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Rayleigh-Brillouin scattering in binary mixtures of disparate-mass constituents:
SF6-He, SF6-D2, and SF6-H2
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The spectral distribution of light scattered by microscopic thermal fluctuations in binary mixture gases
was investigated experimentally and theoretically. Measurements of Rayleigh-Brillouin spectral profiles were
performed at a wavelength of 532 nm and at room temperature, for mixtures of SF6-He, SF6-D2, and SF6-H2.
In these measurements, the pressure of the gases with heavy molecular mass (SF6) is set at 1 bar, while the
pressure of the lighter collision partner was varied. In view of the large polarizability of SF6 and the very
small polarizabilities of He, H2, and D2, under the chosen pressure conditions these low mass species act as
spectators and do not contribute to the light scattering spectrum, while they influence the motion and relaxation
of the heavy SF6 molecules. A generalized hydrodynamic model was developed that should be applicable
for the particular case of molecules with heavy and light disparate masses, as is the case for the heavy SF6

molecule, and the lighter collision partners. Based on the kinetic theory of gases, our model replaces the classical
Navier-Stokes-Fourier relations with constitutive equations having an exponential memory kernel. The energy
exchange between translational and internal modes of motion is included and quantified with a single parameter
z that characterizes the ratio between the mean elastic and inelastic molecular collision frequencies. The model
is compared with the experimental Rayleigh-Brillouin scattering data, where the value of the parameter z is
determined in a least-squares procedure. Where very good agreement is found between experiment and the
generalized hydrodynamic model, the computations in the framework of classical hydrodynamics strongly
deviate. Only in the hydrodynamic regime both models are shown to converge.
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I. INTRODUCTION

Spontaneous Rayleigh-Brillouin (RB) scattering spectra of
gaseous and fluidic media contain information on the thermo-
dynamics and the transport properties of the gases and fluids
such as thermal diffusivity, speed of sound, relaxation times
of various dynamical processes, etc. [1–3]. In addition, such
spectra provide a way to test a given theory of the energy re-
laxation dynamics in gases, and in gaseous mixtures. Theories
of RB scattering for fluids in the kinetic and hydrodynamic
regimes have been devised based on the linearized Boltzmann
equation and on linearized hydrodynamic equations, respec-
tively. Many models have already successfully explained the
scattered light spectra [4–6]. Some models have accomplished
reproducing the spectra very well, even though some discrep-
ancies with experiments still exist, while their validity is often
restricted to certain pressure regimes.

A celebrated example of a model representation of RB-
scattering profiles in the kinetic regime is the Tenti model
[7,8], which was applied to describe the spectral profiles of
a variety of gases, such as N2 [9], CO2 [10,11], and N2O [12].
However, the Tenti model was not developed for modeling the
RB spectra of mixture gases. Moreover, it requires as input
the values of the macroscopic transport coefficients, such as

heat capacity, thermal conductivity, specific heat ratio, and
shear viscosity, in general not known for composite mixtures.
And ultimately the value of the bulk viscosity, the parameter
determining internal relaxation, is typically determined via a
fitting procedure when applying the Tenti model. This makes
the Tenti model not immediately applicable to the present case
of binary mixtures.

The hydrodynamic theory of light scattering in binary
fluid mixtures was first developed by Mountain and Deutch
[13], who described the local dielectric constant fluctuations
by several linear hydrodynamic equations including the con-
tinuity equation for mass conservation, the Navier-Stokes
equation for momentum conservation, the diffusion equation,
and the energy transport equation. Later, Cohen et al. [14]
corrected some correlation functions by adding the “non-
Lorentzian” term based on the original paper of Mountain and
Deutch [13] therewith improving the light scattering models.

On the experimental side Rayleigh-Brillouin scattering
spectra of helium-xenon atomic gas mixtures were measured
by Letamendia et al. [15] at different pressures, composi-
tions, and scattering angles. The data were compared with
a complete two-component hydrodynamic theory and good
agreement was found at low molar fractions of He and at
molar fractions of He higher than a “critical” value which
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depends on the partial pressure of Xe. In addition, since the
spectral shape in He-Xe mixtures is very sensitive to the pres-
ence and magnitude of thermal-diffusion effects, the thermal
diffusion coefficient could be derived. A kinetic model was
formulated by Letamendia et al. [16] based on the general-
ized Enskog equations for a binary mixture of hard-sphere
fluids. This model gives an improvement over an existing
model derived by Boley and Yip [17], which is based on the
linearized Boltzmann equations for Maxwell molecules and
which was successful in explaining light scattering spectra
of He-Xe mixtures at very low Xe pressure and small Xe
molar fraction, conditions under which imperfect-gas effects
and thermal diffusion can be ignored.

Bonatto and Marques Jr. [18] proposed a model to describe
the spontaneous density fluctuations in a binary mixture of
monatomic ideal gases based on the Boltzmann equation, the
collision operators of which are replaced by simple relaxation-
time terms. For this model, the description of kinetic equations
for a mixture of monatomic ideal gases is characterized by
the fields of partial number density, partial flow velocity and
partial temperature, and assuming that the particles of the mix-
ture interact according to the Lennard-Jones (6−12) potential.
This model was applied to the light scattering spectrum of
a binary gas mixture passing over from a hydrodynamic to
a kinetic regime. The measurements by Gu et al. [19] of
RB spectra on mixtures of Ar-He and Kr-He, were found to
produce excellent agreement with this model. Clearly, since
noble gas atoms do not have the internal degrees of motion
that molecules have, this model is not suited for mixtures
including molecular gases.

