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Hydrodynamic interactions between swimming microorganisms in a linearly density stratified fluid
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Oceans and lakes sustain intense biological activity due to the motion of marine organisms, which has
significant ecological and environmental impacts. The motion of individual organisms and their interactions with
each other play a significant role in the collective motion of swimming organisms. However, ubiquitous vertical
density stratification in these aquatic environments significantly alters the swimmer interactions as compared to
in a homogeneous fluid. Furthermore, organisms have sizes varying over a wide range which results in finite
inertia. To this end, we numerically investigate the interactions between a pair of model swimming organisms
in two configurations: (1) approaching each other and (2) moving side by side with finite inertia in a linearly
density stratified fluid. We use the archetypal reduced-order squirmer model to numerically model the swimming
organisms. We present trajectories and the contact times of interacting squirmer (puller & pusher) pairs for
different Re in the range 1–50 and Ri in the range 0–10. Depending on the squirmer Re and Ri we observe that
the squirmer interactions can be categorized as (i) pullers getting trapped in circular loops at high Re and low Ri,
(ii) pullers escaping each other with separating angle decreasing with increasing stratification at low Re and high
Ri, (iii) pushers sticking to each other after the collision and deflecting away from the collision plane for either
low Re or high Ri, (iv) pushers escaping otherwise with an angle of separation increasing with stratification.
Stratification also increases the contact time for squirmer pairs. The presented results can be useful to understand
the mechanisms behind the accumulation of planktonic organisms in horizontal layers in a stratified environment
such as oceans and lakes.
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I. INTRODUCTION

The sizes of swimming organisms span a wide range of
length scales, from micrometers to a few meters. Thus, de-
pending on their size, these organisms employ a variety of
swimming mechanisms that take advantage of the fluid flow
around them to propel themselves. In a fluid with a char-
acteristic density ρ0 and dynamic viscosity μ, the Reynolds
number for an organism of size a and moving with a speed
U0 is defined as Re = ρ0U0a/μ, which is the ratio of inertial
to viscous forces. At microscales, Re ≈ 0 and the microor-
ganisms make use of the viscous drag exerted by the fluid to
move. Larger organisms such as fishes and whales have a finite
Re and utilize the lift generated by the fluid accelerating past
them to swim.

In recent years, researchers have devoted significant effort
to investigate the collective dynamics of organisms. Dense
suspensions of bacteria on scales much larger than a cell in the
Stokes flow limit exhibit transient, reconstituting, high-speed
jets straddled by vortex streets [1], self-sustained turbulence
[2], extended spatiotemporal coherent dynamics [3], and su-
perdiffusion in short times [4]. The collective motion of the
bacteria is determined by short-range pair interactions at high
concentrations [2]. Even at high Re, e.g., schooling fish, flock-
ing birds, and swarming insects, the hydrodynamic interaction
between the moving organisms and their detached vortical
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structures significantly affect the swimming (flying) efficiency
[5,6].

Many studies of the collective behavior of swimmers
neglect the near-field hydrodynamic interactions and only
consider the far-field interactions to simulate the dynamics
of swimmer suspensions [7,8]. But, to completely understand
the collective behavior of the microswimmers, it is important
to investigate the near-field hydrodynamics between a pair
of interacting swimmers. It is well known that in the dilute
limit, microswimmers behave as a force dipole, leading to
a velocity field decaying as 1/r2, where r is the distance
from the microswimmer [9]. Due to the slow decay of the
induced velocity field, the pairwise interaction between two
swimmers cannot be neglected, even at large separations.
Various experimental studies have shown the crucial role of
hydrodynamic interactions between microorganisms in deter-
mining their dynamics, e.g., dancing Volvox [10], interacting
pair of Paramecia [11], the formation of dynamic clusters in
suspensions of motile bacteria [12], and hydrodynamic self-
mediation of bacteria into two-dimensional crystals [13].

Many theoretical and numerical studies have also been
conducted to investigate the hydrodynamic interactions be-
tween two model swimmers. Pullers (pulled from the front)
are attracted towards each other first, which leads to near
contact and changes in their swimming orientations to finally
separate [14,15]. Two self-propelling bacteria by rotating
helical flagella avoid each other by changing their orienta-
tions [16]. The swimmer-swimmer interaction is complex and
strongly affected by their relative displacement, orientation,
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initial configuration, and swimming stroke phase. Slight vari-
ations in these parameters lead to different scattering angles,
swimming speeds, and a range of different interactions, such
as attraction, repulsion, or oscillation [17–20]. Hydrodynamic
interactions between two microswimmers also lead to the
enhancement of the swimming efficiency by synchronizing
the phase of two adjacent flagella [21]. However, all of these
studies were performed in the Stokes regime assuming Re = 0
without considering the effect of swimmer inertia.

For swimming microorganisms, the Re ranges from 10−4

for bacteria [22], 10−3 for Chlamydomonas, 0.01–0.1 for
Volvox [10], 0.1–1 for freely swimming zooplankton Daphnia
magna [23], 0.2–2 for Paramecia depending on swimming or
escaping mode [11], O(10) for Pleurobrachia, and 20–150
for copepods [24]. Thus, it is crucial to know the influence
of finite inertia on the hydrodynamic interactions of two
swimmers. Theoretical and computational studies on the lo-
comotion of an individual swimmer with finite inertia [25,26]
further indicate that inertia can lead to notable differences
in the swimming dynamics of swimmers. Inertia also affects
the hydrodynamic interactions between swimmer pairs. Puller
and pusher pairs either separate away from each other or get
trapped near each other depending on their Re and swimming
modes [27].

Many swimming organisms with low to intermediate Re
are abundant in oceans and lakes and their motion re-
sults in intense biological activity in these aquatic bodies.
Hence, studying the interactions of organisms is an intrigu-
ing problem having wide implications for ocean ecology
[28]. However, understanding the physics behind these phe-
nomena is a complex undertaking as vertical variations in
water density are ubiquitous in aquatic and marine environ-
ments [29] due to gradients in temperature (thermoclines) or
salinity (haloclines). These density variations with depth can
manifest themselves in a gamut of environmental and oceano-
graphic processes [30–33]. Even though the stratification
length scale is O(m), the appropriate length scale to determine
whether stratification affects the motion of the swimmers is
O(100) μm [34]. Marine microplankton with sizes ranging
from 20 to 200 μm are abundant in such a stratified envi-
ronment along with other meso-, macro-, and megaplanktonic
organisms, which have Re in the range O(0.01–100) [35].
These observations insinuate the significant role of stratifica-
tion in governing the locomotion of individual organisms as
well as the interaction between two close organisms in the
mentioned size range.

