PHYSICAL REVIEW E 103, 013203 (2021)

First-principles equation of state database for warm dense matter computation
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We put together a first-principles equation of state (FPEOS) database for matter at extreme conditions by
combining results from path integral Monte Carlo and density functional molecular dynamics simulations of
the elements H, He, B, C, N, O, Ne, Na, Mg, Al and Si as well as the compounds LiF, B,C, BN, CHy, CH,,
C,H;, CH, C,H, MgO, and MgSiO;. For all these materials, we provide the pressure and internal energy over
a density-temperature range from ~0.5 to 50 g cm~* and from ~10* to 10° K, which are based on ~5000
different first-principles simulations. We compute isobars, adiabats, and shock Hugoniot curves in the regime
of L- and K-shell ionization. Invoking the linear mixing approximation, we study the properties of mixtures
at high density and temperature. We derive the Hugoniot curves for water and alumina as well as for carbon-
oxygen, helium-neon, and CH-silicon mixtures. We predict the maximal shock compression ratios of H,O, H,O,,
Al,03, CO, and CO; to be 4.61, 4.64, 4.64, 4.89, and 4.83, respectively. Finally we use the FPEOS database to
determine the points of maximum shock compression for all available binary mixtures. We identify mixtures
that reach higher shock compression ratios than their end members. We discuss trends common to all mixtures
in pressure-temperature and particle-shock velocity spaces. In the Supplemental Material, we provide all FPEOS
tables as well as computer codes for interpolation, Hugoniot calculations, and plots of various thermodynamic

functions.
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I. INTRODUCTION

A rigorous and consistent theoretical description of warm
dense matter (WDM) has been identified [1-3] as a cen-
tral goal to the development of key plasma technologies,
such as inertial and magnetic confinement fusion [4-9],
shock physics [10-12], and high energy astrophysics [13,14].
WDM represents materials at solid-state densities and ele-
vated temperatures of 10°~107 K &~ 1-10° eV. This regime is
particularly challenging to characterize with analytical meth-
ods because there is no small parameter for perturbative
methods to be applicable. The densities are too high and
the interaction effects too strong for typical plasma theory
models [15-20], such as Saha ionization models or the Debye
plasma model [21], to be applicable. On the other hand, the
temperatures are too high and the fraction of excited electrons
too large for conventional condensed matter theory to apply.
Chemical bonds are short lived but cannot be neglected. One
expects these systems to be partially ionized and some of
the electrons to occupy excited and free states. Because of
the high density, Pauli exclusion effects are relevant when
the ionization equilibrium is established, which renders these
systems partially degenerate [22]. A fraction of the electrons
occupy core states because density is orders of magnitude
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too low for them to form a rigid, neutralizing background. In
this regard, a one-component plasma model would be a poor
description of WDM.

Despite these challenges, the development of a rigorous
and consistent theoretical framework to describe WDM re-
mains to be of high importance because it represents states
of matter on the pathway to reaching fusion conditions. Pre-
dicting with high accuracy the equation of state (EOS) as
well as transport and optical properties at extreme pressure
and temperature conditions is the primary motivation for
developing new methods. Significant progress towards this
goal has been made with laboratory experiments [11,23-26]
and first-principles (FP) computer simulations [27]. Since
hydrodynamic simulations typically guide the design of dy-
namic compression experiments and they rely on accurate
EOS tables to be predictive, computer simulations of any
material and thermodynamic condition that can be probed
with laboratory experiments are of high interest. FP computer
simulations, that are based on the fundamental laws of quan-
tum mechanics, enabled us to compute the EOS of materials
over a wide range of conditions that also include planetary
and stellar interiors. In giant planets [28], not only hydrogen-
helium mixtures [29-34] but also rocky materials [35-41] are
exposed to pressures of tens of megabars and temperatures of
~10* K. Accurate EOSs are needed to complete the spacecraft
measurements of giant planets in our solar system to better
characterize their interior structure and evolution [42-44].
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TABLE I. Parameters of the 21 EOS tables in this database. A total of 4869 first-principles calculations were combined.

