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Interaction between two unequal particles at intermediate Reynolds numbers:
A pattern of horizontal oscillatory motion

Deming Nie,1 Geng Guan,1 and Jianzhong Lin2,*

1Institute of Fluid Mechanics, China Jiliang University, Hangzhou, China
2State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou, China

(Received 20 June 2020; revised 22 December 2020; accepted 23 December 2020; published 14 January 2021)

The two-dimensional lattice Boltzmann method (LBM) was used to study the motion of two interacting
particles with different densities (ρ1 and ρ2) and diameters (d1 and d2), which were placed in a vertical channel
under gravity. Both the density ratio (λ = ρ2/ρ1) and diameter ratio (r = d2/d1) between the particles were
considered. The transition boundaries between the regime where the particles settle separately and the regime
where the particles interact are identified by λmax(r) and λmin(r); they exhibit excellent power-law relationships
with r. A pattern of horizontal oscillatory motion (HOM), characterized by a structure with a large (but
light) particle right above a small (but heavy) one and strong oscillations of both particles in the horizontal
direction, was revealed for r ∼ 0.3 at intermediate Reynolds numbers. The results indicate that the magnitude
of oscillations decreases with λ, whereas the frequency displays the opposite trend. A sudden increase in the
terminal velocity of particles is seen, illustrating a transition from the classical pattern of drafting, kissing, and
tumbling to the HOM at a certain λ. Upon increasing λ, the pattern of HOM may bifurcate into a vertical steady
state at low Re or small r. Furthermore, the effects of the confinement ratio and particle-to-fluid density ratio
were also examined. The existence of a critical confinement ratio is observed, beyond which the particles interact
in a different manner.
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I. INTRODUCTION

For a particulate flow, the hydrodynamic interaction be-
tween particles plays a key role in determining the flow
features as well as the patterns of particle motion. In com-
parison with Stokes flow, the behavior of particles in nonzero
Reynolds number flows becomes rich and complex due to the
nonlinear effects of fluid inertia.

Owing to its academic importance, extensive efforts have
been devoted to improving our understanding of the hydro-
dynamic interaction between particles in a particulate flow
at finite Reynolds numbers. For instance, Fortes et al. [1]
studied the sedimentation of two spheres through experiments
and reported a pattern of the motion of particles known as
drafting, kissing, and tumbling (DKT), through which two
particles at different heights quickly exchange their vertical
positions resulting from the wake effects. DKT may take place
frequently for the settling of a large number of spheres, asso-
ciated with the formation of clusters [2]. Recently, Dash and
Lee [3] revisited the pattern of DKT at intermediate Reynolds
numbers through three-dimensional simulations and experi-
ments. They reported an inverse DKT pattern that differed
from the normal pattern in the rotation direction of the turning
couple during the process of tumbling. For two-dimensional
analysis, Hu et al. [4] and Feng et al. [5] successively repro-
duced the DKT phenomenon for two circular particles through
direct numerical simulations at intermediate Reynolds num-
bers. A similar problem was also raised by Nie et al. [6] and
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Wang et al. [7], who focused on the effects of the particle
arrangements and the difference in particle size on the DKT
pattern, respectively. In particular, the significance of the fluid
inertia on the interaction of particles was addressed by Aidun
and Ding [8], who used the lattice Boltzmann method (LBM)
to simulate the sedimentation of two particles under gravity
in a vertical channel. They reported a variety of patterns of
particle motion (i.e., periodic state, chaotic state, and periodic-
doubling bifurcation) at low but finite Reynolds numbers. By
extending the range of Reynolds number, Verjus et al. [9]
revealed new features of the same sedimentation system and
established a link between the terminal Reynolds number and
the nondimensional driving force using a global diagram that
illustrates the dynamic features of particles in a direct manner.
Recently, Zhang et al. [10] reported two distinct symmetry-
breaking phenomena for the same problem, that is, an abrupt
lateral migration that gives rise to asymmetrical movement
centers and a divergent oscillation that leads to an asymmetric
oscillatory motion of particles with zero phase lag.

Apart from the fluid inertia, the wall effect [11–13], fluid
rheology [14,15], and the presence of a large number of
particles [2,16,17] may also complicate the dynamical fea-
tures of a particulate flow system, which has been previously
studied. In contrast, much less attention has been devoted
to the case of particulate flows containing unequal particles,
which has a much wider range of engineering applications.
Our recent studies [18–20] indicate that, as the two-particle
system is simple, the difference in the densities of parti-
cles may result in a richer but different set of dynamical
features than in the case of equal particles. For the settling
of two particles with different densities but the same size,
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our two-dimensional computations [18,19] reveal that there
exist two types of periodic motion depending on the Galileo
number, which have different amplitudes and frequencies with
increasing density difference between particles. In particular,
a discontinuous change in the settling velocity of particles is
seen at a critical density difference, which is associated with a
Hopf bifurcation of the particles [19]. Furthermore, numerical
studies indicate that heavy particles may change their rotation
sign, which results in an abrupt increase in the time period
of particle oscillations [19]. In contrast, it seems likely that
these discontinuous changes do not exist for a similar system
in three dimensions [20]. In addition, our recent work [20]
revealed that the extra dimension allows the spheres to move
to the diagonal or reverse-diagonal plane of a square tube at
low Galileo numbers. In particular, a quantitative comparison
between the two-dimensional and three-dimensional analysis
was presented in terms of the flow features, relative particle
trajectory, and period of particle oscillations [20]. Despite
these efforts, however, the most general case of particulate
flows containing particles with different densities and sizes
has not been studied. Therefore, this work aims to provide a
more fundamental understanding of the interaction between
two unequal particles at moderate fluid inertia. Similar to
our previous work [18,19], the two-particle system was used
here for which both the density and diameter ratios between
particles were taken into account. For this system, a “simple”
question may arise in the first place: Under what conditions
do the two particles, which are subjected to the action of
gravity, separate and settle individually? In other words, the
first problem that should be dealt with in this work is the
construction of a relationship between the particle density
ratio and particle diameter ratio, which serves as a boundary
for the settling of particles as a whole. The second, and of
course, the most important question is how two completely
different particles interact with each other in a fluid when
the inertias of both fluid and particles are significant. For
this, the combined effects of unequal density and size on the
motion of two particles in a two-dimensional channel will
be examined, and a pattern of horizontal oscillatory motion
(HOM) of particles is reported.