Much like inertia, stratification also significantly affects the
motion of microswimmers. At low Re, the vertical migration
of small organisms is hydrodynamically affected due to the
rapid velocity decay as well as a higher energy expenditure in
stratified fluids [36,37]. At a finite Re, stratification even leads
to striking differences in the swimming speeds and stability
of swimmers as compared to their motion in a homogeneous
fluid [38]. The collective vertical migration of swimmers in
a stratified fluid generates aggregation-scale eddies, which
can potentially alter the physical and biogeochemical struc-
ture of the water column [32,39,40]. Stratification also leads
to the accumulation of marine organisms such as plankton
[41,42]. Thus, investigating the combined effects of inertia
and stratification on the interaction between a pair of inter-

FIG. 1. Problem schematic. (a) Initial conditions for the pair
of squirmers approaching each other in a linearly stratified fluid.
(b) Initial conditions for a pair of squirmers moving side by side in a
stratified fluid. The cartoons at the bottom in (b) show the flow fields
generated by pullers (β > 0) and pushers (β < 0) as they move. The
arrows in the squirmer bodies show their initial orientations. The
darker shade of gray indicates higher density.

acting swimmers is a nontrivial and interesting problem that
we address in this paper.

Looking at the interactions between a pair of organisms
is crucial for modeling the collective dynamics of migrating
marine organisms, e.g., swimmer schools in stratified envi-
ronments. To this end, we numerically investigate the effect
of density stratification on the interactions between a pair of
inertial swimmers. We model the swimmers using the archety-
pal spherical squirmer model, which is explained in detail in
Sec. II B. But first, we present the governing equations and the
computational methodology used to solve these equations in
Sec. II A. Then we discuss the findings of the simulations in
Sec. III.

II. GOVERNING EQUATIONS AND COMPUTATIONAL
METHODOLOGY

We consider a pair of interacting squirmers moving
through an incompressible Newtonian viscous fluid. The
governing equations and the numerical procedure that is im-
plemented to simulate the motion of a pair of interacting
squirmers through a linearly stratified fluid at finite Re are
presented in this section. We consider a linearly density strat-
ified fluid such that the density increases in the downward z
direction and the gravity is acting in the downward z direc-
tion, as shown in Fig. 1. The following sections explain the
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governing equations and the numerical schemes used to solve
them in detail.

A. Flow and density fields

The fluid flow is governed by the Navier-Stokes equations
for an incompressible Newtonian fluid and these equations are
solved in the entire domain, �. We simplify the Navier-Stokes
equations for a fluid flow of a density stratified fluid using
the Boussinesq approximation. The resulting equations can be
written as

ρ0
Du
Dt

= −∇P + μ∇2u + (ρ − ρ̄ )g + f, in �, (1)

∇ · u = 0, in �, (2)

where t is the time, u is the velocity vector, P is the hydro-
dynamic pressure, g is the acceleration due to gravity, μ is
the dynamic viscosity of the fluid, ρ0 is the reference fluid
density, and ρ̄ is the volumetric average of the density over the
entire domain. D(·)/Dt is the material derivative. ρ is the local
density at the grid point. We use the phase indicator function
ψ , which is 1 inside the squirmer and 0 outside to mark the
squirmer domain. The subscript f stands for fluid and s stands
for squirmer. f in Eq. (1) is the body force which accounts
for fluid-solid interactions in the distributed Lagrange mul-
tiplier (DLM) method [43]. DLM has been widely used in
the literature to simulate the motion of rigid particles and
model swimmers in both homogeneous and stratified fluids
[27,32,44–46].

The density field evolution is governed by the following
advection-diffusion equation:

Dρ

Dt
= κ∇2ρ, in �, (3)

where κ is the diffusivity of the stratifying agent and ρ is the
density field. We define Prandtl number Pr = ν/κ , which is
the ratio of the momentum diffusivity to the diffusivity of
the stratifying agent. We split the density into two parts: (i)
the initial linear background density profile ρ̄(z) and (ii) the
density perturbation induced by the motion of the squirmers,
ρ ′. So,

ρ = ρ̄(z) + ρ ′. (4)

Here, the initial density of the fluid varies linearly with depth
z as ρ̄(z) = ρ0 − γ (z − z0), where γ is the vertical density
gradient and z0 is the location with reference density ρ0. The
stratification strength can be quantified by the Brunt-Väisälä
frequency, N = (γ g/ρ0)1/2, the natural frequency of oscilla-
tion of a vertically displaced fluid parcel in a stratified fluid.
By substituting Eq. (4) in Eq. (3), we obtain the follow-
ing temporal and spatial evolution equation for the density
perturbation ρ ′:

Dρ ′

Dt
= −u · ∇ρ̄(z) + κ∇2ρ ′, in �. (5)

We solve the advection-diffusion equation for the density per-
turbation ρ ′ and add it to the initial linear density profile to
calculate the density field as shown in Eq. (4).

We use a finite volume method [47] to discretize Eqs. (1),
(2), and (5) on a nonuniform staggered Cartesian fixed grid.

We use a second-order quasi-Crank-Nicolson method for the
temporal evolution. Convection and diffusion terms in the mo-
mentum equation have been solved using quadratic upstream
interpolation for convective kinetics (QUICK) and central-
difference schemes [48], respectively. Both convection and
diffusion terms in the density perturbation ρ ′ equation have
been discretized using the central-difference scheme [32]. The
numerical tool utilized for this study is based on the earlier
version of PARIS [47]. We use periodic boundary conditions
for velocity components and the density perturbation in all
three directions.