Minimum Maximum Minimum Maximum
Number density density temperature temperature Number of
Material of isochores (g cm™3) (g cm™3) (K) (K) EOS points Ref.
Hydrogen 33 0.001 798.913 15625 6.400 x 107 401 [70-75]
Helium 9 0.387 10.457 500 2.048 x 10° 228 [76,77]
Boron 16 0.247 49.303 2000 5.174 x 108 314 [78]
Carbon 9 0.100 25.832 5000 1.035 x 10° 162 [79,80]
Nitrogen 17 1.500 13.946 1000 1.035 x 10° 234 [81]
Oxygen 6 2.486 100.019 10000 1.035 x 10° 76 [82]
Neon 4 0.895 15.026 1000 1.035 x 10° 67 [83]
Sodium 9 1.933 11.600 1000 1.293 x 108 193 [84,85]
Magnesium 23 0.431 86.110 20000 5.174 x 108 371 [86]
Aluminum 15 0.270 32.383 10000 2.156 x 108 240 [87]
Silicon 7 2.329 18.632 50000 1.293 x 108 85 [88,89]
LiF 8 2.082 15.701 10000 1.035 x 10° 91 [90]
B4,C 16 0.251 50.174 2000 5.174 x 108 291 [91]
BN 16 0.226 45.161 2000 5.174 x 108 311 [92]
CH,4 16 0.072 14.376 6736 1.293 x 108 247 [93,94]
CH, 16 0.088 17.598 6736 1.293 x 108 248 [93,94]
C,H; 16 0.097 19.389 6736 1.293 x 108 247 [93,94]
CH 16 0.105 21.000 6736 1.293 x 108 248 [93,94]
CH 16 0.112 22.430 6736 1.293 x 108 245 [93,94]
MgO 19 0.357 71.397 20000 5.174 x 108 286 [95]
MgSiO, 16 0.321 64.158 6736 5.174 x 108 284 [96,97]

The discovery of thousands of exoplanets with ground-based
observations and space missions [45-47] has considerably
broadened the range of conditions and materials of interest
[48-50].

Stellar interiors encompass a wide range of temperatures,
from 10* to 10® K. The most detailed information came
from observing the normal mode oscillations of our Sun
[51-53]. Such asteroseismological observations now improve
our understanding of distant stars [54]. For the first time, the
frequencies of a number of normal modes in a giant planet
have been determined with high precision through the detec-
tion of spiral density waves in Saturn’s ring by the Cassini
spacecraft [55].

In this article, we build a first-principles equation of state
(FPEOS) database for WDM computation by combining the
results of two computer simulation methods, path integral
Monte Carlo (PIMC) calculations and density functional the-
ory molecular dynamics (DFT-MD) simulations. Alternative
methods to perform these calculations include orbital-free
density functional theory [56-58], Thomas-Fermi molecu-
lar dynamics [59], or average atom models [60-63] or their
combination [64,65]. With their approximations, all these
methods enable one to compute the properties of WDM in-
dependently for one set of temperature-density conditions at a
time. In this regard, they differ from conventional EOS models
that start from a cold curve and then introduce nuclear and
electronic excitations by constructing elaborate free energy
models. Multimaterial databases like the Quotidian EOS [66]
and many SESAME models [67] rely on that approach.

Here we instead rely exclusively on predictions from FP
computer simulations in order to build an FPEOS database to
characterize 11 elements and 10 compounds over a wide range

of temperature and density conditions. We exclude nuclear
reactions from consideration even though they occur at the
highest temperatures that we study. We predict the shock
Hugoniot curves and study a variety of binary mixtures by
invoking the ideal mixing approximation at constant pres-
sure, P, and temperature, 7. In Ref. [68], this approximation
has been shown to work remarkably well for WDM com-
putations for temperatures above 2 x 10° K and the shock
compression ratio exceeding ~3.2. With the goal of making
WDM computations more reliable and efficient, we make
available as Supplemental Material all EOS tables as well as
the C++ computer codes for their interpolation. PYTHON code
is provided to generate graphs of shock Hugoniot curve, isen-
tropes, isobars, and isotherms for compounds and user-defined
mixtures [69].