In order to extend these studies into the molecular regime
by including intramolecular as well as intermolecular relax-
ation, RB scattering of mixtures of SF6-He, SF6-D2, SF6-H2

is measured under different conditions. A relaxation hydrody-
namic model for these mixtures of specific disparate masses is
developed, based on a generalized hydrodynamic description,
and a comparison will be made between the experimental data
and the model developed. Also a comparison will be made
with a classical hydrodynamics model.

II. RELAXATION HYDRODYNAMIC MODEL
FOR BINARY MIXTURES

In a fluid in thermal equilibrium, the intensity of the
Rayleigh-Brillouin scattered light is related to the fluctuations
of the dielectric constant δε caused by the random thermal
motion of molecules [20]. For a binary gas mixture these
fluctuations are related to the fluctuations of thermodynamic
variables as pressure p, temperature T , and mass concentra-
tion of one constituent c:

δε(r, t ) =
(

∂ε

∂ p

)
T,c

δp(r, t ) +
(

∂ε

∂T

)
p,c

δT (r, t )

+
(

∂ε

∂c

)
p,T

δc(r, t ), (1)

and the dynamic structure factor provides an expression from
which the scattering spectrum can be computed:

S(q, ω) = 2Re[〈δε(q, iω)δε(−q, 0)〉], (2)

where q represents the scattering vector with magnitude:

q = 2ki sin
θ

2
= 4πn

λi
sin

θ

2
, (3)

with ki and λi the wave vector and wavelength of the incident
light, n the refractive index, and θ the scattering angle [21].
This sets the dependence of the dynamic structure factor on
the experimental conditions.

In classical mixture theory [13,14], the macroscopic state
of a binary gas mixture is characterized by the six scalar fields
of mass density ρ = ρ1 + ρ2, flow velocity v (contributing a
field for each direction), temperature T , and mass concentra-
tion c = ρ1/ρ, where the index 1 refers to light constituent,
while the index 2 refers to the heavy one. The balance equa-
tions governing the dynamical behavior of these fields are as
follows.

(1) The continuity equation:

dρ

dt
+ ρ∇ · v = 0, (4)

(2) the momentum equation:

ρ
dv

dt
+ ∇ · σ = 0, (5)

(3) the diffusion equation:

ρ
dc

dt
+ ∇ · J = 0, (6)

(4) the energy transport equation:

ρ
dε

dt
+ ∇ · κ + σ : ∇v = 0, (7)

where σ is the pressure tensor, ε is the mixture specific inter-
nal energy, κ is the heat flux vector, and J is the diffusion
flux of the light constituent in the mixture, while d/dt =
∂/∂t + v · ∇ denotes the material time derivative. The balance
equations (4)–(7) become a closed set of field equations for
the determination of the basic fields if we provide constitutive
relations for the pressure tensor, the heat flux vector, and the
diffusion flux. In the Navier-Stokes-Fourier approximation,
these constitutive relations are [22]

(i) the Navier-Stokes law,

σ = (p − ηb∇ · v)I − 2 ηs

o

∇v, (8)

where p is the mixture pressure, ηb is the volume (or bulk)
viscosity, ηs is the shear viscosity, and

o

∇v is rate-of-shear
tensor;

(ii) the Fourier law of heat conduction,

κ = −λth∇T +
[
μ − T

(
∂μ

∂T

)
p,c

+ kT

(
∂μ

∂c

)
p,T

]
J , (9)

where λth is the thermal conductivity of the mixture, kT is the
thermal diffusion ratio [23], and μ = μ1/m1 − μ2/m2 is the
mixture chemical potential (i.e., the difference in the chemical
potential per unit mass of the two constituents);

(iii) the Fick law of diffusion,

J = −ρD12

[
∇c + kp

p
∇p + kT

T
∇T

]
, (10)
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where D12 is the diffusion coefficient and kp =
−(p/ρ2)(∂ρ/∂c)p,T /(∂μ/∂c)p,T is the so-called barodif-
fusion factor.

As pointed out in the literature [24], the description of
time-dependent processes based on the Navier-Stokes-Fourier
theory starts to deviate from experimental data at high fre-
quencies, such as in the case of Rayleigh-Brillouin scattering,
where typically hypersound frequencies come into play. In
order to overcome this situation, we may consider a general-
ization of the Navier-Stokes-Fourier constitutive relations by
assuming that the pressure tensor, the heat flux vector, and
the diffusion flux respond to gradients only after a relaxation
time has elapsed. Such type of approach was first introduced
by Cattaneo [25] to address the paradox of heat conduction in
single fluid which follows from Fourier’s law and it leads to
a constitutive equation for the heat flux vector with an expo-
nential memory kernel. In the present paper, our generalized
constitutive equations follow from the kinetic theory proposed
by Alievskii and Zhdanov [26] for a mixture of polyatomic
gases. Basing on Grad’s moment method [27], a macroscopic
state of a mixture is characterized by the basic fields of partial
mass densities, partial diffusion fluxes, partial stress tensors,
partial specific energies, and partial heat fluxes associated
with translational and internal molecular degrees of freedom.

