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Head-on collision of compressional shocks in two-dimensional Yukawa systems
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The head-on collision of compressional shocks in two-dimensional dusty plasmas is investigated using both
molecular dynamical and Langevin simulations. Two compressional shocks are generated from the inward
compressional boundaries in simulations. It is found that, during the collision of shocks, there is a generally
existing time delay of shocks τ , which diminishes monotonically with the increasing compressional speed of
boundaries, corresponding to the time resolution of the studied system. Dispersive shock waves (DSWs) are
generated around the shock front for some conditions. It is also found that the period of the DSW decreases
monotonically with the inward compressional speed of boundaries, more substantially than the time delay of
shocks τ . When the inward compressional speed of boundaries increases further, the DSWs gradually vanish.
We speculate that, for these high compressional speeds of boundaries, the period of the DSW might be reduced
to a comparable timescale of the time delay of shocks τ , i.e., the time resolution of our studied system, or even
shorter, thus the DSW reasonably vanishes.
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I. INTRODUCTION

A dispersive shock wave (DSW) is a periodic structure gen-
erated after the breaking of a powerful pulse in a wave system
where the dispersive effect is much larger than the dissipative
one [1]. For example, a tidal bore observed in water [2] is one
typical example of a DSW. In addition to this tidal bore, a
DSW has also been found in the Bose-Einstein condensates
[3,4], the nonlinear optics [5,6], and dusty plasmas [7].

Dusty plasma, or complex plasma, is an experimental
model system in which the motion of individual dust particles
can be directly studied at the kinetic level using the diagnostic
of the video imaging [8–16], so that quite a few physical
processes, like shocks [17], can be investigated in dusty plas-
mas at the kinetic level. In the laboratory conditions, these
dust particles are strongly coupled [18,19] due to their high
negative charges [20,21], and a single-layer suspension of dust
particles can be formed in the plasma sheath, i.e., the two-
dimensional (2D) dusty plasma. The interparticle interaction
between these dust particles can be described as the Yukawa
potential [19,22], although in some conditions the wake effect
[23] of the ion flow may induce the nonreciprocal interaction
[24] between dust particles. To mimic dusty plasmas, simu-
lations of Yukawa systems [25–30] are often performed to
investigate the collective dynamics of dusty plasmas. Quite
a few fundamental physics processes have been studied in-
tensely using the dusty plasma system, such as Refs. [31–36].

The wave interaction is a crucial problem in the study
of dusty plasmas. Various related topics have been investi-
gated, such as the collision of dust acoustic solitons [37], the

*fengyan@suda.edu.cn

interference of two dust acoustic waves [38], soliton inter-
action [39], and so on. In the experimental and numerical
investigations of the interaction of two counterpropagating
solitons in Ref. [39], it is found that the solitons are delayed
after the collision, and this delay time increases with the
excitation amplitude. In the simulation of 2D Yukawa systems
with an inward moving boundary, a compressional shock can
be generated [7]. In Ref. [40], the shock Hugoniot curves after
this compressional shock are analytically fitted under various
conditions, so that different physical quantities after shocks
are obtained from the derivation.

The DSW has been observed in the simulation of shocks in
dusty plasmas [7] with some conditions of the specific values
of the damping rate and Mach number. It is also found that
[7], for some other conditions, the DSW structure cannot be
observed anymore, called the vanishment of the DSW. How-
ever, the essential physics of DSWs in dusty plasmas is not
yet understood. In this sense, we must explore the underlying
physics of DSWs, as well as the relationship between DSWs
and the collision of compressional shocks.

Here, we study the underlying physics of the head-on col-
lision of two compressional shocks, as well as the generated
DSW, in 2D dusty plasmas, using both frictionless molecular
dynamics (MD) and Langevin simulations of Yukawa sys-
tems. Two pistons moving inward with a constant speed of
vp generate two compressional shocks with the inward prop-
agating speed of D [40]. When the two shock waves continue
to propagate away, they collide with each other, and later two
new shock fronts are generated. In this process, a time interval
between the two shock waves that collide and pass through
can be observed; this is termed the time delay of shocks τ . We
find that this time delay of shocks diminishes monotonically
with the increasing moving speed of two pistons. In Sec. II,
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we briefly introduce our simulation methods. In Sec. III, we
present three topics of the time delay of shocks, the period of
the DSW, and the vanishment of the DSW, respectively. The
DSW results presented here are well consistent with those in
[7]. Moreover, from the many more data points presented here,
we provide our physical explanation of the DSW vanishment
in some conditions. Finally, we present our summary. Note
that the results of the DSW in 2D Yukawa systems obtained
here may also be applicable to other systems, such as, e.g.,
dense liquids [41].