II. METHODS
A. PIMC simulations

The equations of state in Table I were assembled by
combining published results from PIMC simulations at high
temperature and from Kohn-Sham DFT-MD simulations at
lower temperature. The PIMC simulation method is based
on the early work on superfluid “He that introduced the
permutation sampling to the path integral computations
[98-100]. The algorithm was subsequently extended to
fermionic systems by introducing the restricted paths ap-
proach [101-103]. The first results of this simulation method
were reported in the seminal works on liquid *He [102] and
dense hydrogen [104,105]. Simulations of one-component
plasmas [106—108] and of hydrogen-helium mixtures [109]
followed. In Ref. [79], it was demonstrated that the
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free-particle nodal approximation worked sufficiently well to
study hot, dense carbon and water, which paved the way for
performing the PIMC simulations of elements from hydrogen
to neon (Z = 10), as shown in Table 1. In Ref. [88], Hartree-
Fock orbitals were used to efficiently incorporate localized
electronic states into the nodal structure, which extended the
applicability of fermionic PIMC simulations to heavier ele-
ments up to silicon (Z = 14).

The PIMC method is based on the thermal density ma-
trix of a quantum system, p = ¢ #™, that is expressed as
a product of higher-temperature matrices, e #% = (e 7H)M,
The integer M represents the number of steps along the path
in imaginary time. T = /M is the corresponding time step.
The path integral emerges when the operator p is evaluated in
real space:

s b P —S[R,]
RIpIR) = ;< b i dR, R (1)

—PR’

The sum over P represents all permutations of identical
fermions that in combination with the (—1)7 factor project
out the antisymmetric states. For sufficiently small time steps
7, all many-body correlation effects vanish and the action,
S[R;], can be computed by solving a series of two-particle
problems [98,110,111]. The advantage of this approach is that
all many-body quantum correlations are recovered through
the integration over paths. The integration also enables one
to compute quantum mechanical expectation values of ther-
modynamic observables, such as the kinetic and potential
energies, pressure, pair correlation functions, and the mo-
mentum distribution [100,112]. Most practical many-body
implementations of the path integral method rely on Monte
Carlo sampling techniques because the integral has D x N x
M dimensions in addition to the sum over permutations. (D
is the number of spatial dimensions; N is the number of
particles.) The method becomes increasingly efficient at high
temperature because the length of the paths scales like 1/T.
In the limit of low temperature, where few electronic excita-
tions are present, the PIMC method becomes computationally
demanding and the Monte Carlo sampling can become ineffi-
cient. Still, the PIMC method avoids any exchange-correlation
approximation and the calculation of single-particle eigen-
states, which are embedded in all standard Kohn-Sham DFT
calculations.

The PIMC simulations were performed with the CUPID
code [113] using periodic boundary conditions. The necessary
computer time foremost depends on the number of electrons
and the number of path integral time steps. Earlier simulations
of hydrogen were performed with 32 electrons [70] while
later calculations [73] used between 64 and 256 electrons
depending on density. The helium calculations in Ref. [77]
employed 64 and 114 electrons. For the simulations of boron
[78] and B4C [91], slightly larger cells with 30 nuclei and 150
(B) or 156 (B4C) electrons were used. For the simulations
of elemental nitrogen, oxygen, magnesium, and silicon, we
employed cells with 8 nuclei and 56, 64, 96, and 112 electrons,
respectively. For BN and MgSiO;, PIMC simulations with
144 electrons were performed. A detailed finite-size study is
provided in the Supplemental Material of Ref. [83].

B. DFT-MD simulations

All DFT-MD simulations were performed with the Vi-
enna Ab initio Simulation Package (VASP) [114]. We used the
hardest projector augmented wave [115] pseudopotentials that
were available for that code. The Perdew-Burke-Ernzerhof
(PBE) [116] functional or the local density approximation
[117,118] was employed to incorporate exchange-correlation
effects. We used cubic simulation cells with periodic bound-
ary conditions and, to improve efficiency, we used a smaller
number of atoms at the highest temperatures than we em-
ploy at lower temperature. As shown in our previous work
[82,87,93,95], this is not detrimental to the accuracy of the
EOS data at high temperatures.

The Mermin functional [119] was used throughout to in-
corporate the effects of excited electronic states at elevated
temperatures. The temperature condition where we switched
from DFT-MD to PIMC depends on the material. For low-Z
materials like helium, we already switched to PIMC at 10° K
while for elements from Na through Si, we performed DFT-
MD simulation for temperatures as high as 2 x 10° K. The
agreement between the EOSs derived with PIMC and DFT-
MD methods is fairly good. The deviations in pressure were
found to be 2% or less while the internal energies typically
deviated by ~5 Hartree (Ha)/nucleus or less. This means
that fundamental approximations, like the nodal structure in
PIMC and the choice of an exchange-correlation functional in
DFT methods, do not prevent us from constructing consistent
EOS tables for all 21 materials under consideration. This also
suggests that the most fundamental electronic properties were
accurately described with both methods and that the numerical
approximations were reasonably well controlled. Moreover, in
Refs. [91,92,120] it was shown that alternate DFT methods
such Fermi operator expansion and spectral quadrature as
well as different pseudopotentials and exchange-correlation
functionals gave consistent results.

