephasing rate γ − p̂z 	 1. But
if the dephasing rate is small, then from (14) we conclude
that C ∼ W (−)(ŷ), which contradicts the C � W (−)

max condition.
Therefore, in the C � W (−)

max case no stochastic acceleration
occurs and the electron acceleration is inefficient.

For C ≈ W (−)
max , Eq. (17) illustrates that the resonant points

are |ŷ| ≈ D̂/2. It is convenient to rewrite Eq. (17) as

4W (−)
max

D̂2

(
ŷ − D̂

2

)2

− P̂2
y

2Ĥ2
≈ W (−)

max − C. (19)
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Therefore, for C ≈ W (−)
max , Eq. (19) describes two lines, one of

which is

P̂y =
√

8Ĥ2C

D̂

(
ŷ − D̂

2

)
. (20)

From Eqs. (11) and (20) we get the equation of unperturbed
electron motion√

C

2Ĥ2

1

D̂

(
ŷ − D̂

2

)2

= ξ − ξmax, (21)

where ξmax is when an electron is at ŷ = D̂/2. For C slightly
less than W (−)

max the electron trajectory is bounded, and it takes
a quarter of the period T̂2 of the electron’s motion to go from
ŷ = 0 to ŷ = D̂/2. We can estimate T̂2 as

T̂2 =
√

C

2Ĥ2
D̂ ∝ ζ Ê1/2

pond

Ĥ1/2
2

, (22)

and hence the frequency of motion is ̂2 ∼ D̂
√

Ĥ2/C.
Stochastic heating requires overlapping of high harmonics
resonance and thus ̂2 	 1. Therefore, the maximum energy
scaling we should expect is Ĥ2 < CD̂2 (̂2 ≈ 1). If it exceeds
the ponderomotive scaling Êpond, we have

a2
0

C
� CD̂2 ⇔ ζ ≡ D̂C

a0
> 1. (23)

We can use Eqs. (11) and (20) to estimate change �Ĥ2 of the
electron’s energy during T̂2 in the presence of the laser as

�Ĥ2 =
∫

∂Ĥ2

∂ξ

dξ

dŷ
dŷ ∝ (

Ĥ2ζ
2Ê3

pond

)1/4
. (24)

Therefore, the maximum energy of stochastic motion is deter-
mined by

K =
∣∣∣∣ ∂T̂2

∂Ĥ2
�Ĥ2

∣∣∣∣ ∼ ζ 3/2

[ Êpond

max(Ĥ2)

]5/4

= 1, (25)

where we used estimates (22) and (24). From Eq. (25) we
determine the scaling of max(Ĥ2) to be

max(Ĥ2) ∝ Êpondζ
6/5. (26)

For C 	 W (−)
max , from Eq. (12) we know that the electron

motion is bound to ŷ 	 D̂, so we can approximate Hamilto-
nian (17) as

Ĥ3 = 1

2C

{
1 + [P̂y − a0 cos(ξ )]2

1 − α|ŷ|
}
, (27)

where α = 4W (−)
max/CD̂. It follows that the resonant points are

|ŷ| ≈ 1/α. From Hamiltonian (27) we find the equation of
unperturbed electron motion from (11) to be√

2C

Ĥ3

2

3α
(1 − α|ŷ|)3/2 = ξ − ξmax, (28)

where ξmax is when the electron is at max(|ŷ|) = 1/α. It takes
quarter of the period for the electron to go from ŷ = 0 to
ŷ = 1/α, and we can use that to estimate the period T̂3 from

Eq. (28) to be

T̂3 ∝ ζ Ê1/2
pondC

Ĥ1/2
3 W (−)

max

. (29)

Based on Eq. (29), the resonance overlap condition ̂3 <

1 for the stochastic heating sets a limit on the energy of
stochastic motion Ĥ3 < D̂2C3/W (−)

max , which exceeds Êpond if
ζ > W (−)

max/C. This condition can be easily satisfied since
W (−)

max 	 C. We can use Eqs. (11) and (27) to estimate the
energy change �Ĥ3 during one oscillation of the electron in
the presence of a laser as