A closed system of linear field equations for the deter-
mination of the basic fields can be obtained if we multiply
the Boltzmann equation for a polyatomic gas mixture by an
appropriate set of Hermite and internal energy polynomials,
integrate over peculiar velocities, and sum over internal states.
The collision integrals appearing in these equations can be
expressed in terms of the basic fields by considering the so-
called 17-moment approximation to the distribution function.
In the case of a binary gas mixture, where the molecular mass
ratio m1/m2 is a small parameter and the exchange of energy
between translational and internal degrees of freedom of the
molecules is a slow process, this system of field equations
becomes fully decoupled and its solution can be used to derive
the following constitutive relations:

σ =
(

p −
∫ t

0
ηb(t − t ′ )∇ · v(r, t ′ )dt ′

)
I − 2[ηs]1

o

∇v

− 2
∫ t

0
[ηs]2(t − t ′)

o

∇v(r, t ′)dt ′, (11)

κ = − [λth]1∇T −
∫ t

0
[λth]2(t − t ′)∇T (r, t ′)dt ′

+
[
μ − T

(
∂μ

∂T

)
p,c

+ kT

(
∂μ

∂c

)
p,T

]
J , (12)

J = − ρ

∫ t

0
D12(t − t ′)

[
∇c(r, t ′) + kp

p
∇p(r, t ′)

+ kT

T
∇T (r, t ′)

]
dt ′, (13)

where the generalized transport coefficients are defined as

ηb(t − t ′) = ηb
e−(t−t ′ )/τv

τv

, (14)

[ηs]2(t − t ′) = [ηs]2
e−(t−t ′ )/τ2

τ2
, (15)

[λth]2(t − t ′) = [
λtr

th

]
2

e−(t−t ′ )/τ ′
2

τ ′
2

+ [
λint

th

]
2

e−(t−t ′ )/τ ′′
2

τ ′′
2

, (16)

D12(t − t ′) = D12
e−(t−t ′ )/τw

τw

. (17)

It is clear that our generalized constitutive relations depend
on exponential memory kernels which are connected with the
characteristic relaxation times τv, τ2, τ ′

2, τ ′′
2 , and τw that give

us, respectively, a measure of time interval spent by dynamic
pressure, partial stress tensors, partial heat fluxes, and diffu-
sion flux to achieve a stationary value.

Insertion of the constitutive relations (11)–(13) into the
conservation equations (4)–(7) leads to a linear system of field
equations. As (p, c, T ) is not a set of statistically independent
variables, here it is replaced by (φ, p, c) with

φ = T − T0βT

ρ0cp
p,

where βT = −ρ−1
0 (∂ρ/∂T )p,c = T −1

0 and cp = (∂ε/∂T )ρ,c +
T0(∂ p/∂T )2

ρ,c/ρ
2
0 (∂ p/∂ρ)T,c are the thermal expansion coef-

ficient and the specific heat capacity at constant pressure,
respectively. Equilibrium values are denoted by the subscript
zero, while thermodynamics derivatives are understood to be
evaluated at equilibrium. After Fourier-Laplace transforma-
tions, this linear system for macroscopic fluctuations can be
rewritten as

Aψ(q, s) = Bψ(q, 0), (18)

where

ψ =

⎛
⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎠ =

⎛
⎜⎝

βT φ̄

c̄
p̄/p0

τs∇ · v̄

⎞
⎟⎠, (19)

and the 4 × 4 matrices A and B have the form,

A =

⎛
⎜⎜⎜⎝

s + f (s)q2 −s γ−1
γ

ρ0
kT
p0

(
∂μ

∂c

)
p,T

γ−1
γ

f (s)q2 0
kT g(s)q2 s + g(s)q2 Pkpg(s)q2 0

−sγ −sγ ρ0
kp

p0

(
∂μ

∂c

)
p,T

s γ

0 0 −q2 s + b(s)q2

⎞
⎟⎟⎟⎠, (20)

B = τs

⎛
⎜⎜⎜⎝

1 − (γ−1)
γ

ρ0
kT
p0

(
∂μ

∂c

)
p,T

0 0
0 1 0 0

−γ −γ ρ0
kp

p0

(
∂μ

∂c

)
p,T

1 0
0 0 0 1

⎞
⎟⎟⎟⎠. (21)
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TABLE I. The dynamic polarizabilities α (given in units of
10−40 C m2/V) at wavelength of 532.22 nm were calculated based
on the static polarizability and the dynamic polarizability function
[29], and the used values as cited in footnotes. Heat capacity ratio γ

for the molecular species as obtained from experiment.

Molecule α γ

SF6 5.029a 1.10d

He 0.231b 1.66e

D2 0.900c 1.40e

H2 0.911c 1.41e

aReference [30].
bReference [31].
cReference [32].
dReference [33].
eReference [34].