The remainder of this paper is organized as follows. Sec-
tion II briefly introduces the LBM and the treatment of
moving boundaries. A description of the problem is presented
in Sec. III, along with the notations used in this work. The
validation procedure is presented in Sec. IV, where the DKT
of two particles with different sizes but the same density is
realized and compared with previous numerical results. The
pattern of the HOM of particles is described in Sec. V by
highlighting the effects of the Reynolds number and walls.
Some concluding remarks are presented in Sec. VI.

II. METHOD

A. Lattice Boltzmann method

In this work, the motion of the fluid is solved through the
single-relaxation-time LBM [21]. The discrete lattice Boltz-
mann equations are

fi(x + ei�t, t + �t ) − fi(x, t ) = − 1

τ

[
fi(x, t ) − f (eq)

i (x, t )
]
,

(1)

where fi(x, t ) is the distribution function for the micro-
scopic velocity ei, and f (eq)

i (x, t ) denotes the corresponding
equilibrium distribution function. �t is the time step of the
simulation, and τ is the relaxation time related to the fluid
viscosity ν. The fluid density ρ and velocity u are determined
through the following formulations:

ρ =
∑

i

fi, ρu =
∑

i

fiei. (2)

The popular D2Q9 (i.e., nine discrete velocities in two dimen-
sions) lattice model was adopted here, whose discrete velocity
vectors are given by

ei =
⎧⎨
⎩

(0, 0), for i = 0
(±1, 0)c, (0, ±1)c, for i = 1 to 4
(±1,±1)c, for i = 5 to 8

, (3)

where �x is the lattice grid, and c = �x/�t represents the
lattice speed. Following Qian et al. [21], the equilibrium dis-
tribution functions are chosen as

f (eq)
i (x, t ) = wiρ

[
1 + 3ei · u

c2
+ 9(ei · u)2

2c4
− 3u2

2c2

]
(4)

where wi are the weights and w0 = 4/9, w1–w4 = 1/9, and
w5–w8 = 1/36. Note that for the D2Q9 model, the speed of
sound has the relation c2

s = c2/3.
By performing a Chapman-Enskog expansion, the macro-

scopic mass and momentum equations in the low Mach
number limit can be recovered,

∂ρ

∂t
+ ∇ · (ρu) = 0, (5)

∂ (ρu)

∂t
+ ∇ · (ρuu) = −∇p + ρν∇2u. (6)

The kinematic viscosity of the fluid is determined using the
equation v = c2

s (τ − 0.5)�t . For the sake of simplicity, both
the lattice grid and time step are fixed at 1 in this work;
that is,�x = �t = 1. This is common for lattice Boltzmann
simulations.

B. Boundary conditions

It is known that a special treatment for the curved boundary
is usually required to ensure the no-slip boundary condition
on the surfaces of solid particles immersed in a fluid. In this
study, an interpolation-based bounce-back scheme [22] was
employed to address this issue, which is briefly introduced
below. Note that the same scheme was used in our previous
studies [18–20].

Figure 1 presents a schematic of the bounce-back scheme
proposed by Lallemand and Luo [22]. Note that the solid
squares denote the fluid nodes located outside the curved
boundary, while the solid circles denote the solid nodes that
are inside the curved geometry. The open circle represents
the boundary node where bouncing occurs. According to
Lallemand and Luo [22], the advection (also known as “prop-
agation”) action is applied for all fluid and solid nodes after
the collision process. The distribution functions that are ad-
vected from solid nodes to fluid nodes need to be recomputed
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depending on the exact locations of the boundary (i.e., the
boundary node). To take node A as an example, the dis-
tribution function f7 is advected from node B. Therefore,
additional computation is required to update f7. In doing

so, a parameter q, given by q = |AF |/|AB|, is introduced to
determine the location of boundary node F. Subsequently, an
interpolation scheme is employed to recompute f7 according
to the surrounding nodes,

f7(A) =
{

q(1 + 2q) f5(B) + (1 − 4q2) f5(A) − q(1 − 2q) f5(C) − 2w5ρ
e5·uw

c2
s

q < 1
2

1
q(2q+1) f5(B) + 2q−1

q f7(C) − 2q−1
2q+1 f7(D) − 2w5ρ

q(2q+1)
e5·uw

c2
s

q � 1
2

. (7)

Here, uw is the velocity of the moving surface at boundary node F, as illustrated in Fig. 1. Note that the simple bounce-back
boundary is realized by Eq. (7) if q = 0.5. Readers should refer to the original paper [22] for more details.

The force and torque exerted on the solid particle by the fluid-boundary nodes are computed through a momentum exchange
scheme [22,23]. In addition, to account for the effect of a solid particle entering or leaving the fluid region, the method proposed
by Aidun et al. [24] is used to calculate the added force and torque due to the covered and uncovered fluid nodes. The motion of
a particle is determined by solving Newton’s equations using the values of net force and torque.

