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Molecular viscosity and diffusivity effects in transitional and shock-driven mixing flows
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This paper investigates the importance of molecular viscosity and diffusivity for the prediction of transitional
and shock-driven mixing flows featuring high and low Reynolds and Mach number regions. Two representative
problems are computed with implicit large-eddy simulations using the inviscid Euler equations (EE) and viscous
Navier-Stokes equations (NSE): the Taylor-Green vortex at Reynolds number Re = 3000 and initial Mach
number Ma = 0.28, and an air-SF6-air gas curtain subjected to two shock waves at Ma = 1.2. The primary focus
is on differences between NSE and EE predictions due to viscous effects. The outcome of the paper illustrates the
advantages of utilizing NSE. In contrast to the EE, where the effective viscosity decreases upon grid refinement,
NSE predictions can be assessed for simulations of flows with transition to turbulence at prescribed constant Re.
The NSE can achieve better agreement between solutions and reference data, and the results converge upon grid
refinement. On the other hand, the EE predictions do not converge with grid refinement, and can only exhibit
similarities with the NSE results at coarse grid resolutions. We also investigate the effect of viscous effects on
the dynamics of the coherent and turbulent fields, as well as on the mechanisms contributing to the production
and diffusion of vorticity. The results show that nominally inviscid calculations can exhibit significantly varying
flow dynamics driven by changing effective resolution-dependent Reynolds number, and highlight the role of
viscous processes affecting the vorticity field. These tendencies become more pronounced upon grid refinement.
The discussion of the results concludes with the assessment of the computational cost of inviscid and viscous
computations.
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I. INTRODUCTION

The Navier-Stokes equations (NSE) are a set of par-
tial differential equations used to describe the macroscopic
motion of continuous fluid media. For problems involving
variable-density flow due to multimaterial and compressibility
effects, this mathematical model is defined by the conserva-
tion equations for mass, momentum, total energy, and fluid
species [1,2]:
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where t is the time, xi are the coordinates of a Cartesian
coordinate system, ρ is the fluids’ density, Vi are the Cartesian
velocity components, P is the pressure, and σi j is the viscous-
stress tensor which for Newtonian fluid equals
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Furthermore, μ is the fluid’s dynamic viscosity, δi j is the
Dirac delta function, E = 1

2V 2
i + e is the total energy, e is

the internal energy, qc is the conductive heat flux, qd is the
interdiffusional enthalpy flux, cn is the mass concentration of
material n, and Jn is the mass fraction diffusivity of material
n. This system of equations requires constitutive relations to
close. Here, we use the perfect gas relation,

P = (γ − 1)ρe, (6)

Fourier’s law of thermal conduction,

qc
j = −κ

∂T

∂x j
, (7)

Cook’s [2] model for the interdiffusional enthalpy flux,

qd
j =

nt∑
n=1

hnJn
j , (8)

and Fick’s law of diffusion,

Jn
j = ρD ∂cn

∂x j
. (9)

In these closure models, γ is the specific heat ratio, T is the
temperature, hn is the enthalpy of a material n, nt is the number
of materials, and κ and D are the thermal conductivity and
diffusivity coefficients.

For high Reynolds number turbulent flow, it is not feasible
to perform a true direct-numerical simulation (DNS), which
fully resolves all the scales of motion that the NSE give rise
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to. It is therefore necessary to model either some or all the tur-
bulent scales: just the smaller scales in large-eddy simulation
(LES), or all turbulent scales in Reynolds-averaged Navier-
Stokes (RANS) simulation. In this case, the quantities in the
NSE are re-interpreted as averaged quantities, and additional
model terms may be added to the equations to model the
unclosed terms that appear due to the averaging procedure.

Although there are many explicit turbulence models which
can be employed, this paper primarily considers the implicit
LES (ILES) method. An ILES is defined as a simulation
which uses the original NSE, along with a numerical solu-
tion procedure with certain specific properties [3] such that
numerical diffusion of the scheme behaves like a turbulence
model. Thus, in ILES, an implicitly provided numerical sub-
grid model captures the physical effects of the unresolved
scales of the turbulence. This is in contrast to a DNS, in
which turbulent scales of motion are fully resolved down
to the Kolmogorov dissipation length scale. Note that, since
not all numerical schemes have the correct truncation prop-
erties, we can say that while all ILES simulations can be
viewed as under-resolved DNS, not all under-resolved DNS
is ILES.

In cases involving high Mach, Ma, and Re num-
bers (e.g., stellar astrophysics [4–6], shock-driven turbulent
mixing [7–9], detonation [10–12], and high-speed com-
bustion [13–15]), the Navier-Stokes equations are often
simplified to their inviscid form. This simplification is typi-
cally justified by arguing that the magnitudes of the molecular
diffusion terms are expected to be small compared to the
corresponding turbulent transport terms, which, in the case
of ILES, are represented by the numerical diffusion. This
implies that σi j , qc, qd , and Jn can be neglected. The resulting
set of governing equations are the inviscid Euler equations
(EE). Another justification for ignoring the molecular diffu-
sion terms is the assumption that a flow at sufficiently high Re
becomes Reynolds number independent, and converges to the
infinite Reynolds number solution.

A consequence of assuming inviscid flow is that the system
of Eqs. (1)–(4) changes from second-order parabolic to first-
order hyperbolic [16–20]. Along with the smaller number of
terms, this mathematical property reduces the cost of solving
the EE owing to the availability of highly tested and efficient
numerical algorithms [16–20]. This is one reason the EE ap-
proach is so common.

However, despite its ubiquity, there is little formal analysis
and few numerical studies to justify the use of the EE, or
identify its range of validity. In fact, there are several reasons
to question its widespread use. This is what the current paper
is intended to investigate.

The practical envelope of the EE framework is typically not
precisely defined, i.e., for what ranges of Re, Ma, flow condi-
tions, and grid resolutions is the assumption of inviscid fluid
acceptable? Previous studies by one of the authors [21–24]
demonstrate (i) the importance of (turbulent) viscosity in ship
hydrodynamic simulations even at Re = 2.03 × 109; (ii) the
relevance of Re in transitional flows; and (iii) the reduced
flow Ma that shock-driven turbulent mixing problems can
achieve. These studies motivate further assessments of EE
based simulations in transitional flows driven by hydrody-
namic instabilities.

In addition, there are other reasons to be skeptical of using
the EE. First, although the global Re may be high, flows
which include transition will include regions where viscous
effects will be important, and these effects may change the
subsequent flow evolution. Second, there remains the question
of how high a Re is high enough. A true separation between
the large structures and the dissipation scales may require
a decade or decades of inertial range, which may not exist
except for geophysical and astrophysical turbulence where
Re ∼ O(1010) or higher [25]. Studies show that for EE ILES,
there is a flattening of the turbulent energy spectrum that
starts near the dissipation scale, and extends to significantly
larger scales. This effect is not present in the (lower Re) NSE
simulations [26]. Finally, neglecting viscosity can only be
correct for certain quantities of interest. For example, while
turbulent kinetic energy, which is dominated by the large scale
structures, should match data for reasonable grids, enstrophy,
which is dominated by the small scales, will actually diverge
with refinement.

Transition to turbulence can lead to an inertial range
exhibiting Kolmogorov’s −5/3 wave-number power law
in the turbulence kinetic energy spectrum for sufficiently
high Re [27,28] above the mixing transition threshold,
Re ∼ 1–2 × 104 based on the integral length scale L (or
Re ∼ 1–1.4 × 102 based on the Taylor microscale) [27]. A
higher threshold, Re ∼1.6 × 105, is needed to achieve a min-
imum turbulent state [28]—proposed as having enough large
or small scale separation to ensure robustness of macroscopic
flow characteristics. Transition is inherently initial conditions
dependent—e.g., [29–31]. Viscous effects are thus expected
to matter less for sufficiently high Reynolds numbers, Re.