�Ĥ3 =
∫ ŷ

ŷmax

∂Ĥ3

∂ξ

dξ

dŷ
dŷ ∝

(
Ĥ3ζ Ê2

pondC

W (−)
max

)1/3

, (30)

where we assumed that Ĥ3 � �Ĥ3 � Êpond. The scaling of
maximum energy of stochastic motion for C 	 W (−)

max can be
estimated from

K ≈
∣∣∣∣ ∂T̂3

∂Ĥ3
�Ĥ3

∣∣∣∣ ∼
[ Êpond

max(Ĥ3)

]7/6(
ζC

W (−)
max

)4/3

= 1 (31)

to be

max(Ĥ3) ∝ Êpond

(
ζC

W (−)
max

)8/7

, (32)

where we used estimates (29) and (30).
We now determine what value of C corresponds to the

largest stochastic energy for given a0 and D̂ parameters. Using
estimates (7) and (8), we express W (−)

max as

W (−)
max = κU − κB

8
D̂2 = a0D̂

2
(
2 + a2

0

) . (33)

Combining estimate (33) with energy limits (26) and (32)
gives

max(Ĥ2) ∝ a0D̂7/5(
2 + a2

0

)1/5 , (34)

max(Ĥ3) ∝
(
2 + a2

0

)8/7
C9/7

a2/7
0

	 a0D̂9/7(
2 + a2

0

)10/7 . (35)

The analysis above neglects the following aspects of the
laser-target interaction. The length L̂ of the gaps was assumed
infinite, while in practice the value of L̂ may be insufficient
to both establish Êqs and B̂qs and let the electrons reach
maximum energy. The analysis neglects the energy balance
between the laser and electrons of plasma; meanwhile in real-
ity the laser will decay and hence a0 = a0(ẑ). For the laser
with vector potential −a0(ẑ) cos(ξ ), C may no longer be a
constant of motion, and the associated change in ζ affects the
energy scaling. Note that we also neglected the nanoplate size
d̂ . Since the laser field is absent inside the nanoplate, nonzero
d̂ means that when the electron escapes into the nanoplate at
some ξin it leaves the nanoplate at ξout �= ξin. This ξout − ξin

jump changes the value of C, and the associated change in
ζ affects the energy scaling. We also neglect all collisional
effects, which may become increasingly important if the elec-
tron passes through nanoplates multiple times. Collisions can
change the magnitude of electron’s momentum p̂, primarily
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FIG. 4. Poincaré cross section for the electron with C = W (−)
max =

2, W (+)
max = 5, ŷ(0) = 0.4D̂, P̂y(0) = 3.0, D̂ = 500. Parameters are

chosen so that ζ = 1000, and assumptions of analysis are satisfied.
The motion is stochastic; however, a stability island exists for en-
ergies above 600. Red line at Ĥ ∼ 100 shows initial energy of the
electron, and blue line at Ĥ = 7 shows W (+)

max + C.

due to the recoils from the electrons in the nanoplate. For
relativistic electron v̂z ∼ 1 the loss of momentum is negligible
�p̂ 	 1 if [17]

d̂ 	 2πm2c4

λnee4 ln �
≡ d̂cl ≈ 30, (36)

where ln � ∼ 10 is the Coulomb logarithm. For the setup
described in Sec. II, d̂ = 0.2π , so requirement (36) is sat-
isfied. Collisions with ions can scatter the electron, which
also breaks conservation of C. A relativistic electron can
penetrate into the ion’s electron cloud and interact with the
unshielded nucleus [18]; therefore the scattering cross section
is σ ∝ Z2

n e4/(γ − 1)2m2c4, where Zn is the charge of the
ion’s nucleus. The effect of such collisions can be neglected if
the electron’s mean-free path (σni )−1 exceeds the nanoplate’s
width d , giving condition d̂ 	 (γ − 1)2d̂cl/Zn, which is sat-
isfied for relativistic electrons with γ � 6 in the solid copper
target with d̂ = 0.2π.

In Sec. V we will show that despite the mentioned ne-
glected aspects, the analysis of stochastic electron motion can
explain the generation of high-energy electrons in our PIC
simulations.