In the above expressions, time is given in units of the stress
relaxation time:

τs = ([ηs]1 + [ηs]2)/p = ηs/p, (22)

and length is given in units of the mixture mean free path
τs

√
p0/ρ0. The specific heat capacity ratio of the mixture,

γ = 1 + [x1/(γ1 − 1) + x2/(γ2 − 1)]−1, (23)

can be calculated from the specific heat ratios γi (as listed
in Table I) and the molar fractions xi of the constituents. In
the above matrices the following functional forms are repre-
sented:

P = 1 + γ − 1

γ

kT

kp
, (24)

g(s) = ρ0D12

ηs

τs/τw

s + τs/τw

, (25)

f (s) = [λth]1

ηscp
+

[
λtr

th

]
2

ηscp

τs/τ
′
2

s + τs/τ
′
2

+
[
λint

th

]
2

ηscp

τs/τ
′′
2

s + τs/τ
′′
2

, (26)

b(s) = 4

3

[ηs]1

ηs
+ 4

3

[ηs]2

ηs

τs/τ2

s + τs/τ2
+ ηb

ηs

τs/τv

s + τs/τv

. (27)

Note that the light scattering predictions of the classical mix-
ture theory derived by Mountain and Deutch [13] follows from
our generalized hydrodynamic model if we set the functions
appearing in matrix A as

g(s) = ρ0D12

ηs
, (28)

f (s) = [λth]1 + [
λtr

th

]
2 + [

λint
th

]
2

ηscp
, (29)

b(s) = 4

3
+ ηb

ηs
. (30)

For the computation of the RB-spectral profiles the matrix
equation can be further evaluated. This can be done, both
for the relaxation hydrodynamics model taking the functional
forms for g(s), f (s), and b(s) as defined in Eqs. (25)–(27), as
well as for the classical hydrodynamics model, by taking the
forms defined in Eqs. (28)–(30). Here we proceed by evaluat-
ing the more complex case for the relaxation hydrodynamics

model. Since the solution of Eq. (18) can be cast in the form,

ψi(q, s) =
∑

r

Qirψr (q, 0), (31)

where Q = A−1B, the correlation functions of the form
〈ψi(q, s)ψ j (−q, 0)〉 follow as

〈ψi(q, s)ψ j (−q, 0)〉 =
∑

r

Qir〈ψr (q, 0)ψ j (−q, 0)〉, (32)

where the equal-time correlation functions, which follow from
the thermodynamic theory of fluctuations, read

〈|ψ1(q, 0)|2〉 = V 2

N0

(γ − 1)

γ
, (33)

〈|ψ2(q, 0)|2〉 = V 2

N0
x1x2

(m1m2)2

(m1x1 + m2x2)4
, (34)

〈|ψ3(q, 0)|2〉 = V 2

N0
γ , (35)

where N0 is the total number of molecules in the volume V
of the scattering region. In terms of the set of dimensionless
variables (ψ1, ψ2, ψ3) we can now write the dynamic struc-
ture factor of Eq. (2) as

S(q, ω) = 2
∑

i j

(
∂ε

∂ψi

)(
∂ε

∂ψ j

)
〈|ψ j (q, 0)|2〉Re[Qi j (s = iω)].

(36)

Note that the matrix element containing ψ4 needs not be eval-
uated since it does not appear in the structure factor S(q, ω).
For a binary mixture obeying the Clausius-Mossotti relation
(see, for example, the textbook of Born [28]) we can obtain
the following relations:(

∂ε

∂ψ1

)
= −N0

V
(α1x1 + α2x2), (37)(

∂ε

∂ψ2

)
= N0

V

(m1x1 + m2x2)2

m1m2
(α1 − α2), (38)(

∂ε

∂ψ3

)
= N0

V

1

γ
(α1x1 + α2x2), (39)

in which α1, α2 are the dynamic polarizabilities of the two
molecular species at the frequency of the incident light.
The molecular polarizabilities at 532.22 nm can be found in
Table I.

This model is tightly related to the transport coefficients
of the binary mixture: the bulk viscosity ηb, the shear vis-
cosity ηs = [ηs]1 + [ηs]2, the thermal conductivity λth, the
diffusion coefficient D12, and the thermal diffusion ratio kT .
The characteristic relaxation times and the usual transport
coefficients appearing in the generalized constitutive relations
of Eqs. (11)–(13) are given by

ηb = 3

2
(γ − 1)(5/3 − γ )pτv, (40)

[ηs]1 = 5

8

x1kBT

x1�
(2,2)
11 + 2x2�

(2,2)
12

, (41)

[ηs]2 = px2τ2 = 5

8

kBT

�
(2,2)
22

, (42)
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D12 = kBT
m1x1 + m2x2

m1m2
τw = 3

16

(kBT )2(m1 + m2)

pm1m2�
(1,1)
12

, (43)

D11 = 3

8

(kBT )2

pm1�
(1,1)
11

, (44)

D22 = 3

8

(kBT )2

pm2�
(1,1)
22

, (45)

[λth]1 = 75

32

kB

m1

x1kBT

x1�
(2,2)
11 + x2

(
25
2 �

(1,1)
12 − 10�

(1,2)
12 + 2�

(1,3)
12

)
+ ρ1

[
cint
v

]
1

x1/D11 + x2/D12
, (46)

[
λtr

th

]
2 = 5

2

kB

m2
px2τ

′
2 = 75

32

kB

m2

kBT

�
(2,2)
22

, (47)

[
λint

th

]
2 = p

[
cint
v

]
2x2τ

′′
2 = ρ2

[
cint
v

]
2

x1/D12 + x2/D22
, (48)

kT = 5

2
x1x2

m1m2

(m1x1 + m2x2)2

×
(
5�

(1,1)
12 − 2�

(1,2)
12

)
x1�

(2,2)
11 + x2

(
25
2 �

(1,1)
12 − 10�

(1,2)
12 + 2�

(1,3)
12

) , (49)

kp = p
(∂μ/∂ p)c,T

(∂μ/∂c)p,T
= x1x2(m2 − m1)

m1m2

(m1x1 + m2x2)3
, (50)(

∂μ

∂c

)
p,T

= kBT

x1x2

(m1x1 + m2x2)3

(m1m2)2
, (51)

where [
cint
v

]
i
= 3

2

(5/3 − γi )