II. SIMULATION METHOD

To investigate the propagation of the head-on collision of
two compressional shocks in 2D dusty plasmas, we perform
frictionless MD simulations of 2D Yukawa systems using
LAMMPS [42]. In our simulations, N = 16 384 simulated parti-
cles are constrained in a 2D plane, with the equation of motion
[40,43] for each particle i of

mr̈i = −∇
N∑

j �=i

φi j + F pis-left
i + F pis-right

i . (1)

Here, the first term is the interparticle interaction of the
Yukawa potential of φi j = Q2exp(−ri j/λD)/4πε0ri j , where Q
is the particle charge, ri j is the distance between the particles i
and j, and λD is the Debye length. The latter two terms on the
right-hand side of Eq. (1) are both the confinement from the
boundaries of the simulation box, as explained next. Note that
here we would like to clarify that in dusty plasma experiments,
the interparticle interaction may be much more complicated
than the Yukawa repulsion; for example, the ion flow in-
duced wake effect may result in the nonreciprocal interaction
between these dust particles [23,24]. As in most simulation
investigations, such as Ref. [7], here we also neglect the wake
effect to use the Yukawa repulsion to describe the interparticle
interaction for 2D dusty plasmas, so that the results here are
mainly for the physics of 2D Yukawa systems.

In our simulations, two compressional shocks are gen-
erated from the two inward moving boundaries to mimic
two pistons. To simulate the force from the left-hand-side
piston, we use the form of a Gaussian function �F pis−left

i =
50 exp(−(x − xl

p)2/0.25a2
0)ma0ω

2
pd x̂ acting on all simulated

particles, where xl
p is the location of the piston in the x di-

rection moving with a constant speed vp. The function of the
force from the right-hand-side piston is similar, with the other
piston in the symmetric location xr

p moving in the reverse
direction. During our simulations, two pistons move inward
at a constant speed vp at the same time, and we record the
positions and velocities of simulated particles for the later
data analysis. In our simulation, the inward compressional
speed of two boundaries is chosen from 0.141 aωpd to 1.272
aωpd , so that the corresponding Mach number of the inward
compressional speed Mp = vp/Cl varies from 0.147 to 1.324.
At the same time, the shock front, generated by the moving
pistons, can be easily observed in Fig. 1. The corresponding
shock front speed D can be determined from the slope of the
boundary between the compressed and uncompressed regions
in the spatiotemporal evolution of the number density for
particles n, as we will describe later.
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FIG. 1. Snapshot of particle positions of two-dimensional
Yukawa solids before the head-on collision of two compressional
shocks in our simulations. Two pistons on the left and right bound-
aries both move inward with a constant speed of vp, generating two
compressional shocks with the inward propagating speed of D [40].
At the shock front region, a few ripples of the particle density appear,
called the dispersive shock wave (DSW). Here, we focus on the prop-
erties of the DSW and the dynamics of the latter head-on collisions
of these two compressional shocks. Note that, in our simulations
(N = 16 384) reported here, the periodic boundary conditions are
applied in the y direction.

Here are some details in our simulations. In the y direc-
tions, we use the periodic boundary conditions as in [40,43].
We choose the initial conditions of our simulated 2D Yukawa
system to be � = 800 and κ = 0.75, for example. Before
generating shocks, we perform our MD simulation >2 × 105

steps to make sure that the simulated system reaches the
steady state of � = 800 and κ = 0.75. Then we apply two
moving boundaries in the x direction to generate shocks to
record the data for the investigations reported here. Besides
the initial conditions of � = 800 and κ = 0.75, we also
perform other simulation runs with the different coupling
parameter of � = 200 and the various screening parameters
of κ = 1.0 and 2.0. Note that, for each simulation run, the
Debye length λD is unchanged. As a result, when the pistons
move inward to compress the system, the value of κ decreases,
as in [40].