With the described approximations, one typically finds that
the predictions from FP simulations agree with results from
laboratory experiments at extreme temperatures and pressures
because at the present time, these measurements have error
bars that are larger than those of high-pressure experiments at
room temperature, which have enabled us to benchmark the
accuracy of different FP methods [121]. Still, as experiments
at high temperature and pressure become more precise in
the future, one will need to revisit the fundamental approx-
imations (fermion nodes in PIMC and exchange-correlation
description in DFT) and the controllable approximations (fi-
nite size effects in both methods, convergence with respect
to simulation duration in DFT-MD and PIMC, and pseu-
dopotential approximation in DFT-MD) that are employed in
state-of-the-art simulation methods today.

III. RESULTS FOR SINGLE COMPOUNDS

In this section, we outline the basic functions of our FPEOS
database for single compounds. In the following two sections,
we discuss the properties of specific mixtures and then query
the database to compute properties of all binary mixtures. In
Table I, we provide the density, p, and temperature ranges
of the EOS tables of 11 elements and 10 compounds in our
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FIG. 1. Density-temperature-pressure conditions of our first-
principles simulations of helium [77]. Isobars, isentropes, and shock
Hugoniot curves are shown. In the upper panel, we include the
interior conditions of Jupiter [32,44] and main-sequence stars of dif-
ferent masses [13] as well as the highest-pressure conditions reached
in recent shock wave experiments on CH [122], B4,C [91], MgO
[123], BN [92], MgSiO; [124], and CO, [125]. The corresponding
temperatures were not measured but derived from simulations.

database. We chose helium as an example to illustrate the cal-
culations and plots that our database provides for all these 21
materials. In Fig. 1, we directly plot the EOS points from the
first-principles simulations in 7-P and T -p spaces. We added
isobars that we obtained via a two-dimensional (2D) spline
interpolation of P(p, T') that we also employ to interpolate the
internal energy, E(p, T'). As a guide for future ramp compres-
sion experiments, we also plotted a collection of isentropes
that we derived from the relationship 5=| = —T 2£| /32| .
Then we added different shock Hugoniot curves that pre-
dict the states generated in dynamic compression experiments.
By only measuring the shock and particle velocities, they
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FIG. 2. Shock Hugoniot curves for helium at different initial den-
sities (pp = 0.1235 g cm ™) are shown in compression-temperature
space. Relativistic and radiation effects have also been introduced.

provide a direct way to determine the EOS of materials at
extreme conditions. The sample material initially has the
internal energy, pressure, and volume, {Ey, Py, Vp}. Under
shock compression, the material reaches a final state de-
noted by {E(p,T), P(p,T),V}. The conservation of mass,
momentum, and energy across the shock front leads to the
Rankine-Hugoniot relation [10,126,127],

[E(p. T) — Eol 4+ 3[P(p. T) + Rl[V — Vo] =0.  (2)

The volume, V, follows from the density, p = m/V. For
helium, we set pg = 0.1235 g cm™>. In Fig. 2, we show
the resulting shock Hugoniot curve that has a pronounced
compression maximum of p/pg =5.32 at T = 151000 K
and P = 370 GPa. If internal degrees of freedom are excited
at high 7 and P, the typical compression ratio of an ideal
gas (p/po = 4) can be exceeded because these excitations
increase the internal energy E, which is then compensated
by a decrease in volume to satisfy Eq. (2). For conditions
under consideration in this article, it is the excitation of
K- and L-shell electrons that introduce one or two com-
pression maxima into the Hugoniot curves that we compute
here.