B. Swimmer model

Mathematically modeling the motion of a real microorgan-
ism is an enormously convoluted undertaking. This is due
to the existence of a wide variety of length scales [roughly
O(1)–O(1000) μm for common marine species], multitudes
of swimming, grazing, and other behaviors depending on a
range of parameters relating to their environments. In addi-
tion, these organisms exhibit a vast variety of shapes which
might even not be the same, as individual microorganisms
change their shape to feed, reproduce, or protect themselves
from predators or hostile environments. Thus, we need to
make several simplifications, even for the simplest microor-
ganisms, in order to mathematically model and analyze them
[22]. Hence, by necessity, we use a reduced-order squirmer
model that is primitive. This model, however simple it may
be, still includes important aspects of microorganism hydro-
dynamics, such as it swims and has a finite size so that
excluded-volume effects and hydrodynamic interactions can
be analyzed nontrivially.

The squirmer model [49,50] has been widely used as a
model for swimmers such as Volvox in the literature [51].
In earlier studies, researchers utilized the squirmer model
to investigate the motion of self-propelled organisms in a
viscosity dominated flow regime, i.e., Re → 0. This allowed
researchers to investigate various problems in a noninertial
regime, such as the nutrient uptake by self-propelled organ-
isms [52], hydrodynamic interactions between two squirmers
[11], rheology of suspensions of squirmers [53], mixing by
swimmers [54], as well as swimming in non-Newtonian fluids
[55,56], using the squirmer model. Recently, researchers have
studied the effect of finite inertia on the motion of swimmers
by extending the squirmer model to low and intermediate Re
number regimes [25–27,32,57,58]. The squirmer model was
also used to study the effect of fluid density stratification on
the motion of an individual squirmer [36,38] and the biogenic
mixing induced by a swarm of swimming organisms [32] with
low to intermediate Re. Thus, the squirmer model, owing to
its simplicity and germane representation of the flow field
generated by the self-propelling ciliary organisms, opens up a
wide range of avenues for studying self-propulsion in various
environmental conditions.

The squirmer self-propels by the wavelike motion of its
surface. The spherical squirmer model, first introduced by
Lighthill [49] and later modified by Blake [50], mimics the
self-propulsion produced by the coordinated beating of a
dense array of cilia on its surface. These axisymmetric ciliary
deformations result in the radial (us

r) and the tangential (us
θ )
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surface velocity components in a frame of reference attached
to the squirmer with radius a:

us
r

∣∣
r=a =

∞∑
n=0

An(t )Pn(cosθ ), (6)

us
θ

∣∣
r=a =

∞∑
n=1

−2

n(n + 1)
Bn(t )P1

n (cosθ ), (7)

respectively. Here, r is the distance from the center of the
squirmer, θ is the angle measured from the direction of the
locomotion, An and Bn are the time-dependent amplitudes of
the ciliary deformations, and Pn, P1

n are the associated Leg-
endre polynomials of degree n. The swimming speed of a
neutrally buoyant squirmer at Re = 0, i.e., in a Stokes flow,
depends only on the first mode of each surface velocity com-
ponent and is given by U0 = (2B1 − A1)/3. This swimming
speed is independent of fluid viscosity and other swimming
modes [49].

For this study, we consider a reduced-order squirmer which
has no radial velocity and only the first two modes of the
surface tangential velocity,

us
θ (θ ) = B1sinθ + B2sinθcosθ, (8)

where θ is the angle with respect to the swimming direction,
and B1 and B2 are the first two squirming modes. The ratio
β = B2/B1 determines whether the squirmer is neutral (β =
0), a puller (β > 0), or a pusher (β < 0). In the Stokes flow
limit, the velocity of a squirmer in an unbounded domain is
U0 = 2B1/3; we use this as the velocity scale in this study.
To impose the above given tangential velocity on the surface
of the squirmer, we set the following divergence free velocity
field inside the squirmer [57]:

uin =
[( r

a

)m
−

( r

a

)m+1
](

us
θ cotθ + dus

θ

dθ

)
er

+
[
(m + 3)

( r

a

)m+1
− (m + 2)

( r

a

)m]
us

θ eθ , (9)

where a is the radius of the squirmer, r is the distance from the
squirmer’s center, er and eθ are the unit vectors in the radial
and polar directions, and m is an arbitrary integer. The simu-
lation results do not depend on the choice of m. The squirmer
velocity is calculated by solving the following equations:

U = 1

Ms

∫
Vs

ρs(u − uin )dV, (10)

Is · ω =
∫

Vs

r × ρs(u − uin )dV, (11)

where Vs, Ms, and Is are the volume, mass, and the moment of
inertia of the squirmer. U and ω are the translational and the
rotational velocities of the squirmer, respectively. Finally, the
force f is calculated by the following iterative formula:

f = f∗ + α
ρψ

�t
(U + ω × r + uin − u), (12)

where f∗ is the force calculated in the previous iteration and α

is a dimensionless factor chosen in such a way that iterations
for calculating f converge quickly [27,46]. Many organisms
utilize techniques such as gas vesicles [59], carbohydrate

ballasting [60], and ion replacement [61,62] for buoyancy
control. Hence, for this study, in order to isolate the effect
of stratification on the motion of a squirmer, we consider the
squirmer to be neutrally buoyant, i.e., the net buoyancy force
acting on the squirmers due to differences in their density and
the density of the fluid is zero at any instance of time. This
is achieved by equating the density field inside the squirmer
domain to the instantaneous background fluid density at that
location [ρs(x, t ) = ρ̄(x) + ρ ′(x, t ), where x is any location
inside the squirmer domain]. The same condition for neutral
buoyancy was used for investigating the swimming dynamics
of an individual squirmer with finite inertia in a stratified fluid
[38]. In addition, we assume the κ to be uniform and the same
for the squirmer and the background fluid [32,63].

C. Simulation conditions

We explore the interactions of two squirmers moving to-
wards each other leading to collision and two squirmers
moving in the same direction side by side. We normalize the
spatial parameters with the squirmer radius a, the velocities
with U0, and the time with the timescale a/U0. We denote the
dimensionless time with T .