(γi − 1)

kB

mi
(52)

is the isochoric specific heat capacity associated with the in-
ternal degrees of freedom of molecules of the i component and
�

(l,r)
i j denotes the elastic Chapman-Cowling collision integrals

[35].
Since collision integrals can only be evaluated for a specific

interaction between molecules, we shall consider in this paper
the Lennard-Jones (6-12) potential function:

Ui j (r) = 4εi j

[(
σi j

r

)12

−
(

σi j

r

)6]
, (53)

where r is the distance between the centers of mass of the two
molecules, εi j the maximum depth of the potential well, and
σi j is the distance at which the potential function vanishes.
The values of the Lennard-Jones potential parameters (σi j and
εi j) adopted in this model are extracted from literature and
listed in Table II. The elastic collision integrals �

(l,r)
i j are

expressed as

�
(l,r)
i j = σ 2

i j

√
2πkBT

mi j

(r + 1)!

4

[
1 − 1

2

(1 + (−1)l )

1 + l

]
�

∗(l,r)
i j ,

(54)

where mi j = mimj/(mi + mj ) is the reduced mass, and �
∗(l,r)
i j

are the reduced collision integrals [38], which are functions of
the reduced temperature T ∗ = kBT/εi j .

A substantial simplification of our model can be achieved
if we consider a mixture of Maxwellian molecules, for which

TABLE II. Parameters for the Lennard-Jones potentials σi j and
εi j for binary gases.

σi j (nm)

SF6 He D2 H2

SF6 0.5252a 0.4298a 0.4420c 0.4396c

He 0.2576b

D2 0.2948b

H2 0.2968b

εi j/kB (K)

SF6 He D2 H2

SF6 207.7a 19.24a 42.65c 39.77c

He 10.12b

D2 39.3b

H2 33b

aReference [36].
bReference [15].
cCalculated based on the Kong rule [37].

thermal diffusion is automatically absent. However, Letamen-
dia and co-workers [15] have shown that the light scattering
spectrum in disparate-mass gas mixtures is very sensitive to
the presence and magnitude of thermal-diffusion effects. An
estimate of the contribution of thermal-diffusion effects to the
spectral shape was presented by Johnson [39], who showed
that thermal-diffusion effects are comparable in magnitude to
other first-order dissipative contributions (heavy-species heat
flux and viscosity) in disparate-mass gas mixtures

Lastly, we close this section by remarking that the cal-
culation of the spectral distribution of scattered light for a
disparate-mass gas mixture can be calculated from the dy-
namic structure factor S(q, ω), which was defined in Eq. (2),
and further evaluated in the present framework to Eq. (36) un-
der the crucial assumption that m1/m2 is small. It requires the
specification of the molecular masses, polarizabilities, specific
heat capacity ratios for all constituents, and Lennard-Jones
potential parameters for all combinations of species. Based on
these quantities we can determine (i) the transport coefficients
(41)–(51) and (ii) the relaxation times τ2, τ ′

2, τ ′′
2 , τw, and τs.

Thus, the only free adjustable parameter of our generalized
hydrodynamic description is the relaxation time τv , which
is connected to the bulk viscosity of the binary mixture via
Eq. (40). Since this is a quantity which cannot be computed
within the current framework, we define the so-called internal
relaxation number z = τv/τs representing the ratio between
the mean elastic and inelastic molecular collision frequencies.
The value of z can then be determined for each binary mixture
from the experimental input. Through the known value of
τs = ηs/p, the stress relaxation time setting the unit of time,
the z parameter is equivalent to

z = ηb

ηs

2

(γ − 1)(5 − 3γ )
. (55)

A similar, but simplified, derivation of the dynamic struc-
ture factor S(q, ω) can be performed within the framework
of classical hydrodynamics, starting from the same matrix
equation Eq. (18). In this case the matrix elements containing
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FIG. 1. Comparison of computations of the RB-scattering profiles between generalized macroscopic theory vs classical hydrodynamics
approach for mixtures with internal relaxation number z = 10 for varying scattering angles θ and the case of p = 1 bar SF6 in a mixture with
p = 1 bar of helium.

the functional forms g(s), f (s), and b(s) are then replaced by
the expressions in Eqs. (28)–(30). Rayleigh-Brillouin spectra
are computed and a comparison is made with the spectra
computed from the complex relaxation hydrodynamics model.
A comparison is made for a collisional number of z = 10
in both cases, but for a variety of scattering angles θ . This
value of z = 10 approximately corresponds to the condition
of p = 1 bar of SF6 combined with p = 1 bar of helium, for
conditions T = 295 K and λi = 532 nm (see below).

The variation of θ is included in the computations to il-
lustrate the transition from the kinetic to the hydrodynamic
regime. The uniformity parameter for the mixture equals

y = λi/n

4π sin θ/2

p

ηs
√

2kBT/m
, (56)

where p is the total pressure and the mass m is to be taken
as the mean in the mixture m = x1m1 + x2m2. This represen-
tation of y involves an explicit dependence on the scattering
angle θ , while all other parameters are kept constant in the
comparisons shown in Fig. 1. As indicated, for small scatter-
ing angles, hence in the hydrodynamic regime, both theories
match closely. Note that θ = 15◦ corresponds to y = 13.68.
However, in the kinetic regime of lower values of the unifor-
mity parameter, at θ = 60◦ corresponding to y = 3.57, strong
deviations are found.