In dusty plasma experiments, the motion of dust particles
is underdamped [19] due to the frictional gas drag acting on
these dust particles while they move. To study the effects
of gas damping on the DSW, we also perform Langevin
dynamical simulations [44] to mimic the propagation of the
head-on collision of two compressional shocks in 2D dusty
plasma experiments. The equation of motion of each particle
is similar to Eq. (1), except that we add two more terms
on the right-hand side. The first term νmṙi is the Epstein
frictional gas drag expression [45], where ν is the gas damping
rate. The second term is the Langevin random kicks from the
fluctuation-dissipation theorem [45]. In our simulations, we
specify the gas damping rate as ν/ωpd = 0.037, comparable
to the typical dusty plasma experiments [20], while other pa-
rameters are exactly the same as those in the MD simulations
above. Other details of our Langevin simulations are similar
to [44,45].

III. RESULTS AND DISCUSSIONS

A. The time delay of shocks τ

To determine the time delay of shocks τ , we prepare a
spatiotemporal evolution of the number density n of particles

013202-2



HEAD-ON COLLISION OF COMPRESSIONAL SHOCKS IN … PHYSICAL REVIEW E 103, 013202 (2021)

for the head-on collision of two compressional shocks, as
in Fig. 2. First, we divide the simulation region into 480
rectangular bins with the width of a in the x direction, and we
count the number of particles in each bin, called the number
density n. Then we plot the counted number as a function of
the time t and the position x, as in Fig. 2(a), which is just the
spatiotemporal evolution of the number density n of particles.

From Fig. 2, as well as the spatiotemporal evolution of
the number density n for other compressional speeds, we
find that the time delay of shocks τ generally exists for our
studied 2D Yukawa systems with all different compressional
speeds. The shock front is at the border between the dis-
turbed and undisturbed regions, thus the slope of this border
in Fig. 2, as those dashed lines show there, is just the shock
front speed D [40]. After the collision, two new shock fronts
are generated, marked as the dotted lines. Clearly, there is a
time delay of τωpd = 2.5 in Fig. 2(b) before two new shocks
propagate away at the conditions of � = 800, κ = 0.75, and
Mp = 0.441. As the substance or media for the propagation
of shocks and waves, individual particle motion of the 2D
Yukawa system has its own timescale. For the condition of
Mp = 0.441 in Fig. 2, the observed time delay of shocks
τωpd = 2.5 can also be expressed as τωE < 2.5 using the
Einstein frequency [27], which is less than half of the vibra-
tion period for individual particles. We speculate that this time
delay of shocks may be related to the timescale of the individ-
ual particle motion. In principle, for small disturbance, this
time should not be shorter than 1/4 of the vibration period of
individual particles, i.e., t � 2πω−1

pd /4. However, for stronger
shocks, particles around the shock front are accelerated fur-
ther, so that this time delay can be shortened. Next, we present
the measured time delay for different inward compressional
speeds of Mp in Fig. 3.

From Fig. 3, we find that the time delay of shocks τ

diminishes monotonically with the increasing Mach number
of the compressional speed of boundary Mp. When the com-
pressional speed of boundary increases, the generated shock
is more extreme, so that particles move faster. As a result, the
time delay of shocks τ becomes shorter. When the time delay
of shocks τ drops to the level of τωpd ≈ 1, it seems that this
time delay cannot drop substantially further even though Mp

increases. Besides the MD simulations for the conditions of
� = 800 and κ = 0.75 presented in Fig. 3, we also perform
quite a few other simulation runs with different values of �

and κ . It seems that the obtained time delay of shocks τ is
not related to the values of � and κ , as presented in detail in
[46]. Thus, we conclude that the time scale of τωpd ≈ 1 is
just the time resolution of our studied systems, which should
be related to the timescale of the individual particle motion,
leading to the property of the DSW.