A. Numerical verification

Analysis from Sec. IV is verified with a series of single-
particle simulations. In these simulations, we vary setup
parameters a0, D̂, W (−)

max , and W (+)
max and the initial conditions of

the electron ŷ(0), P̂y(0), C. Initial conditions are chosen so that
the assumption (16) is satisfied at the beginning of the simula-
tion. We run simulations for several ζ , changing ζ between
simulations by changing the a0, D̂, and C parameters. We
examine the Poincaré cross section of the electron trajectory,
showing the electron’s energies when the electron crosses
W (+)(ŷ) = 0 versus corresponding laser phase ξ modulo π ,
that is, ξ − [ξ, π ], as in Fig. 4. Poincaré cross sections allow
distinguishing stochastic and quasiperiodic electron motion
because, for quasiperiodic motion, a Poincaré cross section

FIG. 5. Scaling of maximum stochastic energy for cases C ∼
W (−)

max [blue line corresponding to max(Ĥ2)] and C 	 W (−)
max [red line

corresponding to max(Ĥ3)], for various values of ζ , C, and W (−)
max .

Dashed lines show scalings (26) and (32) for reference.

shows smooth curves of preserved KAM surfaces. Some
Poincaré cross sections still have preserved KAM surfaces
(smooth arms at larger energies in Fig. 4). For these cases,
we consider the maximum of Ĥ below the stability islands.
The scalings from single-particle simulations match (26) and
(32), as shown in Fig. 5.

V. SIMULATION RESULTS AND DISCUSSION

Here we present our PIC simulation results and compare
them to the analytical models from previous sections.

A. x-polarized laser

To show how the x-polarized laser propagates into the tar-
get, we consider the setup with a normalized laser amplitude
a0 = 2.4 and gaps between nanoplates D̂ = 4π . From the PIC
simulation of that setup, we plot the components of elec-
tric and magnetic fields, and compare them to our analytical
model from Sec. II A. We choose t̂ = 22π , when roughly half
of the laser pulse has passed the gap entrance at ẑ = 0. The
x-component of the electric field Êx is shown in Fig. 6, where
the top subplot shows data from PIC, and the bottom subplot
shows an analytical prediction. Likewise, the z-component of
the magnetic field B̂z is shown in Fig. 7. Note that the model
proposed in Sec. II A does not deal with electrodynamics of
plasma and does not consider any specific relativistic effects.
Despite its primitivity, the model captures the structure of Êx

from the relativistic PIC simulation.
In Sec. II A we predicted that the x-polarized pulse will

not extract as many electrons as the y-polarized pulse will
from the same target. In order to compare the density of
extracted electrons, we plot the density of electrons from our
PIC simulation in Fig. 8. In agreement with Sec. II A, PIC
simulations show that the x-polarized pulse heats electrons
less efficiently than the y-polarized pulse, as demonstrated in
Fig. 13 below.
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FIG. 6. The x-component of the electric field Êx inside the gap of
size D̂ = 4π , obtained from PIC simulation (top) with an x-polarized
laser and analytical model from Sec. II A (bottom).

B. y-polarization

In Sec. III we demonstrated that when the y-polarized
pulse propagates between nanoplates, it extracts some of the
electrons. To illustrate the process of electron extraction, we
consider the setup with a0 = 2.4 and D̂ = 4π . From the PIC
simulation of this setup, we plot the electron density between
two nanoplates at time t̂ = 22π , as shown in Fig. 9. Note that
electron extraction from the same target was also considered
in Fig. 8. Simulation data presented in Figs. 8 and 9 show
that the y-polarized laser extracts more electrons than the
x-polarized does from the same target, in agreement with the
analysis from Sec. II A. Our analysis presented in Sec. III
suggests that extraction of electrons from the nanoplates leads
to creation of quasistatic electric Êqs and magnetic B̂qs fields.
We now verify this prediction with our PIC simulation. To
get the static components of Ê and B̂ fields in the PIC sim-
ulation, we time-average these fields over one laser period
T̂ . We use the y-component of the time-averaged electric
field 〈Ê〉 ≡ Êqs to calculate the scalar potential Û PIC defined
as 〈Êy〉 = dÛ PIC/dŷ, and z-component of the time-averaged
magnetic field 〈B̂〉 = B̂qs to calculate the vector potential ÂPIC

B

defined as 〈B̂z〉 = dÂPIC
B /dŷ. The magnitude of 〈Êy〉 is largest

FIG. 7. The z-component of the magnetic field B̂z inside the gap
of size D̂ = 4π , obtained from the PIC simulation (top) with the x-
polarized laser and analytical model from Sec. II A (bottom).