The idea that viscosity effects would be important only
at very short scales in shock-tube problems of interest was
suggested in early work by Mikaelian [32]. On the other
hand, plasma viscosity effects growing with temperature as
≈T 2.5 become important in inertial confinement fusion hot
spots (T ∼ keV). For example, this is demonstrated in the
studies of turbulence inhibition by viscous dissipation by We-
ber et al. [33], where Re at the gas hot spot was found to
be Re ∼ 10–100, quite far from the Re ∼ 10 000 transition
threshold. Addressing the detailed impact of viscous effects
in applications at scale becomes particularly important as
recent advances in computer science and resources promise
to provide significant reductions in numerical diffusion, and
it becomes feasible to accurately capture these effects in the
future simulations.

From a verification and validation perspective, the appli-
cation of the EE also raises concerns since it hampers the
quantification of numerical and modeling errors. This results
from the fact that the effective flow Re, Ree, of the simulations
is not bounded. We define effective Reynolds number as

Ree ≡ V0L0

νe
, (10)

where L0 and V0 are a reference length scale and velocity, and
νe is the effective viscosity,

νe = ν + νn + νt , (11)

which is composed of the physical ν, numerical νn, and
turbulent (closure model) νt viscosities. Since ν = 0 for in-
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viscid flow and νt = 0 (ideally) for laminar flow, the effective
Reynolds number is determined by the numerical viscosity in
EE computations. However, νn reduces upon spatiotemporal
grid refinement which makes Ree increase. Finally, it is impor-
tant to emphasize that the utilization of numerical diffusion to
model the terms involving D and ν also affects the remaining
inviscid terms of the EE [Eqs. (1)–(4): ρVi, ρViVj, P, PVj, . . .].

This paper analyzes the importance of molecular viscosity
and diffusivity effects on the prediction of transitional and
shock-driven turbulent mixing flows featuring high and low
Re and Ma regions. For high Re, the flow mostly features
high-intensity or fully developed turbulence, and so (Re de-
pendent) phenomena like the onset of turbulence may play a
minor role in the flow dynamics. However, there are many
flows of practical interest featuring regions of low and high
Re, where viscous dependencies of the onset of turbulence
are essential and must be captured. In the (low Re) transient
and transitional regions, where the separation of scales may be
questionable and spectra are narrow, the physical or/and nu-
merical viscosity play an important point in the flow physics.
Furthermore, the history of the transition process may persist,
so capturing the viscous effects may be essential to matching
the overall history of the flow. Our main focus is on assess-
ing viscous effects; assessing molecular diffusivity effects on
scalar predictions deserves further study which is not part of
the current scope.

Two representative flows are calculated with ILES [3,34]
using the EE and NSE: (i) the Taylor-Green vortex (TGV) [35]
at Re = 3000 [36] and initial Ma = 0.28; and (ii) the air-SF6-
air varicose gas curtain subjected to two shock waves at Ma =
1.2 studied by Balakumar et al. [37]. The first case assesses the
effect of viscous phenomena in single-fluid transitional flow,
whereas the second also includes material mixing, diffusivity,
high and low flow Ma regions, and shock waves. The simula-
tions are conducted for different grid resolutions to assess the
effects of numerical diffusion on the flow dynamics, quantities
of interest, and inviscid flow assumption. The predictions are
compared against reference data [36–38], and their compu-
tational cost analyzed. The paper also evaluates the effect of
the molecular viscosity and diffusivity on the turbulence and
coherent fields, as well as on the mechanisms contributing to
the production of vorticity.

The remainder of the paper is structured as follows. The
test cases and simulations are described in Sec. II. This
includes details about the reference experiments, numerical
settings, and solver [39]. The results are then discussed in
Sec. III, and the conclusions are summarized in Sec. IV.

II. FLOW PROBLEMS AND NUMERICAL DETAILS

A. Taylor-Green vortex

The TGV [35] is an archetypal flow problem for mod-
eling and simulation of turbulence onset, development, and
decay. This flow is initially characterized by multiple laminar
vortices as illustrated in Fig. 1(a). These coherent structures
evolve and interact in time, and eventually lead to turbulent
flow by the action of vortex stretching and reconnection with-
out need for background perturbations [36,40,41].

Since viscous processes are expected to have a role in the
onset of the reconnection phenomenon [40], there has been in-

(a) TGV.

(b) GC.

FIG. 1. Initial flow fields of the selected test cases.

tense debate about the potential existence of flow singularities
in inviscid EE calculations [36,42–47]. Nevertheless, the basic
(convectively driven) physics of reconnection [48,49] and tur-
bulence decay [50] can be captured with a well-designed EE
based ILES having adequate nonvanishing residual numerical
diffusion (recent survey in [51]). The flow kinetic energy is
expected to decay (e.g., [52]) after the development of tur-
bulence. The TGV case has been also used to demonstrate
how the convective numerical diffusion of certain algorithms
can be used to emulate the dominant subgrid scale physics
of transition to turbulence and decay for high (but finite) Re
flows [38,53] in ILES.

The numerical simulations of the TGV are conducted in
a cubical computational domain defined in the Cartesian co-
ordinate system (x1, x2, x3) shown in Fig. 1(a). The length of
the domain is L/Lo = 2π (Lo is a reference length scale), and
periodic boundary conditions are prescribed at all faces. The
initial velocity and pressure fields [35] are

V1(x) = Vo sin (x1) cos (x2) cos (x3), (12)

V2(x) = −Vo cos (x1) sin (x2) cos (x3), (13)

V3(x) = 0, (14)

P(x) = Po + ρoV 2
o

16
[2 + cos (2x3)][cos (2x1) + cos (2x2)],

(15)
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where Vo, Po, and ρo stand for the velocity, pressure, and
density magnitudes at the initial time instant, t = 0. The cal-
culations are conducted with a compressible flow solver [39]
using the ideal gas equation of state. This option leads to
maximum instantaneous and averaged (L1 norm) variations
of ρ that can reach 11.0 and 1.4% of ρo, respectively.
In viscous calculations, the Re = ρoLoVo/μ is set equal to
3000 to match the DNS studies of Brachet et al. [36] and
Drikakis et al. [38]. The initial thermodynamic and flow
properties are the following: Mao = 0.28, Vo = 104 cm/s,
Lo = 1.00 cm, ρo = 1.178 × 10−3 g/cm3, Po = 105 Pa, μ =
3.927 × 10−3 g/(cm s), and heat capacity ratio γ = 1.40.

B. Shocked gas curtain

The gas curtain flow of Balakumar et al. [37] has been
designed to investigate the physics of shock-driven turbulent
mixing and provide validation data for numerical simulations.
This classical transitional mixing problem initialized with an
air-SF6-air gas curtain contained inside a horizontal shock
tube with a square cross section of 76.2 mm. The curtain is
located at 137 mm from the tube’s end wall and composed of
a mixture of air, SF6, and acetone to enable the use of planar
laser-induced fluorescence technique to measure the density
field. This experimental technique reduces the Atwood num-
ber of the gas curtain in comparison to the pure air-SF6 case
(At = 0.67) [54]. The curtain is generated by an array of 21
jets of 3-mm diameter and separated by 3.6 mm. The shock
wave is created by the rupture of a diaphragm separating the
driven and driver gases, air and nitrogen. These fluids are
initially at rest and at pressures of 103 421 and 75 000 Pa,
respectively.