In Fig. 2, we also show the effect of relativistic electrons
that increases the shock compression for temperatures above
103 K. Since relativistic effects are not included in our PIMC
computations, we derived them for an ideal electron gas as-
suming complete ionization. We also show a Hugoniot curve
with radiation effects. Assuming an ideal blackbody behavior,
we very approximately derived the photon contribution to the
EOS using Pryq = (40’/3C)T4 and E,q = 3P4V, where o is
the Stefan-Boltzmann constant and ¢ is the speed of light
in vacuum. We find that radiative effects are important for
temperatures above 5 x 10° K, which are well above the tem-
perature necessary to completely ionize the K-shell electrons
of the helium nuclei.
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FIG. 3. Internal energy of hot, dense helium is shown for a col-
lection of isochores. Their densities are given in the captions in units
of g cm~3. For clarity, we shifted the individual curves in the upper
panel by A and removed E,, the energy of a noninteracting Fermi
gas of electrons and classical nuclei. In the lower panel, we show that
the results from our first-principles simulation converge to prediction
from the Debye plasma models in the limit of high temperature where
screening effects are the dominant type of the interaction.

For every material, our PIMC and DFT-MD results can
be combined into a single EOS table that can be smoothly
interpolated. In Fig. 3, we plot the internal energy of helium
for a collection of isochores. To reduce the range of the Y
axis, we removed the contribution from the ideal Fermi gas of
electrons and classical nuclei. In this figure, we also show that
our results converge to the predictions of the Debye plasma
model [21] in the limit of very high temperature. At lower
temperatures, this model quickly fails because it does not
include any bound states.
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FIG. 4. Shock Hugoniot curves of different mixtures of plastic
(CH) and silicon. The silicon Hugoniot curve exhibits two com-
pression maxima corresponding to the ionization of K- and L-shell
electrons. Conversely, the CH curve shows only one maximum be-
cause the states of L-shell electrons in carbon have merged with the
conduction bands [93]. We predict that the two-maxima signature is
preserved as long as the CH:Si concentration does not exceed a 2:1
ratio. With increasing CH concentration, the peak compression ratio
decreases, as is expected from two end-member curves.

IV. RESULTS FOR MIXTURES

In Ref. [68], we demonstrated that the ideal mixing ap-
proximation works well for temperatures above 2 x 10° K
and shock compression ratios greater than ~3.2. The mag-
nitude of nonideal mixing effects was found to be small and
the shock Hugoniot curves of BN, B4C, MgO, and MgSiO;
could all be reproduced with high precision by mixing the
EOSs of the elemental substances at constant pressure and
temperature. The good agreement included the regimes of K-
and L-shell ionization that lead to compression maxima on
Hugoniot curves. This remarkable agreement is the basis for
the mixture calculations that we implemented into our FPEOS
database. Neglecting all interspecies interactions, the linear
mixing approximation assumes all extensive properties of the
mixtures can be derived by adding the contributions from
components 1 and 2 at the P and T conditions of interest as
follows:

Vinix = NiVi + N, Vs, 3)
Mmix = Nimy + Noma, €]
Enix = N\E| + N Es, &)

where all variables have been normalized per formula unit. N,
and N, specify how many formula units of species 1 and 2 are
contained in one unit of the mixture. The mass density of the
mixture is given by pPmix = Mmix/Vix-

In Fig. 4, we compare the resulting shock Hugoniot curve
of various mixtures of silicon and CH plastic. Plastics are
typical coating materials of ICF capsules that may be doped
with heavier elements to modify their behavior to absorb
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FIG. 5. Shock Hugoniot curves of different mixtures of carbon
and oxygen. Like CH in Fig. 4, the carbon Hugoniot curve exhibits
only one compression maximum, while oxygen, like silicon, exhibits
two separate maxima from its L- and K-shell electrons. Neither
CO nor CO, shows two maxima, which means even a low-carbon
concentration such as C:O = 1:2 is sufficient to suppress the L-shell
compression maximum that one sees for elemental oxygen. Our
simulation results are in very good agreement with the experimental
data from Ref. [125].

radiation. Elemental silicon was predicted to have two com-
pression maxima that correspond to the conditions of K-
and L-shell ionization [88]. However, carbon and C-H mix-
tures were shown to have only one compression maximum
[93,94,122,128] because the states of carbon’s L-shell elec-
trons merged with the conduction band, which implies their
excitations occur gradually and do not lead to a separate
compression maximum.

In Fig. 4, we show that the two-maxima signature of sil-
icon is preserved as long as the CH:Si mixing ratio does
not exceed 2:1. For higher ratios, silicon’s K-shell maximum
disappears. With increasing the CH:Si mixing ratio, the shock
compression overall decreases. The L-shell maximum of sili-
con gradually transitions into the K-shell maximum of carbon
in CH without a significant change in pressure.