FIG. 8. Electron number density, overlaid with the components
of electric Êx and magnetic B̂z fields for the case of an x-polarized
pulse.

near the nanoplates where |〈Êy〉| ≈ a0, as predicted in Sec. III.
Profiles of Û PIC and ÂPIC

B from PIC simulations with a0 = 2.4
and different gap sizes D̂ are shown in Fig. 10. In agreement
with the analysis in Sec. III, electrons extracted from targets
with larger D̂ travel farther along the z-axis before mixing
and creating homogeneous electron density, and hence for
targets with larger D̂ parabolic U PIC and APIC potentials are
formed at larger ẑ. We note that Fig. 10 includes the cases
of D̂ = 12π, 16π , and 24π , where the length L̂ = 40π was
insufficient for the parabolic potentials to form. In PIC simula-
tions with a0 = 2.4 and D̂ < 8π , the Û PIC and ÂPIC

B potentials
are approximated well by a parabolic curve. In agreement with
our analysis, parabolic potentials scale with the gap size ÂPIC

B ,
Û PIC ∝ D̂. The estimate for static electric and magnetic fields
neglects aspects such as the z-dependence of a(z) laser poten-
tial due to absorption of laser energy by the target; however,
the derived scalings for max(Û ) and max(ÂB) match reason-
ably well with the analysis. Specifically, for simulations with
a0 = 2.4, Eqs. (8) and (9) predict scaling max(Û ) = a0D̂/4 =
0.6D̂, while the scaling in PIC simulations is max(Û ) ∝ 0.4D̂

FIG. 9. Electron number density, overlaid with the components
of electric Êy and magnetic B̂x fields for the case of the y-polarized
pulse.

013204-7



KNYAZEV, ZHANG, AND KRASHENINNIKOV PHYSICAL REVIEW E 103, 013204 (2021)

FIG. 10. Profiles of the electrostatic potential Û PIC (red solid
lines) and vector potential ÂPIC

B ez (blue dotted lines). Each Û PIC and
ÂPIC

B ez is shown from ŷ = 0 to ŷ = D̂, where D̂ is the gap size from
corresponding PIC simulation. All PIC simulations shown had the
same laser with a0 = 2.4.

as shown in Fig. 10. The max(Û ) = |v̂z|ÂB estimate agrees
well with the series of simulations presented in Fig. 11, where
we varied a0 while keeping D̂ = 2π and tracked the subset of
electrons to determine the average velocity component 〈v̂z〉 in
the gaps of the target. Results shown in Fig. 11 also confirm
that 〈v̂z〉 increases with a0, even though the values of 〈v̂z〉
for larger a0 are the smaller estimate (7), and therefore the
ponderomotive 〈v̂z〉 estimate becomes less adequate in the
presence of larger Û and ÂB potentials. For the a0 = 2.4,
estimate (7) gives 〈v̂z〉 = 0.74, which agrees with v̂PIC

z = 0.73
recorded in a PIC simulation with D̂ = 2π . The main con-
clusion regarding quasistatic Êqs and B̂qs fields is that their
corresponding potentials Û and ÂBez are indeed parabolic if
the depth L is sufficient and |Û | = |v̂zÂB|, hence there is a
residual W (−)

max always present.
Having confirmed the onset of quasistatic Êqs and B̂qs

fields and the residual between them, we now consider the
acceleration of electrons in our PIC simulations to verify

FIG. 11. Maximum values of scalar max(Û PIC) and vector
max(ÂPIC

B ) agree with the estimate max(ÂPIC
B ) = 〈vz〉 max(Û PIC),

where 〈vz〉 is the average vz velocity component of the electrons in
the gap.