Note that a few stripes around the shock front in Fig. 2
reflect the structure of the DSW. Later, after the head-on
collision of two shocks, these stripes form a grid, as shown
in Fig. 2, corresponding to the interaction of DSW. Also, the
observed shock front speed after the collision D′ in Fig. 2
is slightly smaller than the shock front speed D before the
collision. Before the collision of two shocks, in the after-
shock region, the studied 2D Yukawa system has a higher
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FIG. 2. The spatiotemporal evolution of the number density n of
particles for the head-on collision of two compressional shocks when
Mp = 0.441 for the 2D Yukawa conditions of � = 800 and κ = 0.75.
The simulation box is divided into 480 narrow rectangular bins with
the width of a in the x direction, and the counted particle number in
each bin is just the plotted number density here. Two shock fronts
can clearly be observed from this number density evolution in (a) as
two distinctive lines with the constant slope, corresponding to the
shock front speed D, which we marked as the dashed line. These two
distinctive lines merge together when twpd = 181, which means that
these two shock fronts collide with each other. By magnifying the
collision procedure in (a), as in (b), we can see that, after the head-on
collision of these two shock fronts (marked as the dashed line), there
is a clear time delay of τωpd = 2.5 before two new shocks (marked
as the dotted line) propagate away. The variation property of this
time delay of shocks τ as a function of the Yukawa conditions and
the shock parameters is what we will study here. Note that, in both
panels, before the head-on collision of two shocks, we observe a few
stripes with the same slope of the shock front, reflecting the structure
of the DSW. Also, after the collision, these stripes form a grid, further
reflecting the interaction of the DSW.
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FIG. 3. The time delay of shocks τ as the function of the Mach
number of the inward compressional speed Mp for the 2D Yukawa
conditions of � = 800 and κ = 0.75. We obtain the time delay of
shocks τ in different Mach numbers with and without frictional gas
drag from the spatiotemporal evolution plots of the number density
n, when the Mach number of the inward compressional speed Mp =
vp/Cl is varied from 0.147 to 1.324. Here, the time delay of shocks τ

decreases monotonically with the compressional speed of vp for both
conditions with and without frictional gas drag, and it seems to reach
a saturation level of τωpd ≈ 1 at the high Mach numbers from our
simulation. We speculate that the observed timescale of τωpd ≈ 1 is
related to the timescale of individual particle motion.

kinetic temperature of � = 38 and a lower screening pa-
rameter of κ = 0.62, where the later generated shocks after
the collision propagate. Under these conditions, using our
simulations not reported here, we obtain the corresponding
shock Hugoniot curve, or the D − v̄ relationship, as D =
1.081 + 0.896v̄ + 0.116v̄2, using the method in [40]. The
particles around the region where the later generated shock
propagates (tωpd > 180) should have the overall drift mo-
tion in the reversed direction, and we calculate this drift
velocity of v̄ = 0.425aωpd from our simulation data reported
here. Substituting the obtained v̄ = 0.425aωpd into the shock
Hugoniot curve above, we can predict the shock front speed
of 1.483aωpd under these conditions. From the dotted lines
shown Fig. 2, we can directly measure shock front speed
after the collision, which is D′ = 1.163aωpd . We find that this
measured shock front speed D′ = 1.163aωpd is almost equal
to 1.483aωpd − 0.425aωpd = 1.058aωpd , i.e., the predicted
shock front speed of 1.483aωpd from the system without a
drift motion subtracted by the obtained drift velocity v̄ from
our studied shock collision system here, with only less than
10% uncertainty from our data analysis.

In addition to the results from our frictionless MD simula-
tions above, we also plot our obtained results of the time delay
of shocks from our Langevin simulations in Fig. 3, as shown
by the hollow symbols. Clearly, for each inward compres-

sional speed vp, the time delay of shock τ from the Langevin
simulation is always larger than that from the frictionless MD
simulation. We also find that the time delay of shocks τ dimin-
ishes monotonically with the increasing compressional speed
of boundary vp. Clearly, although the frictional gas damping
expands the time delay of shocks τ , the variation trend of τ as
a function of vp is unchanged.