In Fig. 5, we show Hugoniot curves that we predict for
different carbon-oxygen mixtures that make up the interiors
of white dwarf stars. As initial conditions for CO, we used its
a structure with P2;3 symmetry with py = 1.0426 g cm ™ to
derive Ey = —112.9115 Ha/CO.

For CO,, we used the Pa3 structure at py = 1.40 and
1.67 g cm™3 to respectively obtain Ey = —188.1588 and
—188.1574 Ha/CO,. As expected, the resulting Hugoniot
curve falls in between those of elemental carbon and oxygen.
While the oxygen curve shows two compression maxima,
already a carbon content of C:O = 1:2 appears to be sufficient
to eliminate the lower L-shell maximum. We find excellent
agreement with the recent shock wave experiments on CO,
by Crandall et al. [125]. All measurements agree with our
predictions within error bars.
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FIG. 6. Shock Hugoniot curves of various mixtures of helium-
neon mixtures. The helium curve only exhibits one very pronounced
compression maximum because helium does not have an L shell. The
neon curve shows two maxima because of the L- and K-shell ioniza-
tion like silicon in Fig. 4 and oxygen in Fig. 5. With increasing neon
concentration, the compression maxima shift to higher pressure (and
temperature) because it takes more energy to ionize electrons from
their respective shells. We find that already a low neon concentration
of He:Ne = 4:1 is sufficient for the Hugoniot curve to show two
compression maxima.

Neon is the most difficult material to transform into a
metal, followed by helium [129]. In Fig. 6, we study the shock
properties of mixtures of the two inert gases. Neon exhibits
two compression maxima while helium shows one at much
lower pressure. Consequently, shock compression maxima
shift down in pressure with increasing helium contents. A
small neon content as low as He:Ne = 4:1 appears to be
sufficient to cause two compression maxima.

Finally, in Fig. 7 we compare the shock properties of water
[59,130,132], hydrogen peroxide, and alumina with those of
their elemental constituents. We predict water to exhibit two
compression maxima that, despite a shift to higher pressures,
are similar to the K- and L-shell ionization maxima of the oxy-
gen. For compression ratios between 3.4 and 3.7, the Hugoniot
curve that we derived with the linear mixing approximation is
in very good agreement with fully interacting DFT-MD results
of Ref. [130]. This adds support to the prediction in Ref. [68]
that the linear mixing approximation works very well for com-
pression ratios of 3.2 and larger. Both theoretical Hugoniot
curves are in agreement with the reanalysis in Ref. [25] that
shifted the experimental data point obtained by Podurets ef al.
[131] to slightly lower densities.

We predict the shock Hugoniot curve of H,O, to exhibit
only a single compression maximum at 7 = 3.784 x 10° K,
P = 141600 GPa, and p/pg = 4.639. Despite having a higher
atomic oxygen fraction than H,O, the lower L-shell ioniza-
tion appears only as a shoulder in the Hugoniot curve of
H,0,;, which is a consequence of its higher initial density,
1.713 g cm™3. A density increase reduces the compression
maxima along the Hugoniot curve because particles interact
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FIG. 7. Shock Hugoniot curves of Al,03;, H,O, and H,0, are
compared with those of the elemental constituents. For the lowest
pressures, our H,O curve converges to the predictions from French
et al. [130]. Both theoretical predictions are in better agreement
with the reanalyzed experimental results [25] than they are with the
original measurements [131]. H,O maintains part of the two-peak
signature of the oxygen Hugoniot curve; this influence is reduced
in H,O,. AL,O3 shows only one compression maximum because
the compression maxima of aluminum and oxygen are offset in
pressure.

more strongly, which increases the pressure and thus reduces
the compression ratio (see Figs. 2 and 5 as well as Ref. [77]).
If the initial density would be lowered to 1.35 g cm™ or
less, the ionization of L-shell electrons would again lead to
a separate compression maximum. We set £y = —151.48932
Ha per formula unit (f.u.) in all Hugoniot calculations of
H,0;.