The present problem starts with the rupture of the mem-
brane separating the former gases. This generates a shock
wave that travels along the shock tube and strikes the gas cur-
tain at t = 0. At this instant, momentum is transferred to the
perturbed air-SF6 interface, which leads to its acceleration and
initiates the mixing of the two fluids by baroclinic production
of vorticity. Afterward, the Richtmyer-Meshkov instability
and coherent structures [55,56] start developing. This step
may lead to secondary hydrodynamics instabilities such as
the Rayleigh-Taylor [57,58] and Kelvin-Helmholtz [59,60]
instabilities. The shock wave reflects off of the end wall of the
experimental facility and causes a reshock at t = 600 μs (the
instant when the reflected shock wave passes the gas curtain).
This phenomenon triggers transition to turbulence, which en-
hances the mixing rate of the two materials. Brouillette [61]
and Zhou [62,63] provide comprehensive descriptions of this
class of flows.

The numerical simulations are conducted in a rectangular
computational domain defined in the Cartesian coordinate
system (x1, x2, x3) shown in Fig. 1(b). The origin is located
at the intersection of the plane defining the position of the
initial shock wave and the left and top boundaries of the
shock tube, with the x1 axis aligned with the shockwise
direction, x2 with the transverse direction, and x3 with the
vertical direction. The gas curtain is initially at 138 mm
from the end wall, and the cross section of the shock tube
includes ten out of the 21 jets used in the experiments,
so the computational domain is 36 mm wide. The initial

flow conditions of the gas curtain are extracted from the
DNS results of Gowardhan and Grinstein [54]. Reflective
conditions are prescribed at the x1 and x3 boundaries,
whereas periodic conditions are set at x2 = 0 and 36 mm.
The left boundary is at x1 = −400 mm so that the reflected
shock wave does not reach it during the simulation time
of 1200 μs. The shock wave is initially at x1 = 0 and time
is given with reference to the moment the shock wave
strikes the upstream interface of the gas curtain (t = 0).
Reshock (R) is completed at t = 600 μs. The fluid and
thermodynamic properties of SF6, compressed air (air1), and
ambient air (air2) are γair1 = γair2 = 1.40, γSF6 = 1.09, ρair1 =
1.28 × 10−3 g/cm3, ρair2 = 0.95 × 10−3 g/cm3, ρSF6 =
4.85 × 10−3 g/cm3, μair1 = μair2 = 1.80 × 10−4 g/(cm s),
μSF6 = 1.50 × 10−4 g/(cm s), D = 9.22 × 10−2 cm2/s.
Since μ and D were not measured by Balakumar et al. [37],
the values of these quantities are extrapolated from Charonko
and Prestridge [64] and tables available in literature [65]. We
also assume γ , μ, and D independent of the air’s pressure.
The complete description of the numerical setup and case is
given in Pereira et al. [24].

C. Numerical settings

All calculations are conducted with the flow solver
XRAGE [39]. This code utilizes a finite volume approach
to solve the compressible and multimaterial conservation
equations for mass, momentum, energy, and species con-
centration. The resulting system of governing equations is
resolved through the Harten-Lax-van Leer-Contact [66] Rie-
mann solver using a directionally unsplit strategy, direct
remap, parabolic reconstruction [67], and the low Mach num-
ber correction proposed by Thornber et al. [68]. The equations
are discretized with second-order accurate methods: the spa-
tial discretization is based on a Godunov scheme, whereas
the temporal discretization relies on the explicit Runge-Kutta
scheme known as Heun’s method. The time step, 
t , is de-
fined by imposing a maximum CFL number equal to 0.45.
Thus,


t = 
x × CFL

N (|V | + c)
, (16)

where c is the speed of sound, and N is the number of
spatial dimensions. The code can utilize an adaptive mesh
refinement (AMR) algorithm for following waves, especially
shock waves and contact discontinuities. This option is only
used for the gas curtain flow. The modeling of miscible mate-
rial interfaces and high convection-driven flows is performed
with a van-Leer limiter [69], without artificial viscosity, and
with no material interface treatments [53,70]. XRAGE uses
the assumption that cells containing more than one material
are in pressure and temperature equilibrium as a mixed cell
closure. For the present paper, we modified the XRAGE plasma
module [71–73] in order to consider the kinematic viscosity
(ν) and diffusivity (D) terms of the multimaterial NSE. In
these cases, the effective physical viscosity is defined as

ν =
nt∑

n=1

νn fn, (17)

where n is the material index, nt is the number of materials,
and fn is the volume fraction of material n. The thermal flux,
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qc, in Eq. (3) is neglected in this paper. Although this should
not affect the TGV case, this term would be necessary for a
careful validation comparing to the experimental gas curtain
data [2,74]. However, for this paper including only the domi-
nant diffusion terms should be sufficient to observe the trends
we wish to investigate. Also, evaluation of the temperature
field of the gas curtain flow has shown that the instanta-
neous difference between its minimum and maximum value
in the entire domain does not exceed 15.1%. The exception
occurs during the instants of reshock where the differences
can reach 42%. Considering that the temperature differences
between neighboring cells are significantly smaller, these re-
sults suggest that including the heat flux would not alter the
conclusions of the paper.

The selected spatial grid resolution and simulation time of
the calculations are problem dependent. Whereas the TGV
flow is computed for 20 time units on uniform Cartesian
grids with 1283, 2563, 5123, and 10243 cells, the gas curtain
calculations rely on an AMR algorithm to optimize the use
of computational resources. We use three grids gi with the
same baseline grid resolution 
 = 2 mm but with a different
number of refinement levels. These are 4 for g1, 5 for g2,
and 6 for g3 and lead to a minimum cell size ranging from
0.25 to 0.06 mm. The selected refinement criterion is based
on the magnitude of the pressure and density gradients [39].
Figure 2 illustrates the evolution of the number of cells, Nc, on
the three grids for EE and NSE simulations. It shows that the
finest grid resolution can reach 480.8 × 106 cells and, most
notably, that the NSE simulations require fewer cells than the
EE. In contrast, Table I indicates that the NSE simulations
lead to smaller time steps than the EE. These differences are
discussed in Sec. III B.

III. RESULTS AND DISCUSSION

The effect of molecular viscosity and diffusivity on the
selected test cases is now investigated. Each problem is
studied individually, and the quantities of interest comprise
mean-flow, coherent, and turbulence variables. The analysis
of the simulations includes the evaluation of the mechanisms
contributing to the production of vorticity. The discussion
concludes with the computational cost of the calculations.

A. Taylor-Green vortex

The TGV flow is initially defined by the set of laminar
vortices shown in Fig. 1(a). These coherent structures interact
and evolve in time, leading to the onset of turbulence. Since
the TGV is an isolated system (no energy sources), the total
kinetic energy of the problem decays in time due to viscous
[νe, Eq. (11)] effects.

The temporal evolution of the mean total kinetic energy,

k = 1

2V 2
o

ρvivi

ρ
, (18)

predicted with the EE and NSE is depicted in Fig. 3. In
Eq. (18), k is Favre averaged [75–78], the bar operator de-
notes a spatially averaged quantity �, and we adopt Einstein’s
summation convention.

(a) g1.

(b) g2.

(c) g3.

FIG. 2. Temporal evolution of the number of grid cells (Nc ×
10−6) of gas curtain simulations for EE and NSE on different
grids gi.

Figures 3(a) and 3(c) show the temporal evolution of k for
computations utilizing the EE and various spatiotemporal grid
resolutions. Similar to Shu et al. [79], it is observed that the
magnitude of k remains nearly constant during the first time
instants. Yet, the length of this period, 
t , depends on the grid
resolution. Whereas 
t ≈ 4 for the coarsest grid, this period
exceeds five time units for the finest resolution. The origin
of this difference lies in the reduction of numerical diffusion
caused by grid refinement. This delays the decay of k due to
the smaller values of νe [Eq. (11)] which, in turn, increase
Ree [Eq. (10)]. Nevertheless, the most significant result in
these figures is the small growth of k during this initial pe-
riod. Although smaller than 0.4% of ko, recall that the TGV
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TABLE I. Minimum and maximum time step, 
t , of gas curtain
simulations with EE and NSE on different grids gi.