The time delay of the head-on collision of solitons has been
experimentally observed in [39], which in principle should
be similar to our observation of the time delay of shocks τ

here. In [39], the observed time delay 1.108 w−1
pd is consistent

with our obtained time delay of shocks τωpd ≈ 1 for the
conditions of higher Mach numbers. Meanwhile, there are
some differences between the experiment results [39] and our
simulations. For example, in [39] it is found that the time
delay increases with the amplitude of solitons; however, in our
two types of simulations, this time delay is always diminished
substantially and monotonically when the inward compres-
sional speed increases, or when the amplitude increases.

B. The period of DSW

To investigate the period of the DSW, in Fig. 4 we com-
pute the one-particle distribution function f1(ζ , vx ), as in [7].
Here, ζ is the Lagrange coordinate ζ = (x − Dt ), which is
the moving coordinate with the generated DSW. First, we
calculate the shock front speed D at different inward com-
pressional speeds of two boundaries from the spatiotemporal
evolution of particles, which varies from 1.113 aωpd to 2.322
aωpd for different runs in our simulation data. Then we count
the particle number in different coordinates of ζ and vx. We
divide the horizontal axis of ζ into bins with a width of 0.5a,
and we divide the vertical axis of vx into bins with a width
of 0.005 aωpd . Then, we count the particle number of each
cell and divide it by the total particle number in all cells to
obtain the one-particle distribution function f1(ζ , vx ). Here
we present six typical results, with the corresponding piston
Mach numbers of 0.22, 0.441, 0.662, 0.809, 0.956, and 1.324,
as shown from Figs. 3(a)– 3(f).

The wavelength and period of the DSW can be directly
measured from the obtained f1(ζ , vx ). As shown in Fig. 4(a),
we mark the location of the first three peaks of f1(ζ , vx ). Then
the measured distance between the first and second peaks is
just the first wavelength, marked as λ1. Similarly, the distance
between the second and third peaks is the second wavelength,
marked as λ2. Note that, from our calculated one-particle
distribution function f1(ζ , vx ), the most prominent feature is
that the wavelengths of λ1 and λ2 both decrease monoton-
ically with the increasing compressional speed of the two
boundaries. We also calculate the period of the DSW using
T = λ/D, where D is the shock front speed, so that T1 and T2

are the first and second periods of the DSW.
Interestingly, when the Mach number increases, it becomes

more and more difficult to distinguish the wavelength from
f1(ζ , vx ). From Figs. 4(a)–4(f), when the inward compres-
sional speed of two boundaries vp is larger, the generated
DSW has a larger amplitude and a smaller wavelength.
Furthermore, an increasing compressional speed of two
boundaries vp gradually blurs the feature of the DSW in
f1(ζ , vx ) until it vanishes almost completely in Fig. 4(f). We
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FIG. 4. The obtained one-particle distribution function f1(ζ , vx ), where ζ is the Lagrange coordinate ζ = (x − Dt ), from our frictionless
MD simulations of � = 800 and κ = 0.75. To calculate f1(ζ , vx ), we divide the ζ -vx plane into bins in both the ζ and vx directions, and we
count the particle number in each cell. Then, we divide the counted number in each cell by the total particle number in all cells to obtain the
one-particle distribution function f1(ζ , vx ), as in [7]. In our simulations, the only varied condition is the inward compressional speed of two
boundaries in the x direction, which are (a) Mp = 0.22, (b) Mp = 0.441, (c) Mp = 0.662, (d) Mp = 0.809, (e) Mp = 0.956, and (f) Mp = 1.324,
respectively. Here, we refer to the distance between the first and second peaks of f1(ζ , vx ) in the shock front as the first wavelength of the
oscillation λ1. Similarly, the distance between the second and third peaks is called the second wavelength λ2, as marked in (a). Clearly, from
(a)–(f), the wavelengths λ1 and λ2 gradually diminish with the Mach number, until the DSW completely vanishes. Note that we also find that
the first wavelength λ1 seems to be always slightly larger than the second one λ2.

speculate that a larger compressional speed of two bound-
aries vp would generate more severe shocks containing more
kinetic energy, so that the structure of the DSW would be
damaged more by these active particles.