FIG. 12. Top panel shows scalar potential Û PIC inside the gap
from a PIC simulation with a0 = 2.4, D̂ = 8π , at time t̂ = 48π .
Bottom panel shows positions of the electrons from the random
subset (light gray dots) sampled in the same PIC simulation at time
t̂ = 48π . Extracted electrons fill the region of the gap with ẑ from
12π to 32π ; the same region has the Û PIC and ÂPIC

B independent of
ẑ. Green line marked (a) shows the extraction angle estimate (6). In
the bottom panel, red points (dark gray if grayscale) at D̂ = 0 and
8π show the initial position �̂r(t̂ = 0) of the electrons that are located
between D̂ = 0 and 4π at time t̂ = 48π .

the analysis presented in Sec. IV. To demonstrate when the
problem setup considered in Sec. IV becomes relevant to our
PIC simulations, consider an example from the PIC simulation
with a0 = 2.4 and D̂ = 8π , shown in Fig. 12, where we plot
the subset of electrons between two nanoplates at time t̂ =
38π . As Fig. 12 shows, the profiles of Û PIC and ÂPIC

B remain
constant with ẑ after ẑ�12π , where the electrons have filled
the gap. Therefore, electrons with ẑ�12π shown in Fig. 12 are
relevant to the analysis form Sec. IV. We note that in the setup
considered in Sec. IV, C of the electron is conserved, while in
PIC simulation, C can change prior to formation of quasistatic
fields, and also in the quasistatic fields via mechanisms dis-
cussed at the end of Sec. IV. Since the immobile electron has
C ∼ 1, it is reasonable to assume that majority of electrons
will have C ∼ 1 when the quasistatic field is established.
Furthermore, if the residual between the quasistatic electric
and magnetic field corresponds to W (−)

max ∼ 1, then there will be
electrons with C ∼ W (−)

max that can undergo efficient stochastic
acceleration. As the electrons undergo stochastic acceleration,
the density in the gap 〈n〉 and the average velocity 〈v̂z〉 remains
unchanged, so the quasistatic electric and magnetic fields also
stay the same. Our next step is to show that the low-energy
electrons with C closest to W (−)

max can heat up the most effi-
cient and that their maximum stochastic energy matches the
maximum energy in PIC simulations. We start by finding the
maximum electron energy γ PIC

max in PIC simulations from the
energy distribution functions f (γ ), as shown in Fig. 13. Then
we use the Û PIC and ÂPIC

B from each simulation to study the
electron heating in a single-particle model. For the Û PIC and
ÂPIC

B potentials, we calculate how the unperturbed frequency
̂(C) changes with C for the electron with γ PIC

max . The ̂(C)
dependencies shown in Fig. 14 show that C 	 1 electrons
have ̂ � 1 and therefore are unable to exchange energy with
the laser efficiently. The frequency ̂ drops to ̂ < 1 in a nar-
row region of C ≈ W (−)

max . This C ≈ W (−)
max also corresponds to
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FIG. 13. Distribution of an electron’s Lorentz factor γ normal-
ized by the total number of particles in the target (∼1010 taking the
size along x as �x ∼ λ and size along y as �y ∼ d + D) for PIC
simulations with a0 = 2.4 and different D̂. The corresponding values
of D̂ are 2π (green), 4π (black), 6π (red), 8π (blue). Data shown
for the x-polarized D̂ = 8π verify that x-polarized pulse heats up
electrons less efficiently, in agreement with Sec. II A.

the maximum stochastic energy recorded in the single-particle
simulation, as shown in Fig. 15. Our analysis showed that the
maximum stochastic energy max(Ĥ ) surpasses the pondero-
motive energy Êpond for electrons with ζ � 1 and scales as
max(Ĥ ) ∝ Êpondζ

6/5. The scaling from PIC results shown in
Fig. 16 is max(Ĥ ) ∝ Êpondζ

0.98.

Apart from the maximum energy, hot electron bunches are
also characterized by assigning them a temperature or consid-
ering the heat flux of electrons [19]. To characterize the mean
energy of electrons, we determine the energy Êmean at which
half of the electron’s heat flux is captured. In the series of PIC
simulations shown in Fig. 16, the scaling of mean electron
energy is max(Êmean) ∝ a2

0ζ
0.8.