The first case considered is that of a pair of squirmers
approaching each other in opposite directions so that they
collide. In this case, the squirmers are initialized at a center-
to-center distance �z and �x in the z and x directions,
respectively, in the y = 0 plane. Their initial orientations are
such that they are moving in opposite directions facing each
other. We set �z = 8 and �x = 1, unless stated otherwise [see
Fig. 1(a)].

In the second case, where the squirmers are moving in the
same direction side by side, we initialize them at the same
initial vertical location zi, separated by a center-to-center dis-
tance �x in the x direction in the y = 0 plane. We set �x = 4
unless mentioned otherwise [see Fig. 1(b)].

An earlier study in a homogeneous fluid considered only
a colliding pair of squirmers in which the squirmers swim in
the opposite direction [27]. We, however, consider colliding
as well as side-by-side configuration, which covers squirmers
moving opposite to each other as well as moving in the same
direction. Also, the vertical direction is the preferred direction
because, in many real-life situations, the swimmers move in
the vertical direction such that they are parallel to the direction
of the stratification or gravity mainly for grazing or in search
of the sunlight during their diel cycles [64,65]. In addition,
the direction of the motion considered in this study is one
of the common situations for swimmers moving in oceans,
e.g., bioconvection [66]. So, we initialize the squirmers with
their initial orientations parallel to the direction of gravity, i.e.,
downwards or upwards.

When the squirmers approach very close to each other,
the high pressure in the thin film between the squirmers pre-
vents any nonphysical overlaps. However, a very small grid
resolution is needed to resolve the thin liquid film and, con-
sequently, it is computationally expensive. A repulsive force
is imposed during the collision to prevent the nonphysical
overlap [27,43],

Fr = Cm

ε

(
D − d − dr

dr

)2

n, (13)
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(a) Re = 1 (b) Re = 5 (c) Re = 10 (d) Re = 50

FIG. 2. Trajectories for colliding pullers with β = 5 in a homogeneous and a stratified fluid with increasing stratification strengths. At low
Re (1 and 5), stratification leads to reorientation of the pullers after their collision. For higher Re values (10 and 50), stratification results in
the elimination of the close loop trajectories observed in a homogeneous fluid after the collision of two pullers. H in the legends stands for
homogeneous fluid or Ri = 0.

where ε = 10−4 is a small positive number, D is the distance
between two squirmers, Cm = MsU 2

0 /a is the characteristic
force, d = 2a is the minimum possible distance, and dr is the
force range and is set to be twice the smallest grid size �. The
direction of the repulsive force n is along the squirmers’ line
of centers.

We carry out simulations for pushers and pullers with β =
−5 and 5, respectively. The Re for the squirmers was varied
between 1 and 50. To study the effects of stratification on the
interaction of two inertial squirmers, we vary the Richardson
number, Ri = ρ0a3N2/μU0, which quantifies the relative im-
portance of the buoyancy and the viscous forces, between 0
and 10. The domain size for this study is 40a × 20a × 40a
for the colliding squirmers case, while the domain size is
40a × 20a × 80a for the side-by-side case. The smallest grid
size was chosen such that there are around 35 grid points in
one squirmer diameter, i.e., � ≈ d/35. This grid size was
found to be enough to resolve both the velocity and density
boundary layers around the squirmers for the chosen Re range
and Pr = 0.7. We present the grid independence tests in the
Appendix.

It should be noted that we use Pr = 0.7 for this study rather
than Pr = 7 or Pr = 700, which are the Pr values for a temper-
ature stratified water and a salt stratified water, respectively.
This has been done mainly to save the computational costs
incurred by setting high values of Pr. In a stratified fluid, a
density boundary layer is present in addition to the velocity
boundary layer near the squirmer’s surface. The thickness of
this density boundary layer scales as ≈ O(d/

√
RePr). For

accurate resolution of the flow within this boundary layer, it is
necessary to have at least a few grid points in it. This imposes
limitations on the maximum mesh size that can be used for
the simulations. Owing to the large size of the domain, using
such a fine grid becomes computationally expensive. Hence,
we use a smaller value for the Pr, which enables us to resolve
the fluid flow as well as the density field in both the boundary
layer and the outside. It has been shown in previous studies
that changing the value of Pr merely changes the magnitudes
of the velocities of the objects [46] and squirmers [38] moving
in a stratified fluid, conserving the overall qualitative trends
and behaviors. We discuss more on this in Sec. III E.

III. RESULTS AND DISCUSSION

This section presents the important results from the simu-
lations. We also present results on the interactions of a pair
of inertial squirmers in a homogeneous fluid. The comparison
between the trajectories of the squirmers and their velocities
in the two distinct fluids allows us to investigate the effect of
density stratification on the squirmer pair interactions.

A. Pairwise interactions of pullers in a stratified fluid

1. Pullers approaching each other

Figure 2 shows the trajectories for two pullers approaching
each other in opposite directions, initially oriented parallel
to each other for Re = 1, 5, 10, and 50 in a homogeneous
fluid and a stratified fluid with Ri = 1, 5, and 10. In the
absence of any density stratification, the trajectories of the
colliding pullers reveal three patterns based on the magnitude
of Re. At relatively low values of Re, i.e., 1 and 5, the pullers
scatter away from each other with a positive scattering angle
φ, measured with respect to initial squirmer orientation. With
increasing Re, i.e., from Re = 1 to Re = 5, φ increases from
≈20◦ to a value just less than 90◦. As we further increase the
Re to a higher value of 10, the pullers do not escape each
other after the collision but are trapped in clockwise loops
with radii ≈2a. At an even higher Re = 50, the pullers are no
longer trapped and escape with φ ≈ 0◦, but keep on rotating
in clockwise loops with diminished radii compared to the
Re = 10 case.