For the computation of the shock Hugoniot curve of alu-
mina (Al,O3) we assume a corundum crystal structure and
use Ey = —708.807 Ha/f.u. and pp = 3.9929 ¢ cm™3 for the
initial conditions. The resulting Hugoniot curve only exhibits
a single maximum, which is a surprise because oxygen and
aluminum both show separate K- and L-shell maxima. How-
ever, these maxima are offset in pressure from one another
and since both nuclei are present in this compound, their
combined effects remove the L-shell maximum. Furthermore,
the initial density of alumina is rather high, which reduces the
magnitude of any compression maximum.

V. RESULTS FROM DATABASE APPLICATIONS

In Ref. [97], it was shown that the regimes of pressure and
thermal ionization can be distinguished from the slope, g—’; 7.
At low density and high temperature, this slope is negative
because with decreasing density, more and more free-particle
states become available, more electrons become ionized, and,
as a result, the internal energy increases. This is called the
thermal ionization regime, which is often described by the
Saha ionization equilibrium [15]. Conversely, at high density
the slope %'T becomes positive for two reasons. First, there
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FIG. 8. The dividing lines between the regimes of thermal
and pressure ionization are shown in temperature-density and
temperature-pressure spaces.

is the confinement effect, which increases the kinetic energy
of the free electrons, and second, the orbitals of the bound
electrons hybridize and may even be pushed into the con-
tinuum of free-particle states, which is commonly referred
to as pressure ionization. In Fig. 8, we employ the condi-
tion g—ﬁh = 0 to distinguish between these two ionization
regimes for six materials selected from our database. As ex-
pected, one finds low-Z materials like helium and CHy to
switch from thermal to pressure ionization at a lower den-
sity compared to BN, nitrogen, carbon, and oxygen. Still,
if one plots these transition lines in temperature-pressure
space, they move much closer together (see second panel of
Fig. 8).

Furthermore, our FPEOS database enables us to efficiently
compute the shock Hugoniot curves of all 21 compounds and
194 meaningful mixtures. In Fig. 9, we compare the condi-
tions of shock compression maxima on all resulting Hugoniot
curves for a 1:1 mixing ratio of formula units. These states
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FIG. 9. Conditions of the compression maximum on the shock
Hugoniot curves of 21 elements and compounds as well as their mix-
tures. All materials show compression maxima larger than 4.3 that
reflect the effects from electronic excitation. Low-Z materials like
helium and helium-rich mixtures already reach their compression
maxima for lower temperatures while silicon-rich mixtures require
much higher temperatures to excite their K-shell electrons.

may potentially be generated with laboratory experiments that
either start with a chemical compound or by shocking a het-
erogeneous mixture of the two compounds in the mixture. Our
calculations more accurately reflect that latter case because,
unless noted otherwise, we derive Ey and V| also from the
linear mixing approximation for simplicity.

We can identify a number of trends in Fig. 9 but in general
predicting the compression maxima of a specific mixture is
not trivial [63,133]. We find the mixtures of silicon exhibit a
compression maximum at higher temperature, which is con-
sistent with the ionization of the K-shell electrons. Mixtures
of helium tend to exhibit a compression maximum at lower
temperature. However, mixtures with hydrogen do not follow
this trend because it may be the other element in the mixture
with hydrogen that is responsible for introducing the compres-
sion maximum.

To study this trend, we study how strongly the temperature
of shock compression maximum correlates with the average
nuclei charge (Z) of the mixture in Fig. 10. As expected, one
finds some support for the trend of Tj,,x to increase with (Z)
but the correlation is not very strong. There are many mixtures
with silicon that have Tjx ~ 2 x 10° K but there are also
several mixtures with helium that have a similar 7.

In Fig. 11, we converted the conditions of maximal shock
compression into a up,-ug plot. The shock and particle ve-
locities were derived from u, = +/§n/m and u; = /& /(nm)
where & = (P — Py)Vy, n = 1 — Vi /Vjy, and m is the mass of
one formula unit. We find that shock and particle velocities at
maximum compression very closely follow the linear relation-
ship, u™ = 1.2727u** — 0.8588 km/s, over a wide u,, range
from 50 to 350 km/s. The largest deviations from this trend
are only +1.2% and —1.9%. This relationship, that we derived
for the different compression maxima, shares similarities with

|
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FIG. 10. Temperature condition of the compression maximum
on the shock Hugoniot curves of 21 elements and compounds as well
as their mixtures is shown as a function of the average ionic charge
(Z) of these materials. While generally the compression maximum
shifts towards higher temperature with increasing Z, the correlation
is found to be not very strong.