C. Lubrication force model

The lubrication force becomes significant when two particles come into close contact with each other. This force, generated
by the attenuation of the fluid film in the gap between the two particles, is repulsive upon approach and attractive upon separation
of the particles. However, when the gap between the two particles is of the order of one lattice grid, the lubrication force cannot
be resolved with the LBM. To address this issue, a lubrication force model proposed by Yuan and Ball [25] was adopted in the
simulations:

F lub =
{

0 h > hc

− 3
2πρν

( 2a1a2
a1+a2

)3/2( 1
h − 1

hc

)3/2
(U12 · R̂12)R̂12 h < hc

. (8)

Here, a1 and a2 are the radii of the two particles, U12 =
U1 − U2, and h = |R1 − R2| − (a1 + a2) is the distance be-
tween the particle surfaces. hc is the cutoff distance between
the particle surfaces for the added lubrication force and is
fixed at 1.5 �x in the simulations. The unit vector is defined
as follows: R̂12 = R12/|R12|. Equation (8) can be adjusted

FIG. 1. Schematic of the bounce-back scheme in the LBM pro-
posed by Lallemand and Luo [22]. Solid squares: fluid nodes; solid
circles: solid nodes; open circles: boundary nodes.

slightly to account for particle-wall collisions. In doing so,
U2 = 0 is adopted, and R2 is the corresponding point on the
wall.

III. PROBLEM DESCRIPTION

In this study, the motion of two unequal particles under
gravity in an infinite two-dimensional channel was numeri-
cally investigated. As shown in Fig. 2, two circular cylinders
with different diameters (d1 and d2) and different densities
(ρ1 and ρ2) are released to move under gravity in a vertical
channel filled with a fluid of density ρ and kinematic viscosity
ν. In the simulations, we assume that d1 > d2 and ρ1 < ρ2.
This study focuses on a pattern of particle behavior resulting
from the interaction between the two particles.

The particle positions are designated as X (horizontal) and
Y (vertical). The subscripts 1 and 2 denote the large particle
and the small particle, respectively, as depicted in Fig. 2.
The infinite channel is represented by a simulation box with
dimensions L × H . Unless otherwise stated, the width of the
channel is fixed at five times the diameter of the large particle;
that is, L = 5d1. In addition, a moving computational domain
was used to simulate an infinite channel. The upstream bound-
ary of the computational domain is 15 d1 upstream of the large
particle, whereas the downstream boundary is 20 d1 from it
(i.e., the overall channel height is H = 35d1). The normal
derivative of the velocity is zero at the downstream boundary,
and the velocity at the upstream boundary is zero.

Because the terminal velocity of particles cannot be
predicted, the velocity scale is taken as

U0 =
√(

ρ1

ρ
− 1

)
gd1, (9)
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FIG. 2. Schematic of the present system and notations used in
the simulations. Unless otherwise stated, the dimensions of the
simulation box are fixed at L × H = 5d1 × 35d1, corresponding to
a computational domain of 400 × 2800 lattice units. We assume
that d1 > d2 and ρ1 < ρ2. Initially, the large particle is placed at
(−d1, 15d1) and the small particle at (d1, 15d1).

where g is the gravitational acceleration. This reference ve-
locity is consistent with our previous work [19,20] and other
numerical studies [3]. The timescale can then be defined as
T0 = d1/U0. Moreover, the diameter of the large particle (d1)
was chosen as the length scale. This results in five dimen-
sionless parameters that are adopted to control the present
dynamical system illustrated in Fig. 2:

Diameter ratio of the particles: r = d2/d1

Density ratio of the particles: λ = ρ2/ρ1

Density ratio of the large particle to fluid: γ = ρ1/ρ

Confinement ratio: β = L/d1

Reynolds number: Re = U0d1/ν.

For a better illustration, other dimensionless parameters are
summarized as follows:

Position of the large particle: X ∗
1 = X1/d1 and Y ∗

1 = Y1/d1

Position of the small particle: X ∗
2 = X2/d1 and Y ∗

2 = Y2/d1

Relative trajectory of the particles: �X ∗ = X ∗
2 − X ∗

1 and
�Y ∗ = Y ∗

2 − Y ∗
1

Horizontal velocity of the large particle: U ∗
1 = U1/U0

Period of the particle oscillation: T ∗ = T/T0

Terminal settling velocity of the particles: V ∗
T = VT/U0

Minimum distance between the particles: D∗
P = DP/d1

Minimum distance between each particle and walls:
D∗

W1 = DW1/d1 and D∗
W2 = DW2/d1.

Note that the definition of Re is equivalent to the Galileo
number or the square root of the Archimedes number. In
addition, the following parameters are fixed in the simula-
tions unless otherwise stated: ρ = 1, γ = 1.5, d1 = 80, and
β = 5. For simplicity, these parameters are all in lattice units.

The large particle is initially placed at (–d1, 15d1) and the
small particle at (d1, 15d1), leading to a symmetrical initial
arrangement of particles, that is, [ X ∗

1 (0), Y ∗
1 (0)] = [–1, 15]

and [ X ∗
2 (0), Y ∗

2 (0)] = [1, 15].

IV. VALIDATION

The present computational code has been validated through
benchmark tests of particle motion in a fluid at finite Reynolds
numbers in our previous studies [18,19]. To further examine
the credibility of our code in dealing with the hydrodynamic
interaction between particles, the DKT of two particles with
different sizes but same density was reproduced and com-
pared with the previous numerical results [7], as illustrated
in Fig. 3. The selected physical parameters were the same as
the ones used by Wang et al. [7]; i.e., ρ = 1 g cm−3, μ =
0.01 g cm−1 s−1, d1 = 0.2 cm, d2 = 0.1 cm, and ρ1 = ρ2 =
1.01 g cm−3. The computation was performed in a box
of width × height = 2 cm × 18 cm, representing a computa-
tional domain of 500 × 4500 lattice grids. No-slip boundary
conditions were employed for all the walls. Initially, the large
particle is located at (0, 14.6 cm) and the small particle is
located at (0, 15 cm). Then, the particles are released from
rest and begin to settle under gravity. Note that the collision
strategy [26], adopted by Wang et al. [7], was also used in
the present computation to treat the close contact between
particles.