The introduction of stratification results in distinct changes
in the trajectories of the interacting pullers, depending on
their Re and the stratification strength, i.e., Ri. Stratification
leads to a reduction in the scattering angle of the squirmers
after the collision compared to their scattering angles in a
homogeneous fluid, as can be seen in Figs. 2(a) and 2(b). For
Re = 1 [Fig. 2(a)], stratification reduces φ from ≈45◦ in a
homogeneous fluid to 0◦ for a stratified fluid with Ri = 10.
For Re = 5, φ reduces to 0◦ for Ri = 10 from ≈90◦ for a
homogeneous fluid. Thus, at low inertia, high enough stratifi-
cation leads to the reorientation of the pullers to their original
orientation after the collision, unlike in a homogeneous fluid.
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FIG. 3. Vorticity contours and isopycnals during the collision process of two approaching pullers with Re = 10 at different stratification
strengths, (a)–(d) Ri = 1 and (e)–(h) 5. These plots show the interaction between the rear vorticity bubbles and the deformed isopycnals. The
need of the displaced isopycnals to return to their original levels explain the rotational motion of the pullers after the collision. The isopycnals
are the normalized density differences given by (ρ − ρ0 )/γ a and each line is one unit apart. The darker shade of the line color indicates a
higher density value. The color bar for the vorticity contours is presented in the plots. The dashed lines show the trajectories of the pullers.
These are snapshots of the flow field at different dimensionless times, T = tU0/a, the value of which is indicated in the caption. The color bar
is only shown in the first plot of each row for the neatness of the plots. For movies, see the Supplemental Material [67].

For higher Re = 10, stratification leads to the elimination
of the rotating motion of the pullers in clockwise loops present
in a homogeneous fluid [see Fig. 2(c)]. For Re = 10, pullers
are no longer hydrodynamically trapped in the presence of
density stratification, unlike in the homogeneous fluid. They
scatter away from each other with a positive scattering angle,
much like lower Re cases, which decreases with an increase
in the stratification strength. Again, high enough stratifica-
tion strength leads to the reorientation of the pullers to their
original orientation [see Fig. 2(c)]. For Re = 50, only a high
stratification results in the elimination of the clockwise loops
in the trajectories of the pullers after the collision. This is clear
from the trajectories of pullers with Re = 50 in a stratified
fluid with Ri = 10 [Fig. 2(d)]. The pullers escape from each
other, but with a large scattering angle which is greater than
90◦. However, a lower stratification (Ri = 1 and 5) leads to the
hydrodynamic trapping of the pullers after the collision in this
case, which is similar to the Re = 10 case in a homogeneous
fluid.

To explain the reorientation of the pullers after the colli-
sion, the elimination of the closed loop trajectories, and the
prevention of the hydrodynamic trapping of the pullers, we
plot the vorticity contours and isopycnals at different time
instances during the collision process of the pullers for two
stratification strengths in Fig. 3. The effect of increasing the
inertia (or Re) of pullers is to increase the size of the vorticity
bubble in the rear part of their bodies [26]. The introduction

of stratification reduces the size of these recirculatory regions
behind pullers [38]. The trapping of the pullers in loops after
the collision in a homogeneous fluid can be explained by the
interaction between the bigger recirculatory regions behind
the pullers at higher Re = 10 and 50 [27]. Since stratifica-
tion leads to shrinking in the size of these rear recirculatory
regions, the interaction between these rear bubbles is limited
at finite Ri values. This prevents the pullers from attaining
a constant angular velocity after the collision, unlike the ho-
mogeneous case [see Fig. 4(b)]. This damping of the angular
velocity of the pullers after the collision essentially allows
the pullers to scatter away from each other without being
trapped in counterclockwise loops. This point becomes clear
in Fig. 3, where we plot the vorticity contours and isopycnals
for Re = 10 in stratified fluids with different stratification
strengths, Ri = 1 and Ri = 5, respectively.

As the pullers move down (up) in a stratified fluid, they
trap lighter (heavier) fluid in their rear recirculatory bubbles,
which can be seen in terms of deformed isopycnals in Fig. 3.
After the collision, the axisymmetry of the flow and the
isopycnal deformations are broken. The interaction between
the rear vorticity bubbles rotates the pullers in a clockwise
direction, as can be seen in Fig. 3(b). However, the tendency
of the deformed isopycnals behind the pullers to return to
their original positions reduces the effect of this interaction
on the puller orientations [Fig. 3(f)]. The counterclockwise
torque due to the flow induced by the need of the deformed
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(a) (b)

FIG. 4. Time evolution of the (a) translational velocity and (b) ro-
tational velocity of two approaching pullers during the collision
process at different Ri values for a fixed Re = 10. Stratification elim-
inates the oscillations in the translational velocity and prevents the
pullers from attaining a constant angular velocity, thus eliminating
the closed loop trajectories as observed in the case of a homogeneous
fluid. Stratification also results in a change in the sign of the angular
velocity, which reorients the pullers in their original orientations after
the collision at high enough Ri.

isopycnals to return to their original positions determines the
rotational motion of the pullers after the collision and leads
to the reorientation of the pullers in the original orientation.
This prevents them from getting trapped into loops. This is
clear from the comparison of the isopycnal deformation in
Figs. 3(c) and 3(g).

At high Ri, i.e., Ri = 5 as compared to Ri = 1, the isopy-
cnals are less deformed, indicating that the resistance to the
displacement of the isopycnals due to the flow induced by the
squirmers is stronger. This prevents the clockwise rotation of
the pullers and reorients them. Thus, the competition between
the rear vorticity bubble interactions and the tendency of de-
formed isopycnals to return to their original levels determines
the rotational motions and the orientations of the pullers after
the collision. Owing to the smaller size of the rear vorticity
bubbles of pullers in a stratified fluid compared to a homo-
geneous fluid [38], the effect of the stratification dominates
the vorticity bubble interactions between the two pullers at
high Ri values. This prevents the pullers from attaining a
constant angular velocity, unlike in a homogeneous fluid, and
thus eliminates the closed loops for Re = 10, 50 and results
in the reorientation of the pullers for Re = 1, 5, and 10.

The consequences of the mentioned vorticity and isopycnal
interactions on the colliding pullers can be understood from
their translational and angular velocities. Velocity evolution
for two approaching pullers is plotted in Fig. 4 for Re = 10
and various stratification strengths. Stratification leads to the
elimination of the oscillations in the translational velocities
of the pullers after the collision and allows them to attain
a steady velocity, which results in their escape from each
other [Fig. 4(a)]. In addition, the tendency of the displaced
isopycnals to return to their neutrally buoyant levels prevents
the pullers from attaining a constant angular velocity as can
be seen in Fig. 4(b). This results in the reorientation of the
pullers to their original orientation.