III. EXPERIMENTAL SETUP

The experimental setup used for measuring spontaneous
Rayleigh-Brillouin scattering at a wavelength of 532.22 nm,
shown in Fig. 2, has been described previously [11]. The light
from a frequency-doubled Nd:VO4 laser (Coherent, Verdi-5),
at a power of 5 Watt and bandwidth less than 5 MHz travels

through the binary gas medium. For the scattering cell, two
Brewster-angled windows are mounted at entrance and exit
ports to reduce stray light. A pressure gauge is connected
to the cell to monitor the pressure and a temperature control
system involving PT-100 sensors. Peltier elements as well as
water cooling are used to keep the cell at a constant tempera-
ture with uncertainty less than 0.1 ◦C. The laser wavelength
is monitored by a wavelength meter (Toptica HighFinesse
WSU-30).

The scattered light propagates through a bandpass filter
(Materion, T > 90% at λi = 532 nm, bandwidth 	λ =
2.0 nm) onto a Fabry-Perot interferometer (FPI) with an ef-
fective free spectral range (FSR) of 2.9964(5) GHz and an
instrument width of σνinstr = 58.0 ± 3.0 MHz (FWHM). The
calibration methods were discussed by Gu et al. [40]. The
instrument function is verified to exhibit the functional form
of an Airy function, which may be well approximated by a
Lorentzian function during data analysis.

For the present experiments a scattering angle θ = 55.7 ±
0.3◦ is adopted, because at angles smaller than the usual
setting of θ = 90 ◦ the Brillouin side peaks become more pro-
nounced [20,21]. The angle was determined by a homemade
rotation goniometer stage, while the opening angle is less than
0.5◦, calculated from the geometry of a slit set behind the gas
cell at a certain distance from the scattering center.

RB-scattering spectral profiles were recorded by piezo-
scanning the FPI at integration times of 1 s for each step,
usually over 18 MHz, with detection of the scattered light
on a photomultiplier (PMT) after the FPI analyzer. A full
spectrum covering many consecutive RB peaks and 10 000
data points was obtained in about 3 h. The piezo-voltage scans
were linearized and converted to frequency scale by fitting
the RB-peak separations to the calibrated FSR value. The
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FIG. 2. Schematic diagram of the experimental setup for spontaneous Rayleigh-Brillouin scattering at 532 nm. A Verdi-V5 laser provides
continuous wave light at 532.22 nm, at a power of 5 Watt and bandwidth less than 5 MHz. The laser light is split into two beams. The pump
beam crosses the RB-scattering gas cell producing scattered light that is captured under an angle θ = (55.7 ± 0.3)◦. A small fraction of the
power, retained in a reference beam transmitted through M4, is used to align the beam path after the gas cell towards the detector. The scattered
light after a bandpass filter (FBW) is analyzed in a Fabry-Perot interferometer (FPI), with free spectral range of 2.9964 GHz and an instrument
linewidth of (58 ± 3) MHz, and is collected on a photo-multiplier tube (PMT). Mirrors, lenses, and diaphragm pinholes are indicated as Mi, Li,
and Di. A slit of 500 μm is inserted to limit the opening angle for collecting scattering light, therewith optimizing the resolution.

methods for producing such concatenated RB spectra have
been detailed before [40,41].

IV. RESULTS AND COMPARISON

Rayleigh-Brillouin light scattering spectra were measured
for gas mixtures consisting of SF6, the heaviest molecular
species to be put in the gas phase at high pressures, combined
with gases of the lightest molecules available. Molecular hy-
drogen (H2) and its isotopologue deuterium (D2) exhibit the
same physical and chemical properties, and only the masses
are different at 2 amu and 4 amu. As for a comparison with
helium, its mass is the same as that of D2, while the attractive
potential depth for interactions with SF6 is much smaller.
These combinations provide an interesting test ground for
verifying the relaxation hydrodynamic model put forward in
Sec. II. Foremost, the combination of SF6 with low-mass ad-
mixed gas fulfills the condition of disparate masses, m1 < m2.
The experimental conditions are chosen keeping a standard
pressure of 1 bar SF6, mixed with gases of the lighter species,
at pressures stepwise increasing from 0.5 bar to 4 bar. A list

of all pressure combinations experimentally investigated is
provided in Table III. All measurements were performed at
room temperature, at λ = 532.22 nm and θ = 55.7◦.

The measured RB light scattering spectra, shown in Fig. 3
for mixtures with He, in Fig. 4 for mixtures with D2, and in
Fig. 5 for mixtures with H2, all show the same qualitative
behavior. In general terms the light scattering of the binary
mixtures under investigation is fully dominated by the SF6

molecules. The polarizability of SF6 is extremely large, caus-
ing this molecule to exhibit a very large Rayleigh cross section
[42]. In relative terms the polarizability, and therewith the
cross section for the light collisional partners is very small,
such that these in fact only behave as “spectators,” an effect
that was also observed for Ar/He and Kr/He mixtures [19],
although not as pronounced as in the present case.

