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Tuning a magnetic field to generate spinning ferrofluid droplets with controllable speed via
nonlinear periodic interfacial waves
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Two-dimensional free surface flows in Hele-Shaw configurations are a fertile ground for exploring nonlinear
physics. Since Saffman and Taylor’s work on linear instability of fluid-fluid interfaces, significant effort has been

expended to determining the physics and forcing that set the linear growth rate. However, linear stability does
not always imply nonlinear stability. We demonstrate how the combination of a radial and an azimuthal external
magnetic field can manipulate the interfacial shape of a linearly unstable ferrofluid droplet in a Hele-Shaw
configuration. We show that weakly nonlinear theory can be used to tune the initial unstable growth. Then,
nonlinearity arrests the instability and leads to a permanent deformed droplet shape. Specifically, we show that
the deformed droplet can be set into motion with a predictable rotation speed, demonstrating nonlinear traveling
waves on the fluid-fluid interface. The most linearly unstable wave number and the combined strength of the
applied external magnetic fields determine the traveling wave shape, which can be asymmetric.
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I. INTRODUCTION

Recently, there has been significant interest in the physics
of active and responsive fluids [1,2]. For example, swimming
bacteria can take a suspension of microscopic gears out of
equilibrium and extract rectified (useful) work out of an other-
wise random system [3]. One promising approach to creating
active fluids with controllable properties and behaviors is
by suspending many mechanical microswimmers made from
shape-programmable materials [4] and actuating them with
an external magnetic field [5,6]. This actuation mechanism is
particularly enticing for biological applications due to the safe
operation of magnetic fields in the medical setting (e.g., for
targeted therapies and drug delivery in vivo) [7]. Even simpler
than a suspension of magnetically responsive mechanical mi-
croswimmers is a suspension of ferrofluid droplets, which can
also respond to an external magnetic field [8,9]. Ferrofluids
are colloidal dispersions of ferromagnetic nanoparticles in a
carrier liquid, such as water, which can be immiscible when
placed in another liquid. However, the ferrofluid droplet’s
interface motion and response to different types of external
magnetic fields is not well understood. Previous work has
addressed the linear stability of such fluid-fluid interfaces
[10,11], including stationary shapes [12] but not a droplet’s
nonlinear dynamics or controllable motion. Guided by the
well-established ability of nonlinearity to “arrest” long-wave
instabilities [13], we demonstrate, using theory and nonlinear
simulation, that it is possible to “grow” linearly unstable fer-
rofluid interfaces into well-defined permanent shapes. These
permanent shapes, which cannot be further deformed without
changing the forcing of the system, can then be considered
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as solitary waves, in the sense of a “localized wave that
propagates along one space direction only, with undeformed
shape” [14, p. 11]. Importantly, unlike previous work dis-
cussing traveling waves on a ferrofluid interface in a Cartesian
configuration [15], we analyze the fully nonlinear dynamics of
these waves in a novel configuration and thus ensure they sat-
isfy the solitary wave definition above. Specifically, we show
that the resulting coherent droplet shapes are reproducible and
controllable via an external magnetic field. These droplets can
be set into rotational motion with velocities predictable by
the proposed theory, leading to the possibility of an externally
actuated active fluid suspension.

II. GOVERNING EQUATIONS

We study the dynamics of an initially circular ferrofluid
droplet (radius R) confined in a Hele-Shaw cell with gap thick-
ness b and surrounded by air (negligible viscosity), as shown
in Fig. 1, because “[i]f any [ferro]fluid mechanics problem
is likely to be accessible to theory and to direct comparison
of theory and experiment it should be this one” [16]. Both
fluids are considered incompressible. We propose to apply the
radially varying external magnetic field