(a) Re = 10 (b) Re = 50

FIG. 5. Trajectories of a pair of pullers, β = 5, moving side by
side initially separated by a distance 4a in the x direction at various
stratification strengths. (a) Re = 10, (b) Re = 50. H in the legends
stands for homogeneous fluid or Ri = 0.

2. Pullers moving side by side

In addition to squirmers approaching each other in opposite
directions and colliding, we also investigate the motion of a
pair of squirmers moving side by side initially apart by �x in
the x direction. Figure 5 shows the trajectories of two pullers
moving side by side in different stratification strengths at
Re = 10 and 50. In a homogeneous fluid, pullers moving side
by side exhibit completely disparate trajectories at Re = 10
and Re = 50. At Re = 10, the pullers are initially attracted to-
wards each other and they come close and stick together while
they move downward. They move away from each other but
are pulled together after a while. They again move down to-
gether a little before being repelled away from each other and,
finally, scatter away in the horizontal direction [see Fig. 5(a)].
For Re = 50, the pullers are slightly repelled from each other
initially. But they are pulled towards each other, which also
leads to a torque on them, making them rotate in a loop while
they move down [see Fig. 5(b)]. Thus, in a homogeneous fluid,
a pair of pullers moving side by side scatter away from each
other at Re = 10, while they are hydrodynamically trapped
near each other in loops for Re = 50.

The introduction of stratification increases the attraction
between the pullers moving side by side at Re = 10 [see
Fig. 5(a)]. At Ri = 5 and 10, this increase in the attraction
between the pullers increases the time that the pullers spend
near each other before they collide and prevents the pullers
from separating unlike in a homogeneous fluid. As a result,
once the pullers collide sideways, they stick together and
move further down.

The significant changes in the trajectories of two pullers
moving side by side due to stratification can also be seen at
a higher Re (=50); see Fig. 5(b). For Ri = 5, the pullers are
again hydrodynamically trapped near each other in loops, but
they do not move much in the downward direction. Increasing
the stratification further to Ri = 10, the pullers are attracted
towards each other, leading to a sideways collision. However,
after this collision, they repel away from each other and scatter
in the horizontal direction, similar to what happens eventually
for Re = 10 in a homogeneous fluid. This is expected as
stratification leads to a reduction in the squirmer velocities.
This reduces their effective Re, which explains the qualitative
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(a) Re = 1 (b) Re = 5 (c) Re = 10 (d) Re = 50

FIG. 6. Trajectories for colliding pushers with β = −5 in a homogeneous and a stratified fluid with increasing stratification strengths. At
low Re = 1, 5, and 10, high enough stratification leads to the stoppage of the pushers as they collide. This state is not stable and, as a result, the
pushers are deflected away from the xz plane in the y direction. The pushers stick together as they move in the y direction after the deflection,
indicating that stratification leads to hydrodynamic trapping of colliding pushers. This deflection away from the xz plane is shown in the insets
in (a)–(c). This instability is gradually prevented with increasing Re and the pushers no longer stop or are deflected at high Re, i.e., Re = 50.
H in the legends stands for homogeneous fluid.

similarities between the trajectories in the high Re–high Ri
and the low Re–no stratification cases.

B. Pairwise interactions of pushers in a stratified fluid

1. Pushers approaching each other

Figure 6 shows the trajectories for two pushers approach-
ing each other in opposite directions, initially oriented parallel
to each other for Re = 1, 5, 10, and 50 in a homogeneous fluid
and a stratified fluid with different Ri. In the absence of any
density stratification, the trajectories of the colliding pushers
reveal two patterns based on the magnitude of Re. At rela-
tively low values of Re, i.e., 1, the pushers come to a complete
stop after the collision. However, this configuration is unstable
and the pushers are deflected away from the y = 0 plane, re-
sulting in a three-dimensional (3D) motion after the collision
[27]. This behavior is common for interacting pushers for
Re 
 1 and is due to the instability in their two-dimensional
(2D) motion once they come close to each other [14]. As we
increase the Re further, the pushers escape each other after the
collision with a scattering angle φ < 90◦. φ increases with an
increase in the inertia of the pushers, with values ≈0◦, ≈30◦,
and ≈90◦ for Re = 5, 10, and 50, respectively.

The introduction of stratification results in distinct changes
in the trajectories of the interacting squirmers, depending on
their Re and the stratification strength, i.e., Ri. At low Re,
the effect of introducing stratification on the trajectories of
colliding pushers is to trap them near each other by bringing
them to a complete stop. However, these states are not stable
and soon the pushers leave the plane of collision, i.e., the xz
plane, and are deflected in the y direction. The pushers stick
together as they leave the y = 0 plane and continue to move
together in the y direction, as shown in the insets of Figs. 6(a)
and 6(b). The same is true for a high enough stratification at
higher Re. The pushers come to a standstill after the collision
and move together in the y plane for Re = 10 at Ri = 10.
Introduction of the stratification leads to the reduction in the
translational velocities of the pushers, which reduces their
effective inertia, resulting in low Re like trajectories even at
high Re values.

For intermediate Re = 10 and high Re = 50, the effect of
stratification depends on the magnitude of Ri. The trapping
due to the stoppage of the pushers after their collision at low
Re values and the 3D trajectories are progressively prevented
at high Re values. This can be seen in Figs. 6(c) and 6(d).
At high Re and low Ri, the effect of inertia is significant
compared to the effect of stratification. As a result, the pushers
try to move away from each other, similar to what happens in
a homogeneous fluid. This can be observed for Re = 10 at
Ri = 1 and 5, and Re = 50 at Ri = 1, 5, and 10 for which
pushers are scattered away from each other with φ ≈ 45◦ and
90◦, respectively.