FIG. 14. The frequency of unperturbed electron motion ̂ for
scalar Û and vector ÂBez potentials measured in PIC simulations
with a0 = 2.4 and D̂ = 2π (green), 4π (black), 6π (red), 8π (blue).
Dotted lines show C ≈ W (−)

max , where ̂ drops to zero.

FIG. 15. The maximum energy (dashed curves) and energy be-
low stability arms (solid curves) from single-particle simulations
with initial Ĥ ∼ 1 and for scalar Û and vector ÂBez potentials from
PIC simulations with a0 = 2.4 and D̂ = 2π (green), 4π (black), 6π

(red), 8π (blue).

VI. CONCLUSION

In this paper, we investigated various aspects of laser inter-
action with a 2D nanoplate array target. It showed that the
target behaves much like a waveguide for the laser propa-
gation: for the x-polarized pulse, the plane wave laser pulse
becomes a superposition of TE-modes, whereas, for a y-
polarized pulse, the laser propagates as a TEM mode. The
analysis showed that for an x-polarized laser, the ponderomo-
tive force from the EM fields would prevent the extraction of
electrons from the target. As a result, electrons remain in the
target and do not interact with the laser field. The electron ac-
celeration is suppressed, which has been confirmed by the PIC
simulations, which show that the maximum electron energies
for an x-polarized pulse are lower than those for a y-polarized
pulse. On the other hand, the y-polarized laser pulse, propagat-
ing between the nanoplates while preserving the plane-wave

FIG. 16. The energy scaling in the PIC simulations with
W (−)

max ∼ 1. Data are labeled with blue numbers, corresponding to the
values of a0 in PIC simulations. The fitted slope is 0.98. The black
star that does not fit the scaling corresponds to the simulation with
a0 = 2.4 and D̂ = 12π , where L̂ = 20 turned out to be insufficient
for the electrostatic potentials to form.
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structure, can pull electrons out from the nanoplates due to
the Lorentz force from its electric field. This extraction of
electrons can be described well by the motion of a single
electron in a plane wave, where the laser pulse can extract
bunches of electrons from their parent nanoplates. Electron
bunches streaming along and against the y-axis are shifted in
the z-axis direction by the laser phase �ξ = π . As a result,
when these counterpropagating bunches pass through each
other, they form homogeneous electron density ˆ̄n depending
on the laser amplitude a0 and gap depth D̂ and thus create
a quasistatic electric field Êqs in the y-direction. Simultane-
ously, the electrons in the gap move along the z-axis, and
thus their current generates a quasistatic magnetic field B̂qs

in the x-direction. Our estimates for the quasistatic EM fields
suggest that |Êqs| = |v̂zB̂qs|, where v̂z is the averaged longitu-
dinal speed of extracted electrons. Therefore, the quasistatic
magnetic field is relatively smaller than the electric field. In
contrast to the ion-channel case, we showed that this small
difference in these quasistatic fields is crucial for the electron
acceleration beyond the ponderomotive scaling.

After the formation of these quasistatic fields, the new
injected electrons in the gap can be accelerated via the res-
onance between the frequency of electron oscillating in the
quasistatic fields and laser frequency. We show that the elec-
tron can be accelerated via the stochastic motion, which we
study within the 3/2D Hamiltonian framework. Our analysis

shows that the electron energy can largely exceed the pondero-
motive energy scaling due to the onset of stochastic motion,
which depends on an universal parameter ζ combining the
laser amplitude a0, gap size D̂, and initial electron conditions.
We found that the stochastic motion requires ζ > 1, which
can be easily satisfied for our PIC simulations. The analy-
sis demonstrated that for larger gap depth D̂, the stochastic
motion results in larger electron energy. However, if the laser
amplitude increases, even though the maximum electron en-
ergy is enhanced, its ratio to the ponderomotive scaling is
decreased. In particular, if the laser amplitude is large enough
that ζ <̃1, then the stochastic motion is not possible, and
the maximum electron energy will be the same order with
ponderomotive scaling.

We note that the process of electron acceleration in laser-
particle interaction is more complex than the simple model
we considered, but our analysis explains how the energetic
electrons will be produced in laser-target interaction via the
stochastic electron motion. The presented analysis can help
with interpreting the results of both future experiments and
simulations.
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