Grid Model (
t )min (
t )max

g1 NSE 8.00 × 10−9 8.00 × 10−8

EE 1.38 × 10−8 1.39 × 10−7

g2 NSE 4.00 × 10−9 4.00 × 10−8

EE 6.90 × 10−9 7.00 × 10−8

g3 NSE 2.00 × 10−9 2.03 × 10−8

EE 3.50 × 10−9 3.50 × 10−8

represents an isolated system, and the total energy is con-
served by the governing equations of the mathematical model.
Thus, the observed growth in k can only occur by the conver-
sion of internal into kinetic energy, so that k > ko. Although
not clearly visible in Fig. 3(a), this behavior becomes more
pronounced upon grid refinement. It is also interesting to note
that Morf et al. [80] and Brachet et al. [36] estimated the pos-
sibility of the occurrence of a flow singularity between 4.2 and
5.2 time units for inviscid calculations. After this initial lami-
nar flow period, t ≈ 4–5, the kinetic energy starts dissipating,
and the flow becomes turbulent. The results also indicate that
for the EE the decay rate of k depends on the grid resolution.

The NSE results depicted in Figs. 3(b) and 3(c) exhibit
distinct tendencies. First, the decay of kinetic energy be-
gins immediately after t = 0 so that k(t ) never exceeds ko.
Second, the solutions of the three finest grids are nearly iden-
tical until t ≈ 11. After this instant, it is possible to identify
small discrepancies that are caused by the grid resolution.
This is quantified in Fig. 4 through the numerical uncertainty
(gray area) [81], Un(k), of the simulations on Nc = 5123 and
10243. Here, Un(k) is computed with the method of Eça and
Hoekstra [82] which uses an estimated uncertainty interval
containing the exact solution of the mathematical model with
95% confidence, instead of an exact error, which would re-
quire knowing the true solution exactly. A detailed description
of the method and the concept of numerical uncertainty is
given in [81,82]. The results show that Un(k) is negligible until
t ≈ 11, but starts growing after this instant. This is caused by
the development of turbulence and leads to values of Un(k)
that can reach 24.2% on Nc = 5123, and 8.4% on Nc = 10243.
These values of Un(k) indicate that Nc = 10243 is adequate
for the present paper, and that DNS studies using similar
numerical settings would require finer grids to achieve Un

close to zero for k and higher-order moments.
Next, Fig. 5 presents the temporal evolution of the averaged

total kinetic energy dissipation, ε:

ε = −∂k

∂t
. (19)

The predictions are compared against the simulations of Bra-
chet et al. [36] (incompressible) and Drikakis et al. [38]
(compressible) at Re = 3000. Focusing on the EE predictions
plotted in Fig. 5(a), these exhibit a close dependence on the
grid resolution, and evidence the existence of five distinct
periods where the simulations are in poor agreement with the
reference data [36,38].

(i) Until t ≈ 3–4, the predicted dissipation [Eq. (19)] is
negative, which indicates that k is being generated. This is

(a) EE(Nc).

(b) NSE(Nc).

(c) EE and NSE using Nc = 10243.

FIG. 3. Temporal evolution of kinetic energy, k, for EE and NSE
on different grid resolutions.

in agreement with the EE results of Fig. 3 and stems from the
aforementioned conversion of internal into kinetic energy.

(ii) After this initial period, the kinetic energy of the flow
starts being dissipated. Yet, the absence of physical viscosity
and the successive grid refinement make the EE underpredict
the magnitude of ε until t = 6. Considering t = 5, the dissi-
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(a) Nc = 5123.

(b) Nc = 10243.

FIG. 4. Temporal evolution of kinetic energy, k, and respective
numerical uncertainty, Un(k), for EE and NSE on grids with Nc =
5123 and 10243.

pation predicted by DNS [36] is equal to 2.6 × 10−3, whereas
for the EE it does not exceed 0.3 × 10−3. We emphasize that
the onset of turbulence occurs during this period [36]. As the
flow undergoes transition, energy cascades to smaller scales
at which dissipation occurs. Since for the EE the dissipation
is purely numerical, and happens primarily at the smallest
resolved scales, the growth of ε is delayed until a sufficient
cascade can develop.

(iii) Afterward, ε starts growing at a much faster rate than
observed in the reference studies and NSE. This stems from
the rapid development of increased fine scale motions, as
shown in Fig. 6 for the EE, which is due to the cascade of en-
ergy that would have otherwise been dissipated by molecular
viscosity at coarser scales in the NSE. Also, the solutions of ε

do not converge upon grid refinement, since in the true infinite
Reynolds number limit, the inertial range would extend to
infinite wave number and the enstrophy spectrum would not
converge.

(iv) The magnitude of ε starts diminishing in time. Yet, it
is possible to identify a second peak of ε for the three coarsest
grids. Since this peak is not observed on the finest grid nor

(a) EE(Nc).

(b) NSE(Nc).

(c) EE and NSE using Nc = 10243.

FIG. 5. Temporal evolution of dissipation, ε, for EE and NSE on
different grid resolutions.

in Brachet et al. [36] data, we attribute its origin to the grid
resolution.

(v) At late time, the decay rate on the fine grids does not
match the DNS. It is quite likely that may be a history effect
whereby the late-time behavior is contaminated by the resid-
ual effects of the unphysical transition; however, it underlines

013106-7



PEREIRA, GRINSTEIN, ISRAEL, AND RAUENZAHN PHYSICAL REVIEW E 103, 013106 (2021)

(a) EE.

(b) NSE.

FIG. 6. Vortical structures of the TGV flow for EE and NSE on
Nc = 5123 at t = 7. Structures identified with the λ2 criterion [83].

the fact that failure to capture the viscous effects may impact
predictions even in the fully turbulent region.

NSE simulations, on the other hand, lead to distinct tem-
poral evolutions of ε that are in close agreement with the
reference data [36,38]. During the first nine time units, the
discrepancies between predictions and DNS data are negligi-
ble, as well as the differences between solutions obtained with
the three finest grids. At 9 � t � 11, the discrepancies grow,
but the solutions are still in good agreement with the DNS
data, particularly to those of Drikakis et al. [38]. Considering
the excellent agreement with these compressible simulations,
we attribute the small discrepancies between our predictions
and Brachet et al. [36] to compressibility effects. After this
period, the magnitude of ε starts decreasing, and it is possible
to identify a small second peak. This phenomenon is likely
the consequence of suboptimal grid resolution at these late
times [84].

Overall, the results of Figs. 3 and 5 show the limitations of
the EE to predict transition in the TGV. Although it is expected
that this flow will become Reynolds number independent as
sufficiently high Re, it is clear that this has not yet occurred

(a) k.

(b) ε.

FIG. 7. Temporal evolution of kinetic energy, k, and dissipation,
ε, for viscous (NSE) and inviscid (EE) RANS BHR-2 simulations on
the finest grid.

even at Re = 5000 [85]. At the current Reynolds number of
3000, the results are Reynolds number dependent [36], and
the EE cannot capture that. In clear contrast, ILES using the
NSE achieves an excellent agreement with the DNS data, and
the solutions converge upon grid refinement. It is important
to note that although the EE and NSE solutions obtained in
the coarsest resolution possess some similarities due to the
magnitude of the numerical diffusion, these results exhibit a
poor agreement with the DNS data.