Figures 3(a) and 3(b) present the time history of the ver-
tical positions and velocities of both particles, illustrating the
well-known pattern of DKT. In comparison with the case of
identical particles, however, a significant difference is clearly
observed for the present case. After the process of “tumbling,”
the two particles depart quickly and the large particle still take
the lead as a result of the larger settling velocity [Fig. 3(b)].
Therefore, the pattern of DKT occurs only once. Moreover,
from Fig. 3, it can be seen that our results agree well with
those reported by Wang et al. [7], indicating that our code
is effective in dealing with the interaction between unequal
particles.

It is known that the initial arrangement of particles can
significantly influence the pattern of particle motion. To verify
this, additional simulations were carried out using different
initial particle arrangements. In doing so, the initial position
of the small particle is varied while that of the large particle
remains unchanged. The relative trajectories constructed by
�X ∗ and �Y ∗, reflecting the relative motion of the small
particle with respect to the large one, are presented in Fig. 4
for r = 0.3 and λ = 2.12 at Re = 50. Five sets of initial
particle arrangements were taken into account. Note that (2, 0)
represents the relative position of the small particle described
in Sec. III. It is clearly seen that all the results achieve the same
periodic solution after the initial transients die down. This
suggests that the present findings hold for a variety of initial
particle arrangements. In addition, Fig. 4 reveals a pattern of
particle motion in which the particles are seen to oscillate
horizontally when settling in the channel. This is referred to
as the pattern of horizontal oscillatory motion (HOM), which
will be explored in further detail in this paper.

Our previous studies [19,20] show that the collision strat-
egy has limited influence on the motion of particles. To add
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FIG. 3. Comparison with previous numerical results [7]: time history of (a) vertical positions and (b) settling velocities of both particles.

more credibility to the present results, additional simulations
were carried out to provide an examination of collision mod-
els, which is illustrated in Fig. 5. For the lubrication model
used here [i.e., Eq. (8)], apart from hc = 1.5, another two
values of hc (i.e., hc = 0.5 and 2.5) were adopted to check the
effects of the cutoff distance. Little discrepancy is seen in the
relative particle trajectories at the initial stage resulting from
different values of hc, as shown in Fig. 5. However, all results
converge to the same periodic solution (HOM) eventually. On
the other hand, the repulsive model was also used to handle the

FIG. 4. Effects of the initial arrangements on the relative trajec-
tory of the small particle with respect to the large one. Note that
�X ∗ = X ∗

2 − X ∗
1 and �Y ∗ = Y ∗

2 − Y ∗
1 . The parameters were chosen

as r = 0.3, λ = 2.12, and Re = 50. The particles appear as ellipses
because of the stretched coordinates.

close contact of particles in the literature. To provide a direct
comparison, the repulsive models proposed by Wan and Turek
[26] and Glowinski et al. [27] were taken into account in this
section. As seen in Fig. 5, clear but limited discrepancy exists
in the relative particle trajectories predicted by the lubrication
model [25] with respect to those obtained by the repulsive
models [26,27]. However, this discrepancy is reasonable by

FIG. 5. Examination of the effects of collision strategy on the
motion of particles. Apart from the lubrication model [25], the repul-
sive models proposed by Wan and Turek [26] and Glowinski et al.
[27] were also taken into account. The parameters are the same as
those in Fig. 4.
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FIG. 6. Dependence of λmax and λmin on the diameter ratio (i.e.,
r = d2/d1) between particles at Re = 35. The symbols represent our
simulation results, and the lines illustrate the power-law functions
derived by least-square fittings (the same as below).

recalling that different collision models are originated from
different mechanisms. For instance, the lubrication force [25]
is repulsive upon approach while attractive upon separation
of the particles. By the contrast, the repulsive force [26,27]
is always repulsive. This is why the small particle is pushed
farther away from the large particle right after the tumbling
stage for the repulsive models (see Fig. 5). More importantly,
it is seen that the same solution is reached for all models used
after the initial transients die down, indicating that the choice
of collision strategy does not essentially change the behavior
of particles.

V. RESULTS

The interaction of two unequal particles under the action of
gravity in a two-dimensional channel was numerically inves-
tigated for Reynolds numbers ranging from 10 to 50 (10 � Re
� 50) and for the diameter ratio between particles ranging
from 0.2 to 0.75 (0.2 � r � 0.75). Most simulations were
performed for a confinement ratio equal to 5 (i.e., β = 5)
and a particle-to-fluid density ratio equal to 1.5 (i.e., γ =
1.5), unless otherwise stated. Note that the unequal particles
settling in a fluid may separate because they have different
densities and sizes. To illustrate this issue, we use λmax and
λmin to identify the transition boundaries between the regimes
where the particles settle separately and the regime where the
particles interact with each other. In other words, the large
particle leaves the small particle behind at λ < λmin and the
situations flip over at λ > λmax.

A. Overview of the motion of two unequal particles

Under what conditions will the unequal particles interact
with each other all the time in the channel? This deserves
our close attention. Figure 6 shows the dependence of λmax

and λmin on the diameter ratio between particles at Re = 35.
The least-square fitting indicates that both λmax and λmin

exhibit excellent power-law relationships with r. It is seen
that according to λmax and λmin, the parameter space (r, λ)
can be clearly divided into three regimes, that is, the small
particle leaving the large particle behind (λ > λmax), the large
particle leaving the small particle behind (λ < λmin), and the

particles interacting with each other (λmin � λ � λmax). Note
that the range between λmin and λmax narrows as r increases.
It is also seen that both λmax and λmin decrease quickly as r
increases, indicating a smaller particle needs to be heavier to
settle together with a large particle. A possible explanation for
this behavior is provided as follows.