" I +H0 o 0
=—@ +—ré,.
2mr v L
——
H, H,

A long wire through the origin, carrying an electric current /,
produces the azimuthal component H,. Anti-Helmholtz coils
produce the radial component H,, where H, is a constant
and L is a length scale [12,17]. The combined magnetic
field H=H, + H, forms an angle with the initially undis-
turbed interface [18]. The droplet experiences a body force
« [M|V|H|, where M is the magnetization. To study shape
dynamics, we assume the ferrofluid is uniformly magnetized,
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FIG. 1. Schematic illustration of a Hele-Shaw cell confining a
ferrofluid droplet, initially circular with radius R. The azimuthal
magnetic field H, is produced by a long wire conveying an electric
current /. The radial magnetic field H, is produced by a pair of
anti-Helmbholtz coils with equal currents I,y in opposite directions.
The combined external magnetic field H deforms the droplet, and its
interface is given by h(6, t). In comparison, the fluid exterior to the
droplet (e.g., air) is assumed to have negligible viscosity and velocity.

M = xH, where x is its constant magnetic susceptibility. So
V|H]| # 0 is the main contribution to the body force, and the
demagnetizing field is negligible, as shown in previous work
[17-20].

Enforcing no-slip on the confining boundaries and neglect-
ing inertial terms, the confined flow is governed by a modified
Darcy’s law [17] with gap-averaged velocity:

b2
v=——-V(p-V), V.v=0, 2
12

where p is the pressure in the droplet, 7 is the ferrofluid’s vis-
cosity, W = oy |H|?/2 is a scalar potential accounting for the
magnetic body force, and w is the free-space permeability.
Here, v is the velocity field of the “inner” ferrofluid, while
the viscosity of the “outer” fluid is considered negligible (i.e.,
it is considered inviscid), so the flow exterior to the droplet
is neglected. The resulting model is thus, essentially, a one-
phase model.

At the boundary of the droplet, the pressure is given by a
modified Young-Laplace law [8,9],

p=m—%(M-ﬁ>2, 3)

where 7 is the constant surface tension, and « is the curvature
of the droplet shape. The second term on the right-hand side of
Eq. (3) is the magnetic normal traction [8,9], where fi denotes
the outward unit normal vector at the interface. This contribu-
tion breaks the symmetry of the initial droplet interface, due
to the projection of M onto i, and causes the droplet to rotate.
The kinematic boundary condition

2

b
n=——V(p—W)-h 4
v 12 (p )-f 4

requires that the droplet boundary is a material surface.

III. MATHEMATICAL ANALYSIS

We employ the weakly nonlinear approach [21] previously
adapted to ferrofluid interfacial dynamics (e.g., [12,17,18]).
The droplet interface is written as h(6,t) =R+ &£(0,1),
where

+00
£0,0)= ) &me" )

k=—00

represents the perturbation of the initially circular interface,
with complex Fourier amplitudes & () € C and azimuthal
wave numbers k € Z. The velocity potential ¢ = p — ¥ is
then expanded into a Fourier series as

6 0.1) = quk(z)(%)'k‘e"ke, ©6)

k0

and ¢ is expressed in terms of & through the kinematic
boundary condition (4). Substituting Egs. (5), (6), and (3) into
Eq. (2), keeping only terms up to second order in &, we find
the dimensionless equations of motion (k # 0):

& = A&+ Y Fk. KDeubiy + Gl KDk, ()
k'#£0

The mode-coupling functions in Eq. (7) are given by

k| | Npa
Fk,k)=— 3— xk'(k—K
(k,K) = 2} =13 = 2k (k= K]
+Ng {1 + x[K'(k — k') + 11}
1 k/ / ZXV NBaNBr e/
(8a)
1
Gk, k') = E[(Sgn(kk’) — DIkl =11, (8b)
where sgn(x) = x/|x| for x # 0 and sgn(0) = 0.
From mass conservation, & =—>",_, |&|*/R ¥Vt > 0.
Here,
k| 2N
ARy = 5 (1= ) = =22 k] + 21 + XONeel K|
surface tension
2 x~/NgaNg;
_ Mik']d )
R2
denotes the (complex) linear growth rate, and
poxI? poxHGL
Np, = ———, N, = ———— 10
BT 8L B 27 (10)

are the magnetic Bond numbers quantifying the ratio of az-
imuthal and radial magnetic forces to the capillary force,
respectively. Terms multiplied by y arise from the magnetic
normal stress. The time and length scales used in the nondi-
mensionalization are 12nL3/th?* and L, respectively.