We plot the vorticity contours and the isopycnals in Fig. 7
for Re = 10 at two Ri values, viz., 1 and 5. The interaction
of the pushers with the isopycnals reveals the reason behind
the deflection from their trajectories in a homogeneous fluid
for high Re values (10 and 50). Figure 7 shows that as the
pushers move forward, they displace the isopycnals behind
them owing to the long vorticity trail behind them. However,
as Ri increases, these displaced isopycnals resist the flow
induced by the pushers as they try to return to their original
levels. The strength of opposition by the displaced isopycnals
to their further deformation increases with Ri. For example,
for Ri = 1 [Figs. 7(a)–7(d)], the isopycnals behind the pushers
are deformed for a longer time, while they return to their
original levels quickly for Ri = 5 [Figs. 7(e)–7(h)]. As a re-
sult of the interaction between the rear vorticity bubbles and
the deformed isopycnals in the wake of the pushers, their y
angular velocity increases [see Fig. 8(b)] and the pushers are
deflected to their right.

Figure 8 shows the translational and rotational velocities
of the pushers at various stratification strengths for Re = 10.
It can be seen from Fig. 8(a) that the translational veloci-
ties of the squirmers decrease with increasing stratification,
both before and after the collision. The reason for this
decrease is the trapping of lighter (heavier) fluid in the re-
circulatory region, which in the front region leads to a higher
buoyancy force on them as they move in a heavier (lighter)
fluid. For a high enough Ri value (e.g., Ri = 10 at Re = 10),
the velocity reduction is large enough to lead to instability,
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FIG. 7. Vorticity contours and isopycnals during the collision process of two approaching pushers with Re = 10 at different stratification
strengths, (a)–(d) Ri = 1 and (e)–(h) 5. These plots show the interaction between the vorticity bubbles and the deformed isopycnals. The
need of the displaced isopycnals to return to their original levels determine the trajectories of the pushers after the collision. The isopycnals
are the normalized density differences given by (ρ − ρ0)/γ a and each line is one unit apart. The darker shade of the line color indicates a
higher density value. The color bar for the vorticity contours is presented in the plots. Dashed lines indicate the pusher trajectories. These are
snapshots of the flow field at different dimensionless times, T = tU0/a, the value of which is indicated in the caption. The color bar is only
shown in the first plot of each row for the neatness of the plots. For movies, see the Supplemental Material [67].

which deflects them away from the y = 0 plane. For the cases
when the collision process does not lead to an instability (e.g.,
Ri = 1 and 5 at Re = 10), stratification increases the magni-
tude of the rotational velocity of the pushers, which causes the

(a) (b)

FIG. 8. Time evolution of the (a) translational velocity and (b) ro-
tational velocity of two approaching pushers during the collision
process at different Ri values for a fixed Re = 10. Stratification leads
to a significant reduction in the velocities of the pushers after their
collision. At a high stratification, the pushers almost come to a stop
after the collision and eventually are deflected away from the y = 0
plane, which is shown by the time evolution of the y velocities of the
pullers in the insets.

divergence in their trajectories after the collision compared to
their homogeneous fluid trajectories [see Fig. 8(b)].

2. Pushers moving side by side

In contrast to a pair of pullers moving side by side, strat-
ification has a limited effect on the trajectories of a pair
of pushers moving side by side, which is shown in Fig. 9.
For all the explored Re values, i.e., 10 and 50, the pushers

(a) Re = 10 (b) Re = 50

FIG. 9. Trajectories of a pair of pushers, β = −5, moving side by
side initially separated by a distance 4a in the x direction at various
stratification strengths. (a) Re = 10, (b) Re = 50. H in the legends
stands for homogeneous fluid or Ri = 0.
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Ri

FIG. 10. Contact time, i.e., time spent by the squirmers near
(center-to-center distance � 2.12) each other for colliding squirmer
pairs. Hollow symbols are for pullers and filled symbols are for
pushers.

are initially attracted towards each other. But this attraction
does not last very long and eventually they deflect away
from each other. The effect of stratification is to lower the
z value where the pushers first start to separate from each
other. Here we measure the scattering angle as the angle
that the final pusher orientation makes with its initial orien-
tation.

In a homogeneous fluid, the pushers are attracted to each
other at Re = 10 and 50. As they come very close, they stick
together and move down before deflecting away. Increasing
the inertia of the pushers leads to an increase in their scat-
tering angle after the deflection (see Fig. 9). Increasing the
stratification strength hastens the process of repulsion, leading
to the pushers being pushed away at lower z distances from
their initial positions as compared to a homogeneous fluid. At
a high stratification, the pushers are pushed away from each
other even before they can come very close to each other, as
they do in a homogeneous fluid. This is observed from the
pusher trajectories at Ri = 10 for both Re values in Fig. 9.
In addition, at Re = 50, increasing the stratification leads to
a reduction in the scattering angles of the pushers. However,
at Re = 10, stratification results in a slight increase in the
scattering angles of the pushers. Again, there are qualitative
similarities in the trajectories of the pushers at high Re–high
Ri and low Re–no stratification values, as we observed in the
case of a pair of pullers, which is due to the reduction in the
effective Re of the pushers at high Ri due to the reduction in
their swimming speeds.

C. Contact time

Figure 10 plots the contact time for a pair of squirmers
colliding with each other against Ri for various Re values
explored in this study. We define contact time as the time
spent by the squirmers in contact, i.e., when their center-to-
center distance is less than d + 2�, which is also the distance
when the repulsive force between the squirmers is active. For

(a) Pullers, β = 5 (b) Pushers, β = −5

FIG. 11. Trajectories of a pair of colliding (a) pullers, β = 5, and
(b) pushers, β = −5, for different �x. Re = 10 and Ri = 5.

the cases where the squirmers deflect away from the y = 0
plane, we measure contact time just before the squirmers are
deflected. We observe that pushers spend more time in contact
as compared to pullers for the range of parameters explored
in this study. The contact time increases slightly with Ri for
all the cases except for pushers with Re = 5 and 10. This is
because the pushers are separated from each other at low Ri,
while they are trapped and deflect in the third direction at high
Ri for Re = 5 and 10.

In many real-life situations, it is beneficial to estimate
the contact time of swimmers. For reproductive purposes,
it is beneficial for the swimmers to spend more time in
contact, while they do not want to be in contact with
a predator and escape as soon as possible. The results
thus can be used to predict the encounter time of pusher
and puller swimmers to predict their success in reproduc-
tion and feeding or escaping from predators. These results
show that pushers tend to spend more time in contact than
pullers, which increases with increasing the stratification.
This can enhance their success in reproduction in stratified
environments.