Due to the balance of gravity, buoyancy, and hydrodynamic
forces, the averaged drag coefficients of the two particles can
be formulated as follows:

C̄D1 = F̄D1

0.5ρVT
2d1

= πgd1

2VT
2 (γ − 1), (10a)

C̄D2 = F̄D2

0.5ρVT
2d2

= πgd1

2VT
2 (λγ − 1)r. (10b)

If the particles are settling together in the channel, we may
simply assume that they have similar drag coefficients. As a
result, the following formulation is obtained:

C̄D1

C̄D2
= γ − 1

(λγ − 1)r
∼ 1. (11)

It can be inferred from Eq. (11) that for a fixed γ the den-
sity ratio (λ) monotonously decreases as the diameter ratio
(r) increases, which is approximately consistent with Fig. 6.
From a qualitative viewpoint, the small particle will attain
a larger settling velocity at a larger r, which may leave the
large particle behind. Therefore, a smaller λ is needed to slow
down the small particle to make sure they settle together in the
channel, which is responsible for a smaller λmax at a larger r.
Similarly, the large particle will not leave a small particle with
increasing r behind when λ remains unchanged. The small
particle should be light enough (i.e., small λ) to make sure
that it cannot catch up with the large particle. This results in a
smaller λmin at a larger r.

The effects of the Reynolds number on λmin and λmax are
depicted in Fig. 7. Apart from Re = 35, two other sets of
Reynolds numbers, that is, Re = 10 and 50, are taken into
account. It can be seen that the power-law relationship holds
for all Reynolds numbers considered. For a fixed diameter
ratio (r), the value of λmin is smaller at a higher Reynolds
number, which is true over the entire range of r considered
here [Fig. 7(a)]. A similar behavior is visible for λmax when
r < 0.5 [Fig. 7(b)]. However, the primary mechanism is dif-
ferent. When a large particle takes the lead, the effects of
the wake behind it become significant as Re increases, giving
rise to a stronger hydrodynamic interaction at a higher Re.
Therefore, a small particle with lower density can possibly
be sucked into the wake of the large particle. This results in a
smaller λmin at a higher Re. On the other hand, when the small
particle takes the lead, the wake behind it is narrow, which
has insignificant effects on the motion of the large particle. It
is known that the drag coefficient of a particle decreases with
Re. Due to the wall effects, the settling velocity of the small
particle increases faster than that of the large particle as Re
increases. As a result, a small particle with lower density may
leave the large particle behind when the Reynolds number is
higher. This is responsible for a smaller λmax at a higher Re.
For large values of r (r > 0.5), the wall effects on the small
particle are significant as well. Therefore, the effects of Re on
λmax become negligible [Fig. 7(b)].
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FIG. 7. Effects of the Reynolds number on (a) λmin(r) and (b) λmax(r), respectively.

Figure 8 summarizes the patterns of particle motion for
the present system for 0.2 � r � 0.4 at four representative
Reynolds numbers (i.e., Re = 30, 35, 40, and 50). Note that
for each Re, the least-square fittings for both λmin(r) and
λmax(r) are indicated. According to both values of λ and
r, three types of particle pattern are identified, i.e., DKT,
VSS (vertical steady state), and HOM. Note that the DKT-
I and DKT-II are used here to denote two kinds of DKT
motion, as shown in Figs. 9(a) and 9(b), respectively. The
most significant difference between them is that a process of
“inverse drafting” occurs for the DKT-II [Fig. 9(b)]. After the
tumbling, the small particle will quickly move to a position
directly below the large one when it is heavy enough (i.e.,
large λ). As a consequence, the large particle is now located
at the wake of the small one and begins to settle with in-
creasing velocity, leading to the process of inverse drafting.
This inverse drafting has a significant influence on the settling
velocity of the particles, which will be discussed in the next
section. Moreover, the relative particle trajectories resulting
from another two initial positions of the small particle are also
shown in Fig. 9 for each case, which are clearly seen to con-
verge to its corresponding pattern when the initial transients
are passed. From Figs. 4 and 9 we may conclude that all these
patterns (i.e., DKT, HOM, and VSS) are the attractors of the
present dynamical system (Fig. 2).

It is evident from Fig. 8 that the pattern of HOM occurs
only for r ∼ 0.3 at Re � 35. In addition, Fig. 8 reveals a
vertical steady state (VSS) for r < 0.4 when the density ratio
between particles (λ) is close to λmax. Figure 10 shows the
corresponding instantaneous flow fields for both patterns. The
pattern of VSS, with the large particle directly above the small
particle, is somewhat unique because it forms a stable in-line
structure at such a close distance [Fig. 10(a)]. This could not
be possible for two identical particles because of the effects
of the wake. In fact, the pattern of VSS is only seen at small
values of r, which is similar to the HOM (Fig. 8). For large r,
the effects of the wake behind the small particle are getting
strong. The large particle may accelerate and comes close
to the small one. Therefore, neither HOM nor VSS occurs

for r � 0.4. In particular, Fig. 8 indicates that upon increas-
ing λ, the HOM may bifurcate into the VSS at low Re or
small r.

B. Features of the HOM pattern

Figure 11 presents the relative particle trajectories as a
function of the density ratio of particles (λ) for r = 0.3 at
Re = 40 and 50. Note that for each λ, the relative particle
trajectory, that is, the limit cycle constructed by �X ∗ and
�Y ∗, is shaped like a lemniscate curve with symmetry with
respect to the center line (�X ∗ = 0) in most cases where both
particles oscillate symmetrically about the channel axis (i.e.,
λ � 2.17 at Re = 40 and λ � 2.12 at Re = 50). This behavior
is quite different from the periodic motion of particles with
different densities but the same size [19] in terms of both
the shape and size of the relative particle trajectory. Figure
11 also suggests that the particles oscillate in both vertical
and horizontal directions. However, the size of the limit cycle
indicates that the amplitude of horizontal oscillations is much
larger (at least ten times) than that of vertical oscillations.
In other words, horizontal oscillation dominates the motion
of the two particles. Therefore, it is appropriate to refer to
this behavior as the pattern of horizontal oscillatory motion
(HOM).