While for single-component gases the Brillouin side peaks
become more pronounced when increasing the gas pressure,
such as was observed for pure SF6 gas [43], for CO2 [11],
and for N2O [12] in the present case with increasing pressure
of the collisional partner in a mixture, the reverse is true.
The addition of light-mass constituents to the gas causes the

TABLE III. The conditions of mixture gases experimentally investigated and the fitting result of the internal relaxation number z.

SF6 He SF6 D2 SF6 H2

p (bar) T (K) z p (bar) T (K) z p (bar) T (K) z

1.032 295.0 1.007 293.2 1.002 293.2
1.033 0.512 295.1 18.73(0.83) 1.001 0.506 293.2 16.68(0.38) 1.002 0.510 293.2 20.75(0.56)
1.037 1.029 295.1 9.74(0.36) 1.002 1.001 293.2 9.91(0.13) 1.002 1.004 293.2 13.06(0.20)
1.037 2.146 295.1 2.44(0.49) 1.002 2.003 293.2 2.67(0.13) 1.002 2.007 293.2 5.28(0.06)
1.035 2.993 295.1 0.30(0.08) 1.002 3.002 293.2 1.40(0.07) 1.002 3.002 293.2 2.51(0.33)
1.037 4.084 295.1 < 0.1 1.002 4.002 293.2 1.64(0.12) 1.004 4.001 293.2 1.83(0.12)
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FIG. 3. Measured Rayleigh-Brillouin scattering profiles (black) of binary mixtures of SF6-He as measured for the various conditions as
indicated, and a comparison with the binary the mixture model (red). Also an RBS spectrum of pure SF6, at 1 bar, is shown for comparison.
Bottom graphs display the corresponding residuals. The experimental data were measured at wavelength of λi = 532.22 nm and scattering
angle of θ = 55.7◦, and these spectra are on a scale of normalized integrated intensity over one FSR.

RBS profile to exhibit less pronounced Brillouin side peaks.
A comparison with the profile measured for 1 bar of pure SF6,
as shown in the figures, demonstrates this; for the pure SF6

gas the side peaks are most pronounced. A further effect of
the addition of light-mass collision partners is the narrowing
of the composite RBS profile for increased pressures, and for
all three collision partners alike. So, even though the light
collision partners do not contribute to the light scattering
themselves, their influence as collision partner is decisive in
framing the light scattering spectrum.

The experimentally measured RB spectra for the various
gas mixtures are compared to spectra computed with the the-
oretical model for binary gas mixtures as described in Sec. II.
The dynamic structure function S(q, ω) is calculated with
input from known properties of the SF6 molecule and the light
collision partner, which is basically the dynamic polarizability
α, the heat capacity ration γ , the coefficients εi, j and σi, j that
define the intermolecular interactions via the Lennard-Jones
potential. All gas-transport coefficients needed to evaluate the
S(q, ω) function are then defined, with the exception of the
bulk viscosity of the system, which was parametrized via a
single value of z in Eq. (55). Extensive computations were
performed in which z was treated as a fitting parameter for

each individual case of binary mixture in a least squares anal-
ysis. The computed spectra for the optimized values of z are
plotted in Figs. 3–5, where also residuals between theory and
experiment are presented. A general trend can be discerned
from the comparison between experimental and theoretical
spectra. The largest discrepancies occur for the lowest pres-
sure of additions of 0.5 bar of the lighter component, with
residuals exhibiting extrema of some 10% and 15% for H2.
The agreement overall improves for the largest additions of
the low-mass scattering partners, where deviations decrease
to 2%–3%.

The computations and fitting procedures lead to a set of
values for the z parameter, the collisional number for reaching
thermal equilibrium between translational and internal ener-
gies in the binary mixtures. Results for all combinations of
heavy and light species are displayed in Fig. 6, while z values
and uncertainties are also listed in Table III. During the fitting
optimization of the z parameter it was found that the computed
spectra were found to sensitively depend on the values for
the heat capacity ratio of γ (SF6). In these procedures we
adopted the experimental value from literature and kept fixed
at γ = 1.10 [33]. Also the γ values for the light collision
partners were set to the literature values as listed in Table I.
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FIG. 4. Same as Fig. 3 now for SF6/D2 mixtures.

It is noted, that for an optimized value of γ (SF6) = 1.13, with
some differences for various cases of pressures and low-mass
mixing partners, a near to perfect match is found between
experiment and the generalized RB-scattering theory. This
may indicate that the latter is a better value for the the heat
capacity ratio, and that the present approach constitutes a
manner to determine heat capacity ratios. However, the strong
correlations between parameters z and γ (SF6) in the fitting
procedures would require further investigations.

The so-called internal relaxation number z = τv/τs char-
acterizes the ratio between elastic and inelastic molecular
collision frequencies. As a rule, inelastic collisions—that
describe the transfer of energy between translational and in-
ternal degrees of freedom—occur less frequently than elastic
collisions. In particular, if the molar fraction of the light con-
stituent increases in a disparate-mass gas mixture, the mean
number of inelastic collisions per unit of time suffered by
both constituents increases and leads to a decrease of the
internal relaxation number. Based on kinetic gas theory [44],
it may be verified that in a binary mixture of polyatomic
gases the bulk viscosity ηb of the mixture decreases as the
molar fraction of the light constituent increases. Since the
parameter z is proportional to the bulk viscosity of the gas
mixture, this fact could also explain the decrease of the in-
ternal relaxation number as we add light constituents to the
mixture.