Before investigating the physics behind the results of
Figs. 3 and 5, we analyze the effect of viscosity to simu-
lations using mathematical formulations modeling the entire
turbulent field. Toward this end, an extra set of calculations
is conducted with the viscous and inviscid RANS equa-
tions. These RANS computations run for at least 12 time
units in grid resolutions ranging from Nc = 1283 to 5123.
The turbulence field is modeled through the Besnard-Harlow-
Rauenzahn (BHR) multiequation RANS model [86] in the
BHR-2 closure version [87].

The temporal evolution of the averaged total kinetic energy,
k, and dissipation, ε, obtained in the finest grid resolution
is depicted in Fig. 7. The results for the NSE show that the
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temporal evolution of k and ε is identical to that predicted
by ILES (see Figs. 3 and 5) and DNS [36] until t ≈ 6. After
this instant, the well-known limitations of RANS predicting
transitional flows [88] lead to the overprediction of turbu-
lence and, consequently, of ε. For this reason, the peak of ε

is 50.2% larger than that obtained with ILES. The inviscid
RANS calculations exhibit a similar peak. Furthermore, the
assumption of inviscid fluid shifts the RANS prediction in
the same manner observed for the ILES. This stems from the
growth of the effective Reynolds number (see Sec. III A 1),
and demonstrates that the assumption of inviscid fluid also af-
fects formulations modeling the entire spectrum of turbulence
scales. Although not exhibited, the outcome of grid refinement
studies indicates that the apparent small shift between EE and
NSE solutions at t > 6 might be a coincidence. The results of
the two models on the two coarsest grids exhibit significant
differences for t � 20.

1. Numerical Reynolds number

One of the consequences of assuming inviscid fluid is the
inability to set the effective Reynolds number, Ree, of the
simulations. This stems from the fact that the effective viscos-
ity of the computations becomes determined by its numerical
component. Since the magnitude of the numerical viscosity
is grid dependent, Ree also varies upon grid refinement. This
feature poses challenges to prediction and validation.

To evaluate the impact of this aspect on the computations’
accuracy, this section assesses the magnitude of the numerical
Reynolds number, Ren, for viscous and inviscid simulations.
This quantity is estimated using the method proposed by Zhou
et al. [89] for decaying turbulent flow. The numerical viscos-
ity, νn, is defined as the ratio between the magnitude of the
averaged observed dissipation, ε, and the enstrophy, �:

νn = ε

�
. (20)

In Eq. (20), ε is given by Eq. (19) (without normalizing k),
and

� = 1

2

ρωω

ρ
, (21)

where ω is the magnitude of the vorticity vector,

ω = ∇ × V, (22)

and bold symbols denote vectors. Then, Ren is defined as

Ren ≡ VoLo

νn
. (23)

It is important to highlight that the effective and numerical
Reynolds numbers, Ree and Ren, are equivalent for ILES
using the EE because ν = νt = 0 [see Eq. (10)]. This property
does not hold for ILES using the NSE since ν is not assumed
to be equal to zero.

Figure 8 depicts the temporal evolution of the ratio between
the Ren for inviscid and viscous calculations on grids Nc =
1283 to 5123 (the grid with Nc = 10243 is only used to calcu-
late k and ε). Since Eq. (20) assumes turbulence decay [89],
Fig. 8 only considers the interval 9 � t � 20. As expected, the
results indicate that (Ren)EE/(Ren)NSE is closely dependent
on the grid resolution. Whereas this ratio is approximately
constant and equal to 1.4 for the coarsest grid, its magnitude

FIG. 8. Temporal evolution of the numerical Reynolds number,
Ren, for EE and NSE on different grid resolutions.

ranges from 2.8 to 6.0 for the finest grid resolution. This
tendency indicates that the numerical Reynolds number of
the EE calculations grows more rapidly than that of the NSE.
Unlike (Ren)EE, (Ren)NSE converges upon grid refinement.

Yet, more important than the observed growth in Ren for
the EE, one needs to understand the reason for this outcome.
Since Vo and Lo are constants, (Ren)EE/(Ren)NSE is determined
by νn. This quantity, in turn, is calculated as the ratio between
the flow dissipation and enstrophy plotted in Figs. 5 and 9.
From these figures, it is possible to infer that the growth
of (Ren)EE/(Ren)NSE is essentially caused by a significant
increase of the enstrophy of the EE simulations upon grid
refinement. Lacking physical dissipation, the EE simulations
will continue to give rise to increasingly small scale fluctua-
tions as the grid is refined. Consequently, the vorticity field
predicted by the EE is more intense than for the NSE at the
specified Re, and may possess different features.

2. Vorticity field

The results of Figs. 8 and 9 demonstrate the strong impact
of viscosity on the magnitude and dynamics of the vorticity

FIG. 9. Temporal evolution of the enstrophy magnitude, �, for
EE and NSE on different grid resolutions.
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(a) EE.

(b) NSE.

FIG. 10. Isosurfaces of the normalized x3 vorticity field (|ω3| =
1.7) colored by the vorticity magnitude for distinct models: results at
t = 20 with Nc = 5123.

field. To illustrate the effect of assuming inviscid flow on the
vorticity magnitude, Fig. 10 depicts the isosurfaces of the
normalized vertical vorticity field at t = 20 predicted with
the EE and NSE. The structures are colored by the vortic-
ity magnitude normalized by its maximum value. The plots
confirm that inviscid calculations predict larger magnitudes
of vorticity and, consequently, finer-scale structures than the
NSE. The results also show that the NSE lead to a more
homogeneous vorticity field due to the broader coloring range
of the structures (normalized by maximum value |ω3|max).

The consequences for the vorticity dynamics of assum-
ing inviscid fluid can be evaluated quantitatively by studying
the mechanisms contributing to the production and diffusion
of vorticity: stretching, TS; dilatational, TD; baroclinic, TB;
and viscous, TV . The first two processes account for the
stretching of vorticity [90,91] due to velocity gradients and
compressibility effects. The baroclinic mechanism describes
the evolution of vorticity due to the misalignment of the pres-
sure and density gradients, whereas the viscous mechanism
accounts for the diffusion of vorticity due to viscous effects.
The temporal evolution of vorticity can be best described by
the following equation [92,93]:

Dωi

Dt
= TSi − TDi + TBi + TVi , (24)

where

TSi = ω j
∂Vi

∂x j
, (25)

TDi = ωi
∂Vj

∂x j
, (26)

TBi = ei jk
1

ρ2

∂ρ

∂x j

∂P

∂xk
, (27)

TVi = ei jk
∂

∂x j

(
1

ρ

∂σkm

∂xm

)
. (28)

The viscous term only appears on the NSE, not the EE.
Figure 11 shows the temporal evolution of the magnitude of
these mechanisms for viscous and inviscid computations upon
grid refinement. The baroclinic term is not shown, due to its
minimal importance for the present flow problem, TB/TS �
3% (Nc = 5123). The data are normalized by the magnitude
of TSi since this term is expected to govern the right-hand side
of Eq. (24).

Both the stretching and the viscous terms represent phe-
nomena that are not fully resolved in ILES, and which
therefore increase in magnitude with grid refinement. How-
ever, as dissipation is a small scale process, whereas stretching
is dominated by the larger scales, the ratio of these terms
should increase as the grid is refined. This can be seen in
Fig. 11, where TV /TS reaches 19.0 and 73.9% at t = 5 and
20 for the finest grid (Nc = 5123). This reiterates the impor-
tance of viscous effects in the TGV, and further explains the
discrepancies between EE and NSE solutions. The increased
relevance of TV upon grid refinement is likely caused by the
reduction of the simulations’ numerical diffusion.

The ratio TD/TS remains approximately constant for the
EE. It can reach 16.0% for Nc = 5122, demonstrating that
compressibility effects are relevant for simulations using this
mathematical model. In contrast, the NSE results indicate that
TD/TS reduces by a factor of 2 with the grid, reaching a
maximum value of 7.5% for Nc = 5123.