As illustrated in Fig. 11, for each Re, the relative particle
trajectory is seen to shift downward as λ increases, with de-
creasing size of the limit cycle except for small values of λ.
This can be explained as follows. For a larger λ, the small
particle is heavier and moves farther away from the large
particle. As a result, the hydrodynamic interaction between
them becomes weaker, leading to a smaller amplitude of os-
cillations. Upon further increasing λ, the particles may reach
a steady state (VSS) instead of oscillating at low Re or small
r, as indicated by Fig. 8, which is in accordance with the
observation made in Fig. 11.

The phase diagrams constructed by X ∗
1 and X ∗

2 are pre-
sented in Fig. 12 for the same Reynolds numbers as in Fig. 11.
Also shown in Fig. 12 is the Strouhal number (St = f d1/U0,
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FIG. 8. Phase diagram for the parameter space (r, λ) at different Reynolds numbers: (a) Re = 30, (b) Re = 35, (c) Re = 40, and (d)
Re = 50. Three types of particle motion are identified: DKT (drafting, kissing, and tumbling), VSS (vertical steady state), and HOM (horizontal
oscillatory motion).

where f is the frequency of particle oscillations) for each
λ. It can be seen that for each λ, the amplitude of X ∗

1 is
larger than that of X ∗

2 , reflecting the fact that the large particle
always oscillates more strongly. This tendency becomes more
noticeable as λ increases. For instance, the amplitude of X ∗

1 is
nearly 20% larger than that of X ∗

2 for λ = 2.12 at Re = 50.
This value becomes nearly 90% for λ = 2.17 at the same
Re, as shown in Fig. 12(b). In particular, for both Reynolds
numbers, the oscillations of the two particles become nearly
out of phase at large values of λ, suggesting that the large
particle moves to its rightmost position when the small one
moves to its leftmost position and vise versa. In comparison
with the amplitude of oscillations, the Strouhal number shows
an opposite trend upon increasing λ.

As is known, the particles settling in a narrow channel
may interact with each other as well as with the channel
walls. To illustrate this the minimum distances between each
particle and walls (D∗

W1 and D∗
W2) at different density ratios

(λ) are compared with those between the particles (D∗
P) in

Fig. 13. According to Fig. 11, as λ increases the particles
are getting further apart from one another, resulting in a
larger D∗

P at a larger λ. Similarly, both D∗
W1 and D∗

W2 are
seen to monotonously increase with λ for both Reynolds
numbers shown in Fig. 13. Furthermore, it is shown that
for a fixed λ the large particle always moves closer to the
walls (D∗

W1 < D∗
W2) when both particles oscillate symmet-

rically with respect to the channel axis (i.e., λ � 2.17 at
Re = 40 and λ � 2.12 at Re = 50). More importantly, it is
seen that either one of D∗

W1 and D∗
W2 is considerably larger

than D∗
P irrespective of λ, suggesting that for the pattern of

HOM the hydrodynamic interaction between the particles is
stronger as compared with that between the particles and
walls.

To further shed light on the pattern of HOM, the maximum
horizontal velocity of the large particle (|U ∗

1 |M) as a function
of λ is shown in Fig. 14 for Re = 35, 40, and 50. The value of
|U ∗

1 |M may be considered evidence of the intensity of particle
oscillations. As shown in Fig. 14, for each Re, the value of
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FIG. 9. Time-series snapshots of the relative motion of the particles showing different patterns for r = 0.3 at Re = 35: (a) DKT-I (λ =
1.85), (b) DKT-II (λ = 2.15), and (c) VSS (λ = 2.3). The snapshots are captured every 1000 time steps. Also shown are the relative particle
trajectories resulting from another two initial positions of the small particle for each pattern.

|U ∗
1 |M seems to decrease linearly as λ increases except for

small λ, which is consistent with Fig. 11. It is known that a
single particle settling in a fluid may oscillate horizontally ow-
ing to the occurrence of vortex shedding when the Reynolds
number is high enough. To provide a comparison, additional
simulations were conducted for the settling of the large par-
ticle alone in the same channel at much higher Reynolds
numbers (i.e., Re = 100, 120, and 150). The corresponding

results are compared with those obtained from the HOM in
Fig. 14. It is clearly seen that the large particle gains a larger
oscillatory velocity for almost all cases of the HOM. The
hydrodynamic interaction induced by a small particle gives
rise to the strong oscillations of the large particle.

It can be seen from Fig. 8 that for a fixed diameter ratio
(r), the particles can exhibit different patterns of motion as
λ increases from λmin to λmax. To illustrate this, the terminal

FIG. 10. Flow features for the patterns of (a) VSS (r = 0.25 and λ = 2.65) and (b,c) HOM (r = 0.3 and λ = 2.12) at Re = 50. For
the pattern of HOM, that is, (b,c), the results are chosen at the times when the large particle reaches its leftmost and rightmost positions,
respectively.
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FIG. 11. Limit cycles constructed by �X ∗ and �Y ∗ (i.e., the relative particle trajectories) as a function of λ for r = 0.3 at (a) Re = 40 and
(b) Re = 50, respectively.

FIG. 12. Limit cycles constructed by X ∗
1 and X ∗

2 as a function of λ for r = 0.3 at (a) Re = 40 and (b) Re = 50, respectively. Also shown
in the figure is the Strouhal number (St = f d1/U0, where f is the frequency of oscillations) for each λ.