IV. LINEAR REGIME

First, consider Eq. (7), neglecting quadratic terms in &,
then Re[A (k)] = A(k) governs the exponential growth or de-
cay of infinitesimal perturbations. For A(k) > 0, the interface
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is unstable. Specifically, Eq. (9) indicates that the radial
magnetic field term o (1 + x)Np; is destabilizing, while the
azimuthal term o Np, and surface tension are stabilizing. The
most unstable mode &, solves dA(k)/dk = 0O:

1 2Nga
ky = 3 1 - R +2(1 + x)NgR? |. (11)

This wave number characterizes the dominant |k, |-fold sym-
metry of a pattern. Note that the normal stress from the
azimuthal magnetic field does not contribute to the linear
dynamics.

The phase velocity of each mode,

vp = —Im[A(K)]/k = 2x/Ng:Ng:k/R*  (12)

in the linear regime, is set by Im[A (k)]. A periodic shape on
[0, 27r] forms a closed curve, meaning wave propagation is
manifested as rotation of the droplet. Motion is caused by the
magnetic normal stresses arising from the combined magnetic
field. Intuitively, from vector projection we observe that only
the combined azimuthal and radial magnetic field can break
the symmetry and cause a force imbalance leading to motion.
This linear analysis indicates that perturbations of the droplet
interface can propagate (and, since v, = v,(k), they also ex-
perience dispersion). Such wave packets will either decay or
blow up exponentially according to the sign of A(k). However,
this is not the whole story, and nonlinearly stable traveling
shapes exist, as we now show.

V. NONLINEAR REGIME

To demonstrate the possibility of nonlinear traveling
waves in this system, we numerically solve the weakly
nonlinear mode-coupling equations (7) for five modes (i.e.,
k,2k,...,5k). The fundamental mode k = 7 is chosen to
allow propagating solutions over a wider swath of the
(NBa, Np:, ki) space (compared to choosing k < 7), while
only requiring modest spatial resolution for simulations (com-
pared to k > 7). We verified that the amplitudes |c,| and
phases Z[c,] of modes saturate at late times, leading to perma-
nent propagating profiles with &,;(t) = c,e™“*” (see below).

Next, we perform fully nonlinear simulations to validate
the weakly nonlinear predictions. The vortex-sheet method is
a standard sharp-interface technique for simulating dynamics
of Hele-Shaw flows [22]. It is based on a boundary integral
formulation in which the interface is formally replaced by
a generalized vortex sheet [23] with a distribution of vor-
tex strengths y(s,t), where s is the arc length coordinate.
We adapt this approach to handle ferrofluids under imposed
magnetic fields. First, we express the velocity of the inter-
face solely in terms of the interface position. To do so, it is
convenient to identify the position vector in R? with a scalar
z(s,t) € C (* denotes complex conjugate) [23-25]. Second, to
advance the interface, we solve the dimensionless equations

._ v y(s',1) ,
4= "5 Vo ?gz(s,t)—z(s/,t)ds’ (132)
R g -,
2 2mi z(s,t) —z(s', 1)
+[r(s, 1) = (M- 0> — W], (13b)

iteratively for the velocity z,, where (-), = d(-)/0t, () =
d(-)/ds, i=+/—1, and P represents principal value
integration. Here, W = Np,r~2+ Np,72, and (M -f)> =
X[/ Near~ (@& - 0t) + /Ng (&, - ﬁ)]2 is the dimensionless
magnetic normal stress. Time advancement is accomplished
by the Crank-Nicolson scheme. The spatial discretization is
implemented on an array of Lagrangian points (N = 1024)
with uniform As; see Appendix B for further details, includ-
ing algorithm flowchart and grid convergence study.