3. Spectral features

Figure 12 compares the temporal evolution of the kinetic
energy spectrum of both models at time instants after the peak
of dissipation, once the flow is turbulent. The spectra for the
(numerical-diffusion constrained) nominally inviscid ILES-
EE calculations exhibit a longer inertial range—associated
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(a) Nc = 1283.

(b) Nc = 2563.

(c) Nc = 5123.

FIG. 11. Temporal evolution of the norm of the vorticity equation
terms (TS , TD, and TV ) for EE and NSE.

with a resolution-dependent Ree—and show absence of a clear
viscous subrange. Also apparent in the spectra for the EE case
is a suggested power law shallower than Kolmogorov’s in the
near-dissipation region (the so-called bottleneck effect); the
latter is commonly observed in very high-Re DNS predictions
and laboratory observations, and recognized to be a feature

(a) EE.

(b) NSE.

(c) NSE vs. EE.

FIG. 12. Temporal evolution of the turbulence kinetic energy
spectrum, E (k), for EE and NSE. Grid resolution is Nc = 5123.

of the NSE solutions for high (but finite) Re. In contrast, the
spectra of the NSE calculations, for which we can prescribe a
lower Re of 3000, present a significantly more rapid energy
decay with k at later times, and show a clear distinction
between the inertial and viscous subranges.
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TABLE II. Computational cost in CPU hours of EE and NSE
computations for different grid resolutions.

Grid tEE (CPU.h) tNSE (CPU.h) tNSE/ tEE

5123 302, 194 322, 284 1.07
2563 16, 057 17, 962 1.12
1283 1, 144 1, 204 1.05

4. Computational cost

The analysis of the TGV concludes with the assessment of
the computational cost of the two mathematical models. This
is important in order to address one of the arguments driving
the use of the EE instead of the NSE, the cost. Table II shows
that the cost difference between the two models is typically
around 10%, with the EE computationally less expensive.
Considering the gain in accuracy, the additional cost of the
NSE does not seem to justify the use of the EE.

B. Shocked gas curtain

The experiments of Balakumar et al. [37] consist of a
varicose gas curtain impacted by an initial shock, which trig-
gers initial disturbance growth. This enhances the mixing of
the different materials and leads to the development of the
characteristic Richtmyer-Meshkov instability and coherent
structures. Subsequently the mixing region is impacted by a
second shock (reshock) which ultimately promotes transition

to turbulence. The temporal evolution of the gas curtain is
illustrated in Fig. 13. This figure compares the predictions of
the EE and NSE on grid g3 against the experiments of Balaku-
mar et al. [37]. In this figure, the gas curtain is measured by
the concentration intensity of SF6, ISF6 :

ISF6 ≡ cSF6

(cSF6 )max

, (29)

where cSF6 is the local mass concentration of SF6 in the
mixture, and (cSF6 )max is its maximum value. Except at t = 0,
the experimental results were measured 5 μs before the pre-
dictions. Although such a time lag can make the comparison
between experiments and predictions at time instants close to
the two shocks more difficult, it does not affect the assessment
of the influence of molecular viscosity and diffusivity effects
to the predictions. To be consistent with Balakumar et al. [37],
all numerical measurements shown in this section are taken at
plane x3 = 20 mm.

The results of Fig. 13 show a close agreement between
numerical and experimental measurements until reshock, t =
600 μs. At t = 0, the perturbed gas curtain is at rest and
the shock wave is about to strike its upstream interface.
The passage of the shock wave compresses the curtain (t =
20 μs), and deposits vorticity through baroclinic processes.
This triggers the mixing of the different materials. Next, the
downstream interface of the gas curtain undergoes a phase
inversion, whereas its upstream interface starts growing (t =
40 μs). In the following instants (t � 220 μs), the curtain
develops a symmetric and sinusoidal form, where projectiles

(a) EE.

(b) NSE.

(c) Experiments [37].

FIG. 13. Temporal evolution of the SF6 intensity, ISF6 , for EE and NSE on the finest grid. Experiments are taken from Balakumar et al. [37].
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(a) EE. (b) NSE. (c) Experiment [37].

FIG. 14. Visualization of the Richtmyer-Meshkov structure and
projectiles at t = 220μs for EE and NSE on the finest grid. Experi-
ments are taken from Balakumar et al. [37].

eject from the primary structure (Fig. 14). At this time, the
bridges connecting different jets start getting thinner. In addi-
tion, the interfaces of the gas curtain start to roll up, leading to
the generation of counter-rotating vortices with the character-
istic mushroomlike shape of the Richtmyer-Meshkov coherent
structure. These structures lose some of their symmetry at
late times (t � 520 μs). Despite the good agreement between
simulations and experiments until reshock, it is still possible
to identify some discrepancies at late times. Figure 13 shows
smaller experimental asymmetries in the Richtmyer-Meshkov
structures than for the simulations. This likely stems from
differences between the numerical and experimental initial
flow conditions [24,54], which are those given in [37,54].
Comparing the two models, the results exhibit negligible dif-
ferences between inviscid and viscous calculations (for the
three grid resolutions tested).

The reflected shock wave passes through the gas curtain
at t = 600 μs. The experiments indicate that the reshock in-
creases the mixing of the different materials, and leads to a
rapid spatiotemporal development of the flow. At 620 μs, the
bridges connecting neighboring jets become flatter and the
mixing-layer width reduces due to compressible effects. In the
following instants, the mixing layer expands and the mixing
rate increases. Also, it is possible to observe projectilelike
structures ejecting from the mixing layer (t � 820 μs). At
later times, the mixing layer starts exhibiting high intensity
turbulence features, becoming a homogeneous mixture with a
characteristic cloudlike structure.

During this period, the numerical simulations exhibit
an overall good agreement with the experiments. Never-
theless, it is still possible to identify some discrepancies
in solutions obtained at time instants just after reshock.
Once again, these mismatches are most likely caused by
the time lag between experimental and numerical measure-
ments, and the undercharacterization of the experimental
initial conditions [9,54,94]. The comparison of the two math-
ematical models shows negligible qualitative differences until
t = 920 μs. After this instant, the composition of the mixing
layer predicted with the two models starts exhibiting mean-
ingful differences. Whereas the EE predict small intensities of
cSF6 , ISF6 , the NSE lead to larger values of this quantity. These
are in significantly better agreement with the experiments.
Note that all intermediate values of ISF6 with EE are entirely

due to subgrid processes via the numerical diffusion, as there
is no molecular diffusion term in the equations.

To investigate these differences, Fig. 15 depicts the vol-
umetric fraction of mixture possessing values of cSF6 within
seven ranges. These vary from 0 � cSF6 < 0.10 to 0.60 �
cSF6 < 0.70. It is important to emphasize that the homogeneity
of the mixture enhances with the reduction of cSF6 . Consider-
ing the finest grid, Figs. 15(a) to 15(c), the results indicate
that the NSE improve the homogeneity of the mixture. In
general, viscous computations tend to homogenize the mixing
layer by reducing the flow regions with larger concentrations
of SF6, thus increasing the fraction of the mixture where
cSF6 < 0.10. At t = 1120 μs, for example, cSF6 is below 0.10
in 38.8% of the mixing layer predicted with the EE, whereas
this value grows to 43.2% for the NSE. The data also show
that at t = 1020 and 1120 μs, only the EE lead to values of
cSF6 above 0.5 and 0.4, respectively. These results explain the
observed differences in ISF6 , and demonstrate that inviscid cal-
culations can have a significant impact on the composition of
the mixture. As expected, the importance of diffusivity effects
diminishes for g2 due to numerical diffusion. This behavior
is observed in Figs. 15(d)–15(f) and 16, where it is possible
to infer that the magnitude of ISF6 is similar for EE and NSE
computations.