FIG. 13. Minimum distances between each of the particles and walls (D∗
W1 and D∗

W2) at different λ vs minimum distances between the
particles (D∗

P) for (a) Re = 40 and (b) Re = 50, respectively.
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FIG. 14. Maximum horizontal velocities of the large particle
(|U ∗

1 |M) as a function of λ for r = 0.3 at different Reynolds numbers.
The corresponding results for the settling of a single particle (i.e., the
large particle alone) at Re = 100, 120, and 150 are also indicated to
provide a comparison.

settling velocity of the particles (|V ∗
T |) as a function of λ for

r = 0.3 is shown in Fig. 15 for Re = 35, 40, and 50. Note
that |V ∗

T | is averaged over time when the particles reach a
statistically stationary state. As shown in Fig. 15, the entire
sequence of transitions is clearly seen. Three regions can be
identified according to the value of λ: DKT-I, DKT-II, and
HOM. In comparison with the DKT-I, the inverse drafting
induces a sudden increase in the settling velocity of the par-
ticles for the DKT-II (see also Fig. 9). The primary reason is
that the particles experience a smaller drag when they form
an in-line structure along the direction of gravity. More im-
portantly, upon increasing λ, the DKT-II may bifurcate into
another pattern of particle motion (i.e., the HOM), along with
a second sudden increase in the settling velocity (Fig. 15). The
reason for this is the same as above. Similar to Fig. 14, the
settling of a single particle (i.e., the large particle alone) was
also considered to provide a comparison, for which the values
of |V ∗

T | at the same Reynolds numbers (i.e., Re = 35, 40, and

FIG. 15. Terminal settling velocities of the particles (|V ∗
T |) as a

function of λ for r = 0.3 at different Reynolds numbers showing
the entire sequence of transitions (i.e., DKT-I → DKT-II → HOM).
Also shown in the figure are the corresponding results of a single
particle (i.e., the large particle alone) at the same Reynolds numbers.

FIG. 16. λ ranges (λC1 � λ � λC2) for the occurrence of HOM
at different confinement ratios (β = 3.5–12).

50) are indicated in Fig. 15. It is interesting to note that the fol-
lowing relationship holds for every Re considered: |V ∗

T |HOM >

|V ∗
T |DKT-II > |V ∗

T |Single > |V ∗
T |DKT-I. Note that |V ∗

T |Single refers
to the case of a single particle. The pattern of HOM, with
the large particle directly over the small particle, results in
a settling velocity that is more than 20% larger than that of a
single particle.

C. Effects of the confinement ratio

The pattern of HOM is clearly a combined effect of the
hydrodynamic interaction between particles and the particle-
wall interaction. The wall effects may be crucial to the pattern
of HOM, which were examined by varying the confinement
ratio (β) in this work. For simplicity, the Reynolds number
and the diameter ratio are fixed; that is, Re = 50 and r = 0.3.
The phase diagram for the parameter space (β, λ) is presented
in Fig. 16.

It is found that the pattern of HOM exists for a wide range
of β, that is β = 3.5–12, as shown in Fig. 16. For narrow
channels (i.e., β � 4.5), the transition from DKT-I to HOM
is observed at λ = λC1, which differs from that for wide chan-
nels (see also Fig. 15). In addition, for β > 4, the particles
settle separately in the channel at λ > λC2, indicating that

FIG. 17. Relative particle trajectories (i.e., the limit cycles con-
structed by �X ∗ and �Y ∗) at different confinement ratios (β =
5.5–9.5) for λ = 2.3.
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FIG. 18. Instantaneous vorticity contours for λ = 2.3 at different confinement ratios: (a) β = 5.5, (b) β = 7.5, and (c) β = 9.5. All results
are chosen when the large particle reaches its leftmost position.

λC2 = λmax. By contrast, a Hopf bifurcation occurs at λ = λC2

for β � 4, leading to the pattern of VSS at λ > λC2.
An increasing λ range for the HOM is seen as the con-

finement ratio increases when β � 7.5. However, the opposite
trend is observed for β > 7.5. In particular, Fig. 16 shows
an abrupt decrease in the λ range at a critical confinement
ratio (β ≈ 7.5), suggesting that the particles may interact
with each other in a different manner for β > 7.5. To gain
insights into this issue, the relative particle trajectories as
well as the instantaneous vorticity contours for β = 5.5–9.5
are shown in Figs. 17 and 18, respectively. The density ratio
between particles was chosen as λ = 2.3. The size of the limit
cycle monotonously increases with β (Fig. 17), suggesting
that the particles oscillate more strongly in a wider channel
because of the decreasing wall effects. Both Figs. 17 and
18 reflect the fact that the small particle gets closer to the
large one at a larger β. However, it appears that no sudden
change occurs in the relative particle trajectory of the par-
ticles when the confinement ratio β varies from 5.5 to 9.5
(Fig. 17).

The situation becomes different for the terminal veloc-
ity (|V ∗

T |) and the period of particle oscillations (T ∗), as
shown in Fig. 19. The same density ratio as Fig. 17 was
chosen. It seems that the value of |V ∗

T | increases linearly as
β increases [Fig. 19(a)]. This is reasonable because the wall
effects become weaker in a wider channel (see also Fig. 18).
In particular, a sudden change in |V ∗

T | is visible at β ≈ 7.5,
leading to very different slopes for β < 7.5 (slope ≈ 0.027)
and β > 7.5 (slope ≈ 0.014), respectively. This suggests that
the terminal velocity of the particles increases at a much lower
speed in wide channels (i.e., β > 7.5). The sudden change in
|V ∗

T | is consistent with that seen in Fig. 16. Similar behavior is
observed for the period of particle oscillations [Fig. 19(b)] ex-
cept that a larger slope (slope ≈ 0.455) was obtained for β >

7.5 than that (slope ≈ 0.294) for β < 7.5, suggesting that the
frequency of particle oscillations decreases at a higher speed
when β > 7.5. This is responsible for the sudden change in
the terminal velocity of the particles [Fig. 19(a)]. It is known
that the particles may acquire a larger settling velocity if they
stay close to the channel axis owing to a smaller drag. The

FIG. 19. Linear relationships of (a) the terminal velocity of particles and (b) the period of particle oscillations with the confinement ratio
for λ = 2.3.
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FIG. 20. Phase diagram for the particles in the parameter space
(γ , λ) at Re = 40. For small γ (γ � 1.5), the sequence of “DKT-I →
DKT-II → HOM” is seen. For intermediate γ (1.7 � γ � 2.2),
the sequence of “DKT-I → DKT-II → HOM → VSS” is seen. For
large γ (γ � 2.3), the pattern of HOM cannot be seen.

larger the value of T ∗, the more time the particles stay away
from the channel axis.