The trends for the z parameter only show slight differences
for the three different collision partners of low mass, but in
view of the small uncertainties as resulting from the fitting
procedures (cf. Fig. 6), these small differences are significant.
In case of H2 as the collision partner the value of z is some-
what larger at a certain pressure, which is indicative of the fact
that the heavier species of He and D2 lead to more efficient
relaxation. It should be noted that the generalized hydrody-
namic model approach, presented here, makes the assumption
that the masses of heavy and light scatterers are strongly
disparate, but the mass of the light collision partners does not
enter in the model description. So, in view of the fact that the
Lennard-Jones coefficients for collisions between SF6 with H2

or D2 are very similar (cf. Table II), no difference between H2

and D2 as collision partner would be expected. While Fig. 6
compares the resulting values of z, in Fig. 7 the observed spec-
tra for collision with 1 bar of the light species are compared.
This shows that there is an observable difference for H2 and
D2 as collision partners, an effect that goes beyond the current
model description. The fact that the RB spectra with colliding
He and D2 (at 1 bar admixture) are overlapping, leads to the
same z parameter for these conditions as shown in Fig. 6. The
latter correspondence of z value for He and D2 is indicative
of the fact that the specific characteristics of the molecular
interaction, as in the εi j and σi j Lennard-Jones parameters,
only plays a marginal role. Only at the highest pressures
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FIG. 5. Same as Fig. 3 now for SF6/H2 mixtures.

there arises a deviation between He and D2 as collision
partners.

Finally, for an explicit comparison between the observed
RBS profiles and the results from the two theories, general-
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SF6-D2
SF6-H2

FIG. 6. The value of z derived from the comparison between
experimental spectra and computed spectra for generalized hydro-
dynamics, for all pressure combinations, and for the three mixtures
of SF6-He, SF6-D2, and SF6-H2. The derived uncertainties are also
indicated.

ized relaxation hydrodynamics and classical hydrodynamics,
results are plotted in Fig. 8 for the specific case of a 1:1
mixture of SF6/He at p = 2 bar. This example shows that the
generalized theory gives a superior description of the obtained
experimental results, in particular where the kinetic regime is
entered in the case of smaller value of y.
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FIG. 7. Direct comparison of experimental Rayleigh-Brillouin
scattering profiles for 1 bar SF6, admixed with 1 bar of the three
light collision partners He, H2, and D2.

013102-10



RAYLEIGH-BRILLOUIN SCATTERING IN BINARY … PHYSICAL REVIEW E 103, 013102 (2021)

-1.0 -0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0
-0.2

-0.1

0.0

0.1

0.2

exp. data
generalized theory
classical theory

R
es
id
ua
l

f (GHz)

FIG. 8. Comparisons between the measured Rayleigh-Brillouin
scattering profiles of binary mixtures of SF6-He and generalized
relaxation hydrodynamics theory as well as for the classical hydrody-
namics approach for mixtures. The experimental data were measured
with 1 bar SF6 and 1 bar He at wavelength of λi = 532.22 nm
and scattering angle of θ = 55.7◦. The theoretical spectra are, for
the purpose of comparison with experiment, convolved with the
instrumental width of 58 MHz. The spectra are plotted on a scale
of normalized integrated intensity over one FSR.

V. CONCLUSION

A relaxation hydrodynamical model for binary mixture
gases is developed that is based on the assumption that the
masses of collision partners are disparate. In the model de-
scription all macroscopic transport coefficients are computed
from the molecular interactions between heavy-heavy, heavy-
light, and light-light species from a Lennard-Jones potential
by invoking the well-tested two-parameter components for
the potentials: well depth and characteristic range. Further,
the heat capacity ratios γ = cp/cv and the dynamic polar-
izabilities α for the gas components are used. From these
inputs, the entire collisional model is produced that allows for

a computation of the dynamic structure factor S(q, ω) which
is representative of the Rayleigh-Brillouin light scattering
spectrum. However, a single ingredient is lacking to complete
the calculations: an overall relaxation parameter which can be
associated with the bulk viscosity of the binary mixture. This
is subsequently set as a fitting parameter in the description of
light scattering of binary mixtures.

The model is experimentally tested by performing mea-
surements on binary mixture gases that fulfill the assumption
of disparate masses nearly perfectly. For the heavy compo-
nent, the gas with the heaviest molecular species is chosen
that can be brought in the gas phase at high pressure: hex-
afluoride (SF6). This is combined with the lightest collision
partners available, helium gas and hydrogen gas, the latter for
two isotopologues H2 and D2. Incidentally the polarizability
of the light scattering partners is so small, with respect to
that of SF6 that they behave only as spectators in the light
scattering process; the light scattered by the light species is
negligible for the spectrum. Nevertheless the activity of the
light species as collision partners decisively alters the spectra
profiles. The Brillouin side peaks in the RB profiles, which are
known to become more pronounced at increasing pressure for
single species gases, become strongly damped and disappear
gradually with higher mole fractions of helium and hydrogen
added.

As for a final conclusion the presently developed general-
ized relaxation hydrodynamics model for Rayleigh-Brillouin
scattering in binary gases, based on an assumption of
mass-disparate constituents in the gas, provides a good rep-
resentation of experimentally observed spectral profiles for
heavy SF6 in mixtures with light He, D2, and H2. Also the
model is shown to be superior to a description in terms of
classical hydrodynamics.
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