The velocity distribution in the postshock region varies a
lot when the compressional speed of the boundaries changes.
In Fig. 4(a), the velocity distribution is pretty narrow. Then,
as the boundary speed increases, the velocity distribution
in the postshock region increases monotonically. When the
compressional speed of the boundary is higher, the particles
in the simulated system are more severely disturbed, so that
more energy from the compression is converted to the ther-
mal energy, i.e., the velocity distribution is wider. We also
speculate that, since the kinetic temperature of particles is
higher for a faster compressional speed of boundaries, this
higher temperature may also blur the DSW until it gradually
vanishes.

Note, the DSW results presented in Fig. 4 are the averaging
of all frames in the steady state. In [46], we also provide
the evolution of the DSW in our simulations, from the initial
compression of the boundary to the final steady state when the
DSW is fully developed. For each snapshot of the DSW, we
also create the Fourier transformation of the number density
ripples in order to find the evolution of the corresponding

wave-number peak location, which may be useful in the con-
struction of the DSW theory in the future.

C. Vanishment of the DSW

To explore the physical mechanism of the vanishment of
the DSW, we investigate the variation of the period of the
DSW as a function of the inward compressional speed of the
boundary. For the different compressional speeds of bound-
aries, we obtain the first and second periods (T1 and T2) of the
DSW using T = λ/D, where the wavelengths of λ1 and λ2 are
directly measured from the calculated f1(ζ , vx ) in Fig. 4. For
some high compressional speeds, the DSWs fade away so that
the period cannot be distinguished anymore, which we just
ignore.

As the major result of this paper, our obtained periods
of the DSW are presented with the time delay of shocks in
Fig. 5. We find that both the first and second periods of the
DSW decrease monotonically with the compressional speed
vp. The first and second periods (T1 and T2) of the DSW are
both always larger than the time delay of shock τ , although
T1 and T2 decrease much more substantially than τ when Mp

increases. In addition to the results of T1 for the conditions of
� = 800 and κ = 0.75 presented in Fig. 5, the results of the
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FIG. 5. The time delay of shocks τ (triangle), and the first T1

(square) and second T2 (circle) periods of the DSW, as functions
of the inward compressional speed of boundary vp for the 2D
Yukawa conditions of � = 800 and κ = 0.75. Here, the time delay
τ is obtained from Fig. 3, while the first and second periods T1

and T2 of shock waves are obtained from T = λ/D, where λ1 and
λ2 are measured from the calculated f1(ζ , vx ) as in Fig. 4. When
the compressional speed of the boundaries vp increases, the three
timescales (the time delay of shocks τ , and the first T1 and second
T2 periods of dispersive shock waves) all decrease monotonically.
We can find that the first and second periods T1 and T2 of shock
waves are always larger than the time delay of shock τ , although
T1 and T2 diminish much more substantially than τ . And the time
delay of shocks τ seems to reach a saturation level of τωpd ≈ 1 at
the high Mach numbers from our simulation data. We speculate that
the unity timescale of τωpd ≈ 1 seems to be related to the motion
of individual particles around the shock front. We believe that the
observed timescale of τωpd ≈ 1 is just the time resolution of our
studied shock system, which determines the property of the DSW.
We speculate that, for a high Mach number of vp, the period of the
DSW might be reduced to the time resolution of our studied system,
or even shorter. As a result, the DSW cannot be detected anymore
with this time resolution, and the DSW reasonably vanishes around
the shock front. Note that the legends of (a)–(e) correspond here to
the results of the panels in Fig. 4. We also plot the results of the
obtained time delay of shocks and the first period of shock wave from
the Langevin simulations, as two types of hollow symbols shown.
Clearly, although the frictional gas damping expands both the time
delay of shocks τ and the first period of DSW T1, the whole variation
trends of τ and T1 as a function of vp are still the same as the case
without gas damping.

period of the DSW for other conditions with different values
of � and κ are presented in detail in [46]. From [46], the
period of the DSW is not affected much by the values of �

and κ . For various conditions of 2D Yukawa systems, it seems
that the period of the DSW is almost a function of only one

variable Mp, the Mach number of the compressional speed of
the boundary.