D. Effects of the particle-to-fluid density ratio

This section examines the effects of the density ratio be-
tween the large particle and fluid (i.e., γ = ρ1/ρ). As is
known, the value of γ represents the inertia of the particles,
which deserves much attention as well in this study. For sim-
plicity, the Reynolds number and the diameter ratio are fixed;
that is, Re = 40 and r = 0.3. In addition, the computations
were performed in a 5 d1 channel. The phase diagram for the
parameter space (γ , λ) is presented in Fig. 20 for the range of
γ between 1.05 and 2.5(1.05 � γ � 2.5).

The effects of the particle-fluid density ratio (γ ) on the
particle motion are significant, as shown in Fig. 20. For
small γ (γ � 1.5), the sequence of transitions (i.e., DKT-I →
DKT-II → HOM) is seen as λ varies from λmin to λmax. For

intermediate γ (1.7 � γ � 2.2), the pattern of HOM bifur-
cates into the VSS when λ is close to λmax. However, the
transition from the DKT-II to VSS is seen for large γ (γ �
2.3) through a Hopf bifurcation. Therefore, the pattern of
HOM does not occur for γ � 2.3. This is reasonable because
the inertia of the particles becomes so strong at large γ that
the oscillations are ceased. In other words, the wake cannot
induce the oscillatory motion of particles that are too heavy.

In particular, either one of λmax and λmin exhibits an ex-
cellent power-law relationship with the particle-fluid density
ratio γ , which is similar to Fig. 6. It is also interesting to find
that both λmax and λmin approach 1 at γ = 1, which corre-
sponds to the case of neutrally buoyant particles. A significant
difference between Figs. 6 and 20 is that either one of λmax and
λmin increases as γ increases. For this a possible explanation is
provided as follows. From Eq. (11) the following formulation
is easily obtained:

r ∼ γ − 1

λγ − 1
. (12a)

As a reminder, r and λ denote the diameter and density ra-
tios between the particles, respectively; i.e., r = d2/d1 and
λ = ρ2/ρ1. Then, the relationship between λ and γ can be
achieved:

λ ∼ 1

r

(
1 − 1 − r

γ

)
. (12b)

Note that r < 1 holds for all cases studied. According to
Eq. (12b), the value of λ monotonously increases as γ in-
creases when the diameter ratio r is fixed. This is in accord
with the observation made in Fig. 20.

Figures 21(a) and 21(b) present the relative particle trajec-
tories at different λ for γ = 1.2 and γ = 2, respectively. It is
seen that the size of the limit cycle is much larger for γ = 1.2
[Fig. 21(a)], indicating that the particles are oscillating more
strongly at small particle inertia. Moreover, it is clearly shown
that the small particle gets much closer to the large one for
γ = 2 when they are settling in the channel [Fig. 21(b)]. The
reason is similar to the one mentioned above. The wake may

FIG. 21. Relative particle trajectories as a function of λ for (a) γ = 1.2 and (b) γ = 2, respectively, at Re = 40.
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induce the oscillations of heavy particles that are at small
distances.

VI. CONCLUSION

The settling of two unequal particles under gravity in a
two-dimensional channel was numerically studied using the
lattice Boltzmann method. Both the density ratio (i.e., λ =
ρ2/ρ1) and diameter ratio (i.e., r = d2/d1) between particles
were taken into account. Much attention was paid to a pattern
of horizontal oscillatory motion (HOM) resulting from the
interaction between the two unequal particles at intermediate
Reynolds numbers. The concluding remarks are as follows:

(1) For a fixed r, there exists a range of λ(λmin � λ �
λmax) within which the particles interact with each other all the
time in the channel. This study shows that both λmin and λmax

decrease with r following excellent power-law relationships
over the entire range of Reynolds numbers considered (10 �
Re � 50).

(2) The pattern of HOM occurs for r ∼ 0.3 at Re �
35, which is characterized by a structure with a large (but
light) particle directly above a small (but heavy) particle and
strong oscillations of both particles in the horizontal direction.
The terminal velocity of the particles illustrates the sequence
of transitions of particle motion over the range of [λmin,
λmax]; that is, DKT-I → DKT-II → HOM. Note that DKT-I
and DKT-II represent two kinds of “drafting, kissing, and

tumbling” motion. In particular, each transition is accompa-
nied by an abrupt increase in the terminal velocity. The results
also indicate that upon increasing λ, the HOM may bifurcate
into a vertical steady state (VSS) at low Re or small r.

(3) The HOM pattern exists for a wide range of con-
finement ratios (e.g., 3.5 � β � 12 at Re = 50). For narrow
channels, the transition from the DKT-I to HOM is observed,
which differs from that for wide channels (DKT-I → DKT-II
→ HOM). In particular, there is a sudden decrease in the λ

range for the occurrence of HOM at a critical β, beyond which
the particles interact differently in terms of the decreasing
slope of the terminal particle velocity and the increasing slope
of the period of oscillations.

(4) The effects of the particle-to-fluid density ratio (i.e.,
γ = ρ1/ρ) were also examined. Either one of λmin and λmax

increases with γ obeying an excellent power-law relation-
ship. For small γ (e.g., γ � 1.5 at Re = 40), the sequence
of transitions (i.e., DKT-I → DKT-II → HOM) is seen. For
intermediate γ , the HOM bifurcates into the VSS eventually.
However, the pattern of HOM may not take place at large
γ due to strong particle inertia.
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