The temporal evolution of the mixing-layer width, w, pre-
dicted by both models on g3 and g2 is depicted in Fig. 17. This
quantity is defined as follows. Prior to reshock (t < 600 μs),
the mixing-layer width is defined as the largest distance be-
tween the upstream and downstream points of each structure
where the volume of fraction of SF6, fSF6 , exceeds 5%. The
values obtained for each wavelength are then spatially av-
eraged. After reshock (t � 600 μs), the mixing-layer width
is estimated using the same procedure but without averaging
over each wavelength. Instead, the final mixing-layer width
results from averaging the value of w computed at each trans-
verse plane. In contrast to the simulations, the projectilelike
structures observed after reshock are not considered in the
experimental measurements of w.

Figure 17 shows again the close agreement between exper-
iments and simulations until reshock. After reshock, however,
the numerical simulations on g3 overpredict w. This result
stems from the aforementioned mismatches between numer-
ical and experimental initial flow conditions [9,24,54,94].
Comparing EE to NSE, the data indicate that the predictions
of w are similar until t = 1000 μs. After this instant, it is
possible to identify discrepancies between the results of the
two models. These are caused by cSF6/ fSF6 variations in the
mixture (Fig. 15). Similar to the results of Fig. 16, the values
of w obtained on the coarsest grids are less sensitive to the
model due to numerical diffusion.

Next, we turn our attention to the temporal evolution of the
flow kinetic energy:

k = 1
2

(
v2

1 + v2
2 + v2

3

)
. (30)

In Eq. (30), vi is the fluctuating velocity, which is calculated
as the difference between the instantaneous, Vi, and the spatial
(along transverse direction) mean, V i, velocities. The kinetic
energy distribution across the mixing zone at four instants is
presented in Fig. 18.

013106-13



PEREIRA, GRINSTEIN, ISRAEL, AND RAUENZAHN PHYSICAL REVIEW E 103, 013106 (2021)

(a) g3 at t = 920. (b) g3 at t = 1020. (c) g3 at t = 1120.

(d) g2 at t = 920. (e) g2 at t = 1020. (f) g2 at t = 1120.

FIG. 15. Fraction of the gas curtain with a local mass concentration of SF6, cSF6 , within selected ranges for EE and NSE at different time
instants and grid resolutions.

At t = 700 μs, both models predict profiles of kinetic en-
ergy exhibiting two peaks. The first, located at x1 ≈ 50.75 cm,
is caused by the projectilelike structures observed in Fig. 13,
whereas the second coincides with the center of the mixing
layer (x1 ≈ 51.05 cm). The NSE has a smoother profile and
larger peaks of k compared with the EE. For this reason, kmax

predicted by the NSE is 4% larger than that predicted by the

EE. In the following instants, the magnitude of k reduces for
both models. From t = 700 to 1000 μs, kmax decreases 84.4%
for the EE and 82.7% for the NSE. Furthermore, the profiles
start becoming symmetric, evidence of an enhancement in the
mixing-layer homogeneity. Yet, the most significant result in
Fig. 18 is the fact that kmax at t = 1000 μs predicted by the
NSE is 16.4% larger than for the EE. Since the magnitude

(a) EE.

(b) NSE.

FIG. 16. Temporal evolution of the SF6 intensity, ISF6 , for EE and NSE on g2.
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(a) g2.

(b) g3.

FIG. 17. Temporal evolution of the mixing-layer width, w, for
EE and NSE on different grid resolutions. Experiments are taken
from Balakumar et al. [37].

of k strongly influences the mixing rate, these results under-
score the importance of molecular viscosity and diffusivity
phenomena to shock-driven turbulent mixing. The growth
of k observed in NSE calculations is also connected to an
increase in the flow Mach number. It was observed that the
instantaneous averaged values of the Ma can exceed by 11%
those obtained with the EE (considering the time instants of
Fig. 17).

The importance of viscous effects is also observed in
the variance of cSF6 , var(cSF6 ), depicted in Fig. 19. This
presents the results as the percent difference between var(cSF6 )
predicted with NSE and EE along the mixing layer (0 �
xw/wNSE � 1) at three instants after reshock. Figure 19 also
includes the line wEE which represents the relative mixing-
layer location predicted by the inviscid calculation. The
numerical results indicate that the magnitude of var(cSF6 ) of
the viscous calculation can be significantly larger than that of
the inviscid computation. It is observed that these differences
can reach 25%. This result stems from viscous effects that
enhance material mixing, and the higher turbulence intensities
of viscous simulations shown in Fig. 18. Also, it is important
to emphasize that mixing in EE simulations is only possible
due to numerical diffusion. Figure 19 also indicates that the
differences in w verified in Fig. 17 between NSE and EE
calculations are mostly driven by the left interface (wEE).
Whereas the right interface of the mixing layer predicted
with the EE is at xw > 0.97wNSE, the left one can reach
xw = 0.10wNSE.

(a) EE.

(b) NSE.

FIG. 18. Temporal evolution of the flow kinetic energy, k, for EE
and NSE on g3.

1. Numerical Reynolds number

Figure 20 presents the temporal evolution of the numerical
Reynolds number, Ren, for viscous and inviscid computations
on the finest grid. For this problem, Ren is estimated through
the method proposed by Zhou et al. [89] as in the derivation
leading to Eq. (30) in Grinstein et al. [95]:

Ren = 6w2

k
Si jSi j . (31)

In this relation, w is the mixing-layer width presented in
Fig. 17, k is the flow kinetic energy, and Si j is the strain-rate
tensor. Here, k and Si j consider the complete velocity field
(mean, coherent, and turbulent [96,97]) so that the estimated
Ren represents an upper limit for its magnitude.

As expected, Fig. 20 indicates that Ren increases in time
and upon grid refinement. Whereas the first stems from the
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(a) t = 920μs.

(b) t = 1020μs.

(c) t = 1120μs.

FIG. 19. Difference between the variance of cSF6 , var(cSF6 ), for
NSE and EE on g3 at different instants. Results are shown as a
percentage of [var(cSF6 )]EE .

growth of the strain-rate tensor magnitude in time due to
flow unsteadiness, the second originates from the reduction
of numerical diffusion with the grid refinement. The data
also show that these differences are amplified after reshock,
and can reach 17.0% for g2 and 34.5% for g3. Naturally, the

FIG. 20. Temporal evolution of the numerical Reynolds number,
Ren, for EE and NSE on different grid resolutions.

largest values of Ren are achieved by inviscid calculations. At
t = 1200 μs, (Ren)EE = 7.2 × 104. This value clearly ex-
ceeds the critical mixing transition, Rec, proposed by Dimo-
takis [27] (Rec � 1.0–2.0 × 104), and shows the impact of
viscous effects on solutions at Re higher than for the TGV.
The results of Fig. 20 also illustrate that mismatches between
(Ren)EE and (Ren)NSE start earlier as the grid refines.

2. Vorticity field

As previously demonstrated for the TGV, the dynamics of
the vorticity field is closely dependent on molecular viscosity
and diffusivity effects. Since the vorticity field has a strong
impact on the physics of material mixing, Fig. 21 depicts the
evolution of the vorticity magnitude for viscous and inviscid
computations on the finest grid. The results reveal that the
inviscid flow assumption leads to a meaningful increase in the
vorticity magnitude. Although this tendency is visible before
and after reshock, it is more pronounced after the mixing
layer undergoes the second shock. During this period, ωEE can
exceed ωNSE by 25.6%.

FIG. 21. Temporal evolution of the vorticity magnitude, ω, for
EE and NSE on the finest grid.
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(a) TS and TV .

(b) TD and TV .

(c) TB and TV .