D. Effect of initial lateral spacing

Figure 11 shows the effect of changing �x on the trajecto-
ries of a pair of colliding squirmers for Re = 10 and Ri = 5.
These results show that changing �x for pullers does not
change the trajectories of the pullers significantly, as they are
qualitatively the same. However, �x has a significant role in
determining the trajectories of colliding pushers. For �x =
1 and 2, the pushers collide and separate from each other,
while for a smaller �x (=0.25), the pushers stop after the
collision, which is similar to what happens for high stratifi-
cation at larger �x. Thus, decreasing �x simply decreases
the Ri above which the instability in the colliding squirmer
configuration sets in. Thus, the details of the trajectories are
more closely related to the initial configuration for pushers
than for pullers.

E. Effect of Prandtl number

In this section, we briefly discuss the effects of varying Pr
on the trajectories of a colliding pair of pullers and pushers.
We assumed Pr = 0.7 for this study in order to resolve the
density boundary layer; but for temperature stratified water,
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FIG. 12. Trajectories of a pair of pushers, β = −5, moving side
by side initially separated by a distance 4a in the x direction at
various stratification strengths. (a) Re = 10, (b) Re = 50. H in the
legends stands for homogeneous fluid or Ri = 0.

Pr = 7, while Pr = 700 for salt stratified water. Resolving the
density boundary layer [≈O(d/

√
RePr)] becomes computa-

tionally expensive with increasing Pr. Hence a small value of
Pr was used to save the computational penalty. Changing Pr of
the fluid quantitatively changes the settling velocity of a rigid
sphere [46] and the swimming velocity of neutrally buoyant
squirmers [38], while the qualitative trend remains the same
in both of these cases. Thus, changing Pr will also change the
trajectories of a pair of squirmers interacting in a stratified
fluid. In addition, the transition from one type of trajectory to
the other will happen at different values of Re and Ri.

We present the trajectories of a pair of pullers and pushers
colliding for two different Ri and Pr in Fig. 12. For a pair
of colliding pullers with Re = 10, the pullers swim away
from each other even at Pr = 7; however, their trajectories
are different compared to the Pr = 0.7 case. On the other
hand, for pushers, the trajectories are similar for a lower Ri.
But the swimmers get trapped near each other for Ri = 5
in the case of Pr = 7, unlike the case when Pr = 0.7. These
results show that the details of the trajectories, i.e., Ri for
which they have separate, exact trajectories and Ri for which
they get trapped near each other and deflect away from the
initial plane, depend on the value of Pr. This is expected as
Pr governs the size of the density boundary layer, which has
an important role in determining the near-field interactions
between swimmers.

IV. CONCLUSIONS

We investigate the interactions of a pair of squirmers with
finite inertia in a stratified fluid with different stratification
strength. We compare the squirmer trajectories and velocities
with their trajectories and velocities in a homogeneous fluid
for the same initial conditions. We present results for two
types of initial configurations: (1) squirmers approaching each
other in opposite directions, and (2) squirmers moving side
by side in the vertical direction. The presented results are po-
tentially important in understanding the collective dynamics
of microorganisms in oceans and lakes where stratification is
observed.

For a pair of pullers approaching each other, stratification
leads to their reorientation after the collision, contrary to what

FIG. 13. Trajectories of a pair of colliding squirmers at two dif-
ferent grid resolutions. Legends are for (Re, β, �). Here, Ri = 5 for
all cases.

happens in a homogeneous fluid. The tendency of the dis-
placed isopycnals behind the pullers results in a torque on the
pullers which reorients the pullers in their initial orientation
after the collision. Stratification also leads to the elimination
of the closed loop trajectories observed for colliding pullers
at high Re (=10 and 50), which has been explained using the
flow field and the density field around the pullers during and
after the collision.

A pair of pullers moving side by side follow complicated
and distinct trajectories at different Re and Ri. In a homo-
geneous fluid, the pullers are repelled away from each other
after initial attraction and a close contact for Re = 10, but they
are hydrodynamically trapped near each other in loops as they
move down for Re = 50. Again, high stratification leads to the
elimination of the loops and hydrodynamic trapping deflect-
ing the pullers away from each other even at Re = 50, similar
to what happens for Re = 10 pullers in a homogeneous fluid.

A pair of pushers come to a complete stop after the col-
lision at high Ri. However, this configuration is unstable,
which results in a 3D motion of the pushers away from the
plane of collision. As the pushers move away from the plane
of collision, they stick together. The 3D motion is gradually
prevented as we increase Re, and a higher Ri is required
for the instability. These results indicate that in a stratified
fluid, organisms might get trapped near each other and move
horizontally, which can lead to their accumulation in oceans
[41,42].

In a homogeneous fluid, two pushers moving side by side
are attracted towards each other, but eventually, they scatter
away from each other with a scattering angle increasing with
Re. Stratification hastens the repulsion between the pullers
moving side by side and results in a decrease in the scattering
angle at high Re.

The results for contact time for the squirmers show that
pushers tend to spend more time in contact with each other
than pullers. Furthermore, stratification increases the contact
time for the squirmers. This indicates an enhanced chance for
their success in reproduction in stratified environments. We
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also present results for variation in the Pr of the fluid and
different lateral initial separations of the squirmers. But these
were limited to a few cases to save computational expenses.
Logical extensions of this work are to study the effects of
varying the fluid Pr, the effects of squirmer swimming mode
β, the effects of initial squirmer configurations, and the effects
of buoyancy by relaxing the quasi-instantaneous neutral
buoyancy condition on the interactions of squirmers in a
stratified fluid.
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APPENDIX: GRID AND DOMAIN INDEPENDENCE

We present the grid independence test results in this Ap-
pendix. Figure 13 shows the trajectories for a pair of squirmers
approaching each other in opposite directions for two different
grid sizes. As can be seen in the figure, changing the grid size
from � = d/35 to � = d/50 results in a negligible variation
in the trajectories of the colliding squirmers. Here, � is the
smallest grid size. Hence, to save the computational cost,
we carried out all the simulations with � = d/35. Further
validations for the homogeneous fluid cases can be found in
Ref. [27].
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