VI. EVOLUTIONARY DYNAMICS

The evolution of perturbed harmonic modes &, under the
fully nonlinear simulation and the weakly nonlinear approxi-
mation are shown in Fig. 2(a). Starting from small initial val-
ues (&¢]k=7 = 0.002, &,x = 0 for n > 1) with Ng,, Ng;, R, x
set so that the most unstable mode is equal to the fundamental
mode (k,, = k = 7), they saturate at late times. The perturbed
circular interface grows exponentially in the linear regime and
then matches the weakly nonlinear approximation at interme-
diate times (¢ € [0, t,,]). The nonlinear simulations take longer
to saturate (¢ € [t,, t.]) and do so at higher final amplitudes
compared to the weakly nonlinear result. The time-domain
evolution is also shown in Fig. 2(b), evolving from a nearly
flat (unwound circular) interface into a permanent propagating
profile [26].

The rotating droplet, shown in Fig. 2(c), has a polygonal
shape with the symmetry set by the fundamental mode, k = 7.
The fully nonlinear profile has a sharper peak compared to the
weakly nonlinear approximation, which is otherwise in good
agreement. The key discovery of the present work is the stable
rotating shape, which we now seek to analyze as a nonlinear
wave phenomenon [14].

VII. WHEN DOES WEAKLY NONLINEAR STABILITY
IMPLY NONLINEAR STABILITY?

A deficiency of linear and weakly nonlinear analyses is
that they do not provide sufficient conditions for stability.
Linearly stable base states can be nonlinearly unstable [27],
and vice versa. Importantly, however, our nonlinear traveling
wave solution is a local attractor (following the terminology
from [28]); see Fig. 2(d).

Shapes in a neighborhood of the propagating profile, sub-
ject to small (& /& ,, < 1) or intermediate [&2/&/,, =
O(1)] initial perturbations, converge to it. Larger perturba-
tions (shaded region) lead to nonlinear instability of the
weakly nonlinearly stable profiles; “fingers” continue to ro-
tate and grow without bound under the effect of the radial
magnetic field o< Ng;, which increases with distance to the
center of the droplet. Convergence to the attractor is sensitive
to the initial amplitude of the first harmonic mode &;. For
the chosen parameters, A(k) > 0 and A(2k) < 0: high wave
numbers decay and the fundamental wave numbers grow
in the linear stage. Consequently, for low & /S{ and high

& /532’;, the low-wave-number modes grow and saturate, as
high-wave-number modes decay exponentially in the linear
regime. With higher initial & /S,f , the perturbed droplet will
not go through the linear regime, and the amplitudes of both

013103-3



ZONGXIN YU AND IVAN C. CHRISTOV

PHYSICAL REVIEW E 103, 013103 (2021)

tw te ty

0.06

<0.04
wr
%

0.02

(@

\
1
1
1
1
1
1
1
1
1
|
(]
(]
(
(]
(]
I
I
I
I
I
I
I
WK N
CLo0 =

@
—:i;;
o
1.5

%

¥
g =
0 0 O *—i :
0511 7 e T

0'8.00 0.25 0.50 1.50 1.75 2.00

FIG. 2. (a) The evolution of the first five harmonic modes from fully nonlinear simulation (solid) and weakly nonlinear approximation
(dashed), for N, = 1.0, Ng; = 37, R = 1, and x = 1 [same parameters for (b), (c) and (d)]. (b) The fully nonlinear evolution of the interface
from a small perturbation of the flat base state into a permanent traveling wave (rotating droplet). (¢) Comparison between the final shape from
fully nonlinear simulation (solid) and weakly nonlinear approximation (dashed). (d) Stability diagram based on the first two harmonic modes
of the final shape (marked with A) shown in (b); o (resp. x) denotes the stable (resp. unstable) initial conditions, solid (resp. dashed) curves
track the stable (resp. unstable) evolution trajectories. The unstable region is shaded, and the “f” superscript represents the final harmonic

mode amplitude.