From Fig. 5 and [46], we can provide our explanation of the
vanishment of the DSW from our simulation investigations.
When the compressional speed of boundaries increases, both
the period of the DSW and the time delay of shocks decrease
monotonically. The period of the DSW decreases much more
substantially than the time delay of shocks τ . However, the
time delay of shocks τ can be regarded as the time resolution
of the studied shock systems, which is probably related to the
motion of individual particles around the shock front as we
speculate. The DSW is a kind of wave carrying the energy
to propagate away. If the period of the DSW is comparable
to or even smaller than the time delay of shocks τ , then the
DSW definitely vanishes, since the studied system (medium)
cannot sustain such a small temporal resolution for the DSW
anymore. We think, for the conditions of Mp > 0.8 in Fig. 5,
the undetectable periods of the DSW should be comparable
to or even smaller than the time delay of shocks τ , so that
we cannot observe the DSW in the calculated one-particle
distribution function f1(ζ , vx ) in those conditions anymore,
such as in Fig. 4(f).

We also find that the first period of the DSW T1 is slightly
larger than the second period T2. We speculate that this is
probably due to the temperature rise after the first wavelength
has not reached the final steady value, as compared with the
second wavelength. From Fig. 4, especially for the first three
panels, velocity distribution in the first wavelength is narrower
than that in the second wavelength and later. That is to say,
after the propagation of the first wavelength, the 2D Yukawa
system is not heated enough, while after the second wave-
length propagation and even further, the 2D Yukawa system is
heated enough, so that the kinetic temperature finally reaches
the final steady state. From the main trend of Fig. 4, when the
final temperature is higher, the corresponding wavelength is
smaller. Thus, it is reasonable that T1 > T2 since the studied
system has not been heated enough during the propagation of
the first wavelength of the DSW.

We also plot our obtained first period of the DSW T1 from
our Langevin simulations in Fig. 5. Clearly, the first period of
the DSW T1 is also expanded by the frictional gas drag, the
same as the time delay of shocks τ . However, the variation
trend of T1, as a function of vp, is still unchanged. More
importantly, when the first period of the DSW T1 is larger than
the time delay of shocks τ , the DSW can still be observed.
This point obtained from the Langevin simulations is the same
as that from the frictionless MD simulations. Of course, from
Fig. 5, due to the effect of the frictional gas damping, the
vanishment of the DSW probably happens at a larger Mach
number of vp as compared to the frictionless MD simulations.
Further investigations related to the corresponding Langevin
simulations are beyond the scope of this paper.

IV. SUMMARY

In summary, we systematically investigate the head-on
collision of the compressional shocks in 2D Yukawa sys-
tems at the kinetic level, using frictionless MD and Langevin
dynamical simulations of shocks generated from the inward
compression of two boundaries.
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From the spatiotemporal evolution of the number density
n for different compressional speeds, we find that, after the
collision of two shocks and before the generation of two new
shocks, there is a time delay of shocks τ . We obtain the value
of this time delay of shocks τ , which diminishes monoton-
ically with the inward compressional speed of boundaries.
It seems that, when the compressional speed of boundaries
increases, the obtained time delay of shocks saturates around
the level of τωpd ≈ 1, corresponding to the timescale of the
motion of individual particles. We think that this time delay
of shocks τ probably corresponds to the time resolution of our
studied 2D Yukawa systems, which determines the property of
the DSW.

Using the one-particle distribution function f1(ζ , vx ), we
investigate the properties of the DSW. The first and second
wavelengths and periods of the DSW are measured from the
calculated f1(ζ , vx ) for some conditions. However, for other
conditions, the DSW vanishes from the obtained f1(ζ , vx ).
We find that both the period of the DSW and the time delay
of shocks decrease monotonically with the inward compres-
sional speed, although the decrease of the period of the DSW
is much more substantial. Our interpretation about the van-

ishment of DSW is that, when the period of the DSW is
reduced to comparable to or even shorter than the time delay
of shocks, i.e., the time resolution of our studied system, the
DSW reasonably vanishes.

From the comparison between frictionless MD and
Langevin simulations, we find that the frictional gas damping
expands both the time delay of shocks τ and the period of
the DSW. However, the main variation trends of these two
quantities, as the functions of the inward compressional speed
of boundary vp, are not changed. As a result, the frictional gas
damping does not affect our conclusions obtained from the
frictionless MD simulations above.
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