FIG. 22. Temporal evolution of the norm of the vorticity equation
terms (TS , TD, TB, and TV ) for EE and NSE on grid g3.

Despite the increase of ω, Figs. 13 and 15 have shown
that the NSE enhance the homogeneity of the mixture. This
shows the role of molecular viscosity and diffusivity to the
predictions. To address this point, Figs. 22 and 23 present the
evolution of the magnitude of the flow mechanisms respon-
sible for the production and diffusion of vorticity: stretching,
TS; dilatation, TD; baroclinic, TB; and viscous, TV [Eqs. (25)–

FIG. 23. Temporal evolution of the norm of the vorticity equation
terms (TS , TD, TB, and TV ) for NSE on grid g3.

(28)]. As observed in Pereira et al. [24], the results of both
models illustrate that the baroclinic mechanism dominates
the production of vorticity until reshock. Nevertheless, the
magnitude of the dilatation and stretching processes is not
negligible. On the other hand, the viscous mechanism does
not exceed 4% of TB for NSE computations. The comparison
of EE and NSE indicates that inviscid calculations lead to a
small increase in TS and TD.

Upon reshock, t � 600 μs, TB experiences a rapid decay,
whereas TS and TD experience a substantial growth. The latter
result makes these two mechanisms the largest contributors to
the production of vorticity. Regarding viscous effects, the re-
sults show that TV experiences a significant relative increase,
which makes its magnitude represent more than 20% of TS

or TD. Also, the magnitude of TV can surpass that of TB at
t > 1000 μs. Along with the results of the previous sections
and the fact that the present finest grid is adequate but not
optimal for this problem [24], Figs. 22 and 23 reiterate the
importance of molecular viscosity and diffusivity effects to
the quality of the predictions. Figure 22 also shows that the
differences between the various mechanisms predicted with
EE and NSE increase after reshock. Whereas inviscid calcu-
lations lead to larger TS and TD, with values that can exceed
36.4 and 29.5% of those obtained with the NSE, TB predicted
by the NSE is globally larger than by the EE.

3. Spectral features

Figure 24 depicts the turbulence kinetic energy spectrum
for inviscid and viscous computations at various time instants
after reshock. The spectra are calculated using solution points
inside a 2563 cubic domain located at the center of the mixing
layer. This grid possesses a lower resolution than that used
in the computations because we map the AMR grid onto a
uniform grid. Similar to the TGV case, the results show that
the inviscid assumption affects the turbulence field dynamics.
It is visible that inviscid calculations lead to an earlier transi-
tion to turbulence due to the fact that the spectrum of the EE
at t = 700 μs contains a wider range of scales (wavelengths)
than for the NSE. At late times, the spectra obtained with the
EE also feature broader inertial ranges (t � 1000 μs). In fact,
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(a) EE.

(b) NSE.

(c) NSE vs. EE.

FIG. 24. Temporal evolution of the turbulence kinetic energy
spectrum, E (k), for EE and NSE on grid g3.

it is not possible to identify a dissipative subrange in the EE
results. Differences in Ree cause this outcome.

4. Computational cost

The discussion of the results concludes with the assess-
ment of the simulations’ computational cost. This is presented

TABLE III. Computational cost in CPU hours of EE and NSE
computations for different grid resolutions.

Grid tEE (CPU h) tNSE (CPU h) tNSE/tEE

g3 380 328 156 699 0.41
g2 26 766 12 493 0.47
g1 2972 888 0.30

in Table III for the different grids. Despite the EE having
fewer terms than the NSE and requiring larger time steps
(Table I), the results indicate that inviscid calculations are at
least 2.1 times more expensive than viscous simulations. To
understand this result, Fig. 25 depicts the spatial resolution
of g3 at t = 220 μs for both EE and NSE. The results show
that when employed in EE calculations, the AMR algorithm
refines the grid in larger areas of the domain, where the com-
putations should not need fine grid resolutions. In addition to
larger values of Ree, this stems from the fact that inviscid
calculations are not able to rapidly damp flow perturbations
originating in the passage of the shock wave through the gas
curtain. As a result, the gradients of pressure and density used
as refinement criterion get steeper, increasing the the number
of cells (Fig. 2) and, consequently, the computational cost of
inviscid simulations. Viscous computations, on the other hand,
rapidly dissipate such perturbations and so only refine the grid
in the mixing-layer and shock-wave regions.

Although modified AMR algorithms may minimize this
issue, the underlying problem will persist due to the inviscid
fluid assumption, ν = 0. In this manner, density and pressure
perturbations created by the two shocks are not dissipated,
thus leading to steeper flow gradients that AMR algorithms
are designed to calculate accurately. Considering the impact
of molecular viscosity and diffusivity effects in the accuracy
and cost of the simulations, the viscous NSE seem to be the
best approach to predict the present transitional shock-driven
turbulent mixing flow.

IV. CONCLUSIONS

We investigated the importance of molecular viscosity and
diffusivity effects on the prediction of transitional and shock-
driven mixing flow problems that include high and low Re and
Ma regions. Two representative transitional test cases are stud-
ied with ILES using the EE and NSE: the TGV at Re = 3000
and initial Ma = 0.28, and the air-SF6-air gas curtain sub-
jected to two shock waves at Ma = 1.2 studied by Balakumar
et al. [37]. Grid refinement studies are performed to assess
the influence of numerical diffusion on the computations. The
simulations are compared against available reference data,
and their computational cost analyzed. The paper evaluates
the effect of the molecular viscosity and diffusivity on the
turbulence and coherent fields, as well as on the mechanisms
contributing to the production and diffusion of vorticity.

The results of this paper illustrate the differences between
NSE and EE predictions due to viscous effects. In contrast to
the EE solutions, the NSE results are in close agreement with
the reference data, in particular for the TGV case. On the other
hand, the EE solutions lead to meaningful discrepancies with
the reference data and only exhibit similarities with the NSE
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(a) EE.

(b) NSE.

FIG. 25. Spatial resolution of grid g3 at t = 220 μs for EE and NSE.

results at coarse grid resolutions. One of the major contribu-
tors to this result is the inability of the EE to bound the Ree

of the computations. The assumption of inviscid flow makes
Ree dependent on the grid resolution so that its magnitude
varies upon grid refinement. This aspect is of importance to
the prediction of the mean-flow, coherent, and turbulent fields.
For instance, it is observed that the turbulence field of inviscid
calculations is featured by wider (range of wavelengths) and
more energetic inertial ranges than those obtained with the
NSE. In regard to the vorticity field, the results show that
the EE alter the dynamics of all mechanisms responsible for
the production of vorticity. Most notably, the data illustrate
that the magnitude of the viscous diffusion of vorticity can
even exceed that of the production mechanisms. Finally, it is
shown that the cost of performing EE and NSE calculations
without AMR is similar. Yet, the utilization of AMR makes
the EE significantly more costly than the NSE. In this case,
inviscid calculations are at least 2.1 times more expensive
than NSE computations. This stems from the larger effective
Re achieved by EE simulations, as well as from the inability
of this mathematical model to rapidly dissipate fluctuations
caused by shock waves.

In summary, this paper demonstrated the importance of
molecular viscosity and diffusivity effects on the prediction
of transitional and shock-driven mixing flow problems. Our
main focus has been on assessing viscous effects; assessing
molecular diffusivity effects on scalar predictions deserves

further study and has not been part of the current scope.
Naturally, there are applications at full scale involving on-
set and decay of turbulence where available computational
algorithms and resources may be insufficient to reduce the
magnitude of numerical diffusion to optimal levels allowing
for accurately resolved effects. In these cases, EE and NSE
may lead to similar predictions. However, future advances in
computing power and the present analysis (cost and accuracy)
suggest that the performance of NSE computations may still
be advantageous in such cases.
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