modes will rapidly increase to create a skewed shape, with
multivalued A(0, t), for which harmonic modes can no longer
be defined. Note that Fig. 2(d) is a projection in the (&, &)
plane, where the initial values of &3, &4, &y, are set as the final
amplitudes (and phases) from the weakly nonlinear equations.
A fast Fourier transform was used to decompose the nonlinear
profile into normal modes that we plot in this figure. Note that
even though Fig. 2(a) indicates &3, makes a nontrivial contri-
bution to the final shape, while &4, &5; play a smaller role, the
projection is sufficient to conclude that the propagating wave
profile is an attractor.

VIII. PROPAGATION VELOCITY

A permanent traveling wave profile has £(6,¢1) = E(k6 —
wt), and vy = w/k is its propagation velocity. Expressing
the modes’ complex amplitudes as £,(t) = c,e”"*®" | with
constant ¢, € C that account for their relative phases, we
have v,(k,t) = nw(k)/nk = vs. The mean v, of the first five
harmonics is used to calculate v; for the fully nonlinear sim-
ulation and also v}v for the weakly nonlinear approximation.
Meanwhile, vJE = v, as given by Eq. (12).

For a quantitative comparison, three sets of parameters are
considered, fixing x = 1. Two sets (i) and (ii) are for k,, = 7,
and the variation of Np; is according to Eq. (11). A third set
(iii) explores the effect of k,, under the same linear propaga-
tion velocity v?. Figure 3(a) compares the final propagating
velocity predictions. Both v} and v}/ are in relatively good

agreement with vf for small velocities. When N, — 0 (the
magnetic field becomes radial), only a stationary (nonrotating)
droplet (v = 0) exists [12]. For higher v, the larger deviation
in the predictions highlights the importance of nonlinearity.
Nevertheless, the linear and weakly nonlinear results follow
a similar trend. Importantly, v} and v}’ help identify the key

control factors: the coupled magnetic field strength +/Np,Np;
and the radius of the initial droplet R. The salient physics un-
covered is that the propagating velocity can be noninvasively
tuned.
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FIG. 3. (a) Comparison of the propagation velocity predicted
by linear theory v_% (dashed), weakly nonlinear theory v;v
(empty symbols), and fully nonlinear simulation vf (filled sym-
bols). The circles represent results for case (i) R=1 fixed
and Ng, € [0,1073,1072,107!, 1, 3, 5], the triangles represent re-
sults for case (ii) Ng, = 1 fixed with Np, varying according to
R €[0.8,0.9,1.1,1.2], and the squares represent case (iii) k, €
[5,6,7,8,9], R=1 and Ng,, Np; determined so that vf = 85.16.
(b) The skewness Sk of the fully nonlinear profile. (c) The permanent
wave shape (only one wavelength shown).
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IX. TRAVELING WAVE SHAPE

The most unstable mode k,, sets the propagating profile,
which has a sharper peak for higher k,, [Fig. 3(c)]. To quan-
tify the shape change, we introduce the skewness Sk(t) =
(£3)/(€%)3/2, which is used to define the vertical asymmetry
of nonlinear surface water waves [29,30]; Sk > O corresponds

to narrow crests and flat troughs. Here, (-) = % 02”( -)deo.
Figure 3(b) shows that Sk (for the fully nonlinear propagation)
increases with k,,, as expected from the sharper peaks in

Fig. 3(c). This observation also explains why v% becomes a

worse approximation of v’ as k,, increases [inset of Fig. 3(a)]:
smoother peaks (lower k,,) are better captured by the linear
theory based on harmonic modes.