the linear u,-u, relationships that have been constructed for
individual materials [84,96] or groups of materials like fluid
metals [134]. For very high particle velocities of ~400 km/s,
the shock velocity has been found to rise faster than linearly
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FIG. 11. The particle and shock velocities are shown for the
points of maximum compression along shock Hugoniot curves of
21 elements and compounds as well as their mixtures. With good
accuracy, the data set can be represented by the linear relationship
of u, = 1.2727u, — 0.8588 km/s (dashed orange line). The largest
positive deviation is seen for a Si:Al mixture, in which case the fit
underpredicts u, by 5.2 km/s, or 1.2%. The largest negative deviation
is found for a H:CH4 mixture, in which case the fit overpredicts u,
by 5.4 km/s, or 1.9%.

013203-8



FIRST-PRINCIPLES EQUATION OF STATE DATABASE ...

PHYSICAL REVIEW E 103, 013203 (2021)

7 T T T TTTT T T T T T T T T TTIT7T LI
107+ 0 Elements and -
= compounds B
[ A Mixtures with hydrogen ]
O Mixtures with helium 1
V Mixtures with silicon
oo Remaining i
— mixtures
x | ﬁ
[J]
—_
=1
o
g 108~ 7
g_ |- -
5 £ 1
= S g 61" B
0]
Cl
[}
105 Ll Ll Ll L1
102 103 104 10° 108

Pressure (GPa)

FIG. 12. Pressure-temperature conditions for the points of maxi-
mum compression along shock Hugoniot curves of 21 elements and
compounds as well as their mixtures. As expected, pressure and
temperature are highly correlated, which can be represented by the
fit log(T/K) = 0.5744 x log(P/GPa) + 3.7469. However, specific
materials deviate substantially from this fit. The temperature of the
maximum compression point of a H:Ne Hugoniot curve is 38% lower
than this fit would imply. Conversely, the temperature for B:Al is
49% higher than predicted by the fit.

[84,96] but the corresponding pressures and temperatures
(~10°% GPa and ~107 K) cannot yet be reached in present-day
planar shock experiments.

When we plot the temperature-pressure conditions of all
computed Hugoniot maxima in log-log space in Fig. 12, we
also find a linear trend but the correlation is weaker. Deviation
can be as large as +49% and —38%.

In general, one expects the maximal shock compression
ratio of a mixture to fall in between the maximal ratios of
its two end members. However, there are exceptions because
Eq. (2) is nonlinear. So we combed through our database and
found eight mixtures that exhibit higher shock compression
ratios than their end members. In Fig. 13, we plot how their
maximal compression ratio and corresponding temperature
vary as a function of mixing ratio. The strongest nonlinear
behavior show mixtures of hydrogen, helium, and in one
case nitrogen with heavier elements. The addition of a light
element effectively lowers the initial density, which then in-
creases the shock compression ratio as we have seen in Fig. 2.
This explanation, in principle, also applies to the two remain-
ing, less intuitive cases: the Mg-Si mixture, where silicon has
a low initial density, and the CH-MgO mixtures, where the
introduction of CH leads to a reduction in density.

VI. CONCLUSIONS

By assembling results from ~5000 FP computer simula-
tions of 21 elements and compounds, we have constructed a
general-purpose FPEOS database for computation of matter
at extreme conditions. It is our goal to make the calculations
of shock Hugoniot curves and ramp compression paths so

10°
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FIG. 13. Conditions of the compression maximum on the shock
Hugoniot curves of eight cases for which the mixtures exhibit a
higher compression ratio than its end members. The lines emerge
because a range of mixing ratios were considered.

efficient—without compromising the precision of PIMC and
DFT-MD methods—that they become routine in the design
and the analysis of WDM experiments. We thus provided our
EOS tables as well as the C++ and PYTHON codes for the
interpolation and the generation of various thermodynamic
functions as Supplemental Material [69].

By invoking the linear mixing approximation at constant
pressure and temperature, we first studied a selected number
of binary mixtures, computed their shock Hugoniot curves,
and related the resulting compression maxima to the ioniza-
tion of L- and K-shell electrons. Then we applied our database
to study the behavior of these maxima in 194 mixtures and
identified trends in pressure, temperature, and particle and
shock velocity. Finally we identified eight unusual mixtures
that should exhibit a higher shock compression ratio than their
respective end members.
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