Figure 3(c) reveals that the wave profile for k,, = 5 (Ng, =
1.9, Ng; = 19.5) is more asymmetric than the one for k,, = 9
(NBa = 0.60, N, = 60.8). Under a purely radial magnetic
field (Ng, = 0), the stationary shape has azimuthal symmetry
[12]. For the combined magnetic field, on the other hand,
the dimensionless governing Eq. (2) and pressure boundary
condition in Eq. (3) can be rewritten as

1
v —V(p—NBa—z —NBrr2), (14)
r
Nga , . P
p=kK - [x %(ee -8)? + xNp, 2@, - B)
+2x+/NBaNg: (& - A)(&, - ﬁ)]s (15)

where & -fi = —hy /(W + hg), & -h=h/h*+ hg), and
hyg = dh/06. The magnetic scalar potential in Eq. (14) re-
sults from the body force, and the terms premultiplied by
x in Eq. (15) represent the magnetic normal stress. For a
droplet with symmetric azimuthal perturbation, the body force
alone cannot break the symmetry. Therefore the asymmetry
of shapes discussed is to be attributed to the magnetic normal
stress.

This observation can be intuitively understood by consider-
ing one wavelength of a symmetric wave form. The first three
terms on the right-hand side of Eq. (15) are equal on both sides
of the peak, while the fourth term changes at the peak due to
the sign of hy, which requires different curvatures on either
side of the peak to remain balanced. Therefore /Ng,Ng; can
be taken as the measure of the coupling effect between the
magnetic field components.

To further understand the asymmetry of propagating
shapes induced by the combined magnetic field, we extend the
parameters of case (i) to a new case (iv): k,, =7, R =1, and
Np; varying according to N, (see Fig. 4 caption). To quantify
the fore-aft asymmetry of the shape, we introduce As(t) =
(HIEP)/(E2)3? [29,30]; H[ -] is the Hilbert transform. For
As > 0, waves tilt “forward” (i.e., counterclockwise).

Figure 4(a) shows As(t) for different «/Ng,Ng;, which
quantifies the coupled field effect, starting with small symmet-
ric perturbations. For a stable case, As(¢) reaches a maximum
value (t &~ t;) during the initial unstable weakly nonlinear
growth (dark shadow region) and asymptotes to a value close
to zero (¢ > t). The differences in the final propagating pro-
file (under the same &,,) shown in Fig. 4(b) are hard to capture,

0.4 o :
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i / R
0.2 M — \
) = T rr— o ]
<t 0.0 //' 3 i
—0.2 «
V NpaNpr
4l tits L3 t4 t5 te
dz 00 0.01 0.02 0.03 | 0.04
g . ; Y 4 )
/7\ /7\ 7\ i i i

FIG. 4. (a) Time evolution of the wave profile asymmetry for
different combinations of Ng, € [0,0.1,1,3,5,6,7,8,9] and Ng;
varying so that k,, =7 for R =1. Solid curves represent stable
cases yielding a propagating profile; dashed curves represent un-
stable cases in which the profile distorts and grows without bound.
(b) Permanent wave profiles that emerge and propagating in a sta-
ble manner. (c) Stable (top, with Ng, = 1, Ng, = 37) and unstable
(bottom, N, = 8, N, = 41) evolution of the profile. The instants of
time [at which the shapes in (c) are shown] are marked with white
dots in (a), superimposed on the asymmetry profiles.

which is consistent with the observation in Fig. 3(b). For the
unstable cases, “wave breaking” occurs, which is highlighted
by a change of sign of As. Also, now, As(¢) no longer saturates
at late 7. Instead, As(t) crosses zero (att 2 t3) and approaches
a singularity. This unstable example is shown in the second
row of Fig. 4(c). As its amplitude first grows, the wave tilts
forward (¢ = 1,), but nonlinear effects restore its symmetry
(t = 13). Subsequently, the wave tilts backwards (t = t4, t5)
and its amplitude continues to grow (f = ). The calculation
of As then fails because H requires the perturbation £ (6, t) to
be single-valued in 8. The distorted wave has a wider base and
evolves into long unstable fingers.

Note that Ng,/Ng; also increases with /Ng,Ng,; for our
choices of N, and Npg;. Equation (9) shows that the radial
magnetic field is destabilizing, while surface tension (k > 2
here) and the azimuthal field are stabilizing. However, the
nonlinear simulations indicate that for the same k,,, increasing
Nga/Ng; can induce instability because it engenders a larger
vy (and As), leading to a global bifurcation with Fig. 2(d) as
one stable slice. This result has an analogy to solitary waves in
equations of the Kortweg—de Vries (KdV) type. Specifically,
initial perturbations grow, deforming a shape until nonlinear-
ity is balanced by dispersion, when a permanent wave emerges
[31]. However, depending on the form of the nonlinearity, not
all such permanent waves are stable attractors, and conditions
must be placed on the wave speed [32].

X. CONCLUSION

This study demonstrates how a perturbed circular fer-
rofluid droplet can evolve into a nonlinearly stable rotating
shape. The most unstable mode sets how perturbations evolve
into a permanent profile (and its skewness and asymme-
try). Weakly nonlinear theory, in hand with fully nonlinear
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simulations, revealed permanent rotating shapes (traveling
waves) with predictable propagation velocity. We showed how
the coupling of the magnetic field components modifies the
asymmetry and the nonlinear instability.

Although the manipulation of the linear growth rate of in-
terfacial perturbations in Hele-Shaw cells is well studied [33],
including extensions based on the weakly nonlinear expansion
from Eq. (7) [34], the control of the dynamic, fully nonlinear
patterns is not. Our approach harnesses the magnitude and
the direction of coupled magnetic fields to generate ferrofluid
droplets with well-characterized shapes and rotational speeds
by purely external means.

Open questions remain, e.g., Which fundamental modes
evolve into propagating shapes? Work on the stationary prob-
lem [17,35] gives a hint; however, for a propagating shape the
Birkhoff integral equation [36] must be solved, making an ex-
tension of [17,35] challenging. Interestingly, our simulations
also reveal that patterns predicted as stable by weakly non-
linear analysis can be unstable. In Appendix A, we provide an
example showing that perturbations with k = 4 will not evolve
into either a stationary or a propagating shape (although both
are predicted to exist by weakly nonlinear analysis).

Additionally, does this system accommodate more than
one propagating wave? If so, do such waves keep their
shapes upon collision, as with soliton interactions [31,37]?
Previous studies derived KdV equations for unidirectional
small-amplitude, long-wavelength disturbances on fluid-fluid
interfaces in Hele-Shaw [38] and axisymmetric ferrofluid con-
figurations [19,39], demonstrating the celebrated “sech?” soli-
tary wave. Instead, in our study without such restrictions, we
discovered periodic traveling nonlinear waves, which are akin
to the cnoidal solutions of periodic KdV, i.e., the fundamental
nonlinear modes (“soliton basis states”) [40]. Additionally, we
observed wave breaking [see Fig. 4(c), bottom].

Finally, it would be of interest to verify the proposed
shape manipulation strategies by laboratory experiments. Pre-
vious theoretical studies [17,41-43] suggest that many exact
stationary droplet shapes are unstable, thus their relevance
to experimental studies is limited. On the other hand, the
nonlinear simulations in our study, showing stable rotation,
pave the way for future experimental realizations.
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APPENDIX A: UNSTABLE PATTERN WITH k = 4

As mentioned in the main text, linear (or even weakly
nonlinear) stability does not always imply nonlinear stability
(see also [27]). Indeed, it is not known under what conditions
the weakly nonlinear stable droplet shapes are actually nonlin-
early stable. In the main text we presented examples for which
this implication holds true. Here, in Fig. 5 we demonstrate,
for completeness, an example to the contrary. To the best of
our knowledge, such an example has not been analyzed before
and thus remains an avenue of future work. This exploration
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FIG. 5. The unstable evolution of the first five harmonic modes
(k =4,8,12, 16, 20) from fully nonlinear simulation (solid) and
their stable evolution from weakly nonlinear approximation (dashed)
for (a) nonrotating (k,, =4, Np, =0) and (b) rotating (k,, =4,
Ng, = 1) shapes.

also requires caution to rule out physical from numerical
instability.

APPENDIX B: IMPLEMENTATION OF THE NUMERICAL
METHOD AND GRID CONVERGENCE

The principal value integration in Eqgs. (13) is performed
numerically by a spectrally accurate spatial scheme [24]:

== ,
i jkodd & T %k

(BI)

where a j subscript denotes the evaluation of a quantity at the
jth Lagrangian grid point jAs with As = L/N, L = § ds, and
N is the number of grid points. The parametrization of the in-
terface via its arc length reduces the stiffness of the numerical
problem caused by the presence of third-order spatial deriva-
tives. A rearrangement of the grid points is conducted with
cubic interpolation, after each time step, to maintain uniform
grid spacing As. The uniform arc length spacing then allows
the use of the second-order central differentiation formulas
for all derivatives. A fixed-point iteration scheme is used to

H 'yH'l l=1+1 ;

et solveEq_(130)

if 711 = 4| < tol,

;1 ‘Pan — Pyl ym — 4l ‘
!
m "

L pomtl — pon % {21;” + ;7} +% [PV™ 4+ PV™]

if |[2™* — 2™ < tol,

2L = il

FIG. 6. Flow chart of the vortex-sheet algorithm using the Crank-
Nicolson method for time advancement and fixed-point iteration for
resolving the implicit nonlinear terms.
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FIG. 7. Grid convergence study for fundamental modes k,, = 7 (black) and k,, = 9 (blue) with Ng, = 1 and N = 256 (dotted), N = 512
(dot-dashed), N = 1024 (dashed), and N = 2048 (solid). (a) Spectral energy of harmonic modes (k, 2k, 3k, ...). (b) The root-mean-square
error taking the N = 2048 solution Z as “exact.” (c) Grid convergence of the evolution of the skewness Sk(z). (d) Grid convergence of the

evolution of the asymmetry As(z).

resolve the implicit Eq. (13b) to obtain y; at each interface
point z;, as shown schematically in Fig. 6.

Time advancement (superscripts denote the time step num-
ber) is accomplished with a Crank-Nicolson scheme:

Z*n-}—l — Z*n _ ﬁ Vn+1 y_n
2 [ 27741 7 21

Ar n+l1 n
+ T[PV + PV"], (B2)

where both of the nonlinear terms y"*!/2z"+! and PV"*! are
obtained by subiteration with index m, as shown schematically
in Fig. 6. Equation (B2) converges and z'*! = z”+! when
2"+ — 2| < tol, with tol, = 0.1 max |z"| At.

A grid convergence study with four levels of the grid reso-
lution was conducted for two cases: k,, = 7 and k,, = 9 with
Npa = 1. The most frequently used case in the main text is
kn, = 7, while the sharper peaks for k,, = 9 demand on the
highest grid resolution. Figure 7(a) shows the spectral energy

content of harmonic modes (k, 2k, 3k, .. .) of the propagating
wave form, where the “piling up” near the tail on the finest
grid (N = 2048) is numerical noise. This plot supports our
decision to consider the N = 1024 grid as offering sufficient
resolution. Figure 7(b) shows the root-mean-squared error in
the shape z itself, taking Z as the “reference shape” on the
N = 2048 grid. The error decreases with grid refinement. The
error at N = 256 for k,, = 9 is not shown for the propagating
shape because the scheme is not even stable on such a coarse
mesh for this case.

Figure 7 further shows the evolution of (c) the skewness
Sk and (d) the asymmetry As. The skewness matches well
on all grids used, showing it is a well-converged quantity,
while the asymmetry is seen to be more sensitive to the grid
resolution. The differences between N = 1024 and N = 2048
are small enough so that it is safe to use N = 1024 for the
simulations reported in the main text, considering the sig-
nificantly higher computational cost incurred by using finer
grids.
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