
PHYSICAL REVIEW E 103, 013005 (2021)

Three-dimensional nonlinear dynamics of prestressed active filaments:
Flapping, swirling, and flipping

Soheil Fatehiboroujeni*

Department of Mechanical Engineering, University of California, Merced, California 95343, USA

Arvind Gopinath †

Department of Bioengineering, University of California, Merced, California 95343, USA

Sachin Goyal
Department of Mechanical Engineering, University of California, Merced, California 95343, USA
and Health Sciences Research Institute, University of California, Merced, California 95343, USA

(Received 20 May 2020; revised 22 November 2020; accepted 24 December 2020; published 25 January 2021)

Initially straight slender elastic filaments or rods with constrained ends buckle and form stable two-
dimensional shapes when prestressed by bringing the ends together. Beyond a critical value of this prestress, rods
can also deform off plane and form twisted three-dimensional equilibrium shapes. Here, we analyze the three-
dimensional instabilities and dynamics of such deformed filaments subject to nonconservative active follower
forces and fluid drag. We find that softly constrained filaments that are clamped at one end and pinned at the other
exhibit stable two-dimensional planar flapping oscillations when active forces are directed toward the clamped
end. Reversing the directionality of the forces quenches the instability. For strongly constrained filaments with
both ends clamped, computations reveal an instability arising from the twist-bend-activity coupling. Planar
oscillations are destabilized by off-planar perturbations resulting in twisted three-dimensional swirling patterns
interspersed with periodic flipping or reversal of the swirling direction. These striking swirl-flip transitions are
characterized by two distinct timescales: the time period for a swirl (rotation) and the time between flipping
events. We interpret these reversals as relaxation oscillation events driven by accumulation of torsional energy.
Each cycle is initiated by a fast jump in torsional deformation with a subsequent slow decrease in net torsion
until the next cycle. Our work reveals the rich tapestry of spatiotemporal patterns when weakly inertial strongly
damped rods are deformed by nonconservative active forces. Taken together, our results suggest avenues by
which prestress, elasticity, and activity may be used to design synthetic macroscale pumps or mixers.
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I. INTRODUCTION

The deformation of slender rods and filaments has been the
subject of enquiry since 1757 when Euler developed a frame-
work to analyze and study the instability of axially loaded
elastic columns and beams [1]. His seminal work provided
estimates of critical loads that result in elastic instabilities now
known as Euler buckling. These values were further refined
using a higher order theory by Lagrange [2,3]. Paraphrasing
Truesdell [4], the theoretical foundation of these studies and
others that followed in their wake were grounded in two main
ideas—the first by Hooke who proposed that the displacement
of an elastic body was in proportion to the load causing the
displacement, and the second by Bernoulli’s hypothesis that
the curvature in a bent rod was in proportion to the local re-
sisting moment. General principles and concepts identified in
the interrogation of Euler buckling have since played central
roles in understanding the mechanics and dynamics of slender
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structures across disciplines including structural engineering
[5–13], botany [14], and biophysics [15–22].

Over the last many decades, various linear and nonlinear
theories have been proposed to analyze elastic instabilities
for two modalities of external forces or loads. The first com-
prises conservative forces derivable from potentials such as
self-loading due to gravity [23,24]. For these, stability can
be deduced from extremizing energy functionals and taking
into account any work done at boundaries. Mathematically,
this implies that static stable shapes are derived by mini-
mizing suitably derived Hamiltonians founded on self-adjoint
formulations—an approach that has been utilized [23–25] and
discussed extensively.

More recently, attention has turned to the study of elastic
structures and systems under the action of active nonconser-
vative forces. This class includes follower forces—forces that
are always aligned along the centerline of the filament and
move with it as it deforms. The engineering motivation for
studying these came initially from problems in aeroelasticity
[26] and flow-induced energy harvesting [27]. Recent focus
has however been on problems involving follower forces in
bio-inspired filamentous systems. Motivated by the manner in
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which eukaryotic cilia and flagella oscillate with distinct fre-
quencies and wavelengths [28–35], significant work has gone
into developing synthetic mimics that generate similar func-
tionality such as locomotion, mixing, and mechanosensing
[13,36–38]. Abstracting the key components of the immensely
complicated biological systems, these analogs exploit fluid
dissipation, and elasticity combined with magnetic, electric,
or chemical fields to induce follower forces that yield buckling
and motion [39–43]. Similarly, a recent experimental setup
[44] presents how Coulomb friction may result in follower
forces and induce deformation.

In contrast to filaments subject to conservative forces, the
stability and dynamics of structures animated by follower
forces cannot be examined by energy based arguments. This
is due to the non-self-adjoint nature of the equations and
boundary conditions [23–25,45–51]. Instead, time dependent
evolution equations (dynamical equations) derived using vari-
ants of the Kirchhoff-Love theory are appropriate and have
been used to analyze the onset of instabilities and nonlinear
patterns in these systems [29,52–55]. As part of this effort,
studies have also focused on elucidating material constitutive
laws [56,57].

However, a significant fundamental gap in the literature
exists. Most current theories relate to filaments or rods that are
not prestressed (equivalently, not prestrained) and further are
only partially constrained; that is, in most cases the base state
is an uncompressed rod with a straight shape [29,52–55]. In
realistic scenarios and contexts, however, rods and filaments
that are subject to deforming forces and torques start off
from shapes that are neither planar nor stress-free. Prestressed
and twisted three-dimensional shapes abound in nature at all
scales; examples include buckling growing tendrils [58,59],
the curling of ropes hitting a surface [60], torsionally con-
strained DNA looping mediated by protein binding [61,62],
self-contact driven DNA buckling [63,64], and relaxation
of DNA supercoils by topoisomerases [65]. We note that
a prestressed filament clamped at both ends—being both
prestressed and strongly constrained at the boundaries—is ex-
pected to have different dynamics than stress-free cantilevers.

In this article, we attempt to bridge this gap in the cur-
rent research. In previous work [66], we analyzed the planar
purely two-dimensional instabilities of rods; base states and
perturbations were thus restricted to only planar forms. In our
earlier paper we analyzed the planar (two-dimensional) insta-
bility of rods with fixed-fixed boundary conditions, with only
planar base states, and subject to only planar perturbations.
In this work, we investigate the effect of follower forces on
the stability of rods with both fixed-fixed and pinned-fixed
boundary conditions, under fully three-dimensional condi-
tions. That is, the base states can be planar or twisted and
the perturbations similarly can be purely two-dimensional or
fully three-dimensional. Using detailed computations built on
the continuum nonlinear Kirchhoff-Love rod model [66], we
explore and reveal two- and three-dimensional instabilities—
flapping, swirling, and flipping—that arise when thin active
elastic filaments are subject to a competition between dissi-
pation and activity. The three-dimensional instability that we
term the swirl-flip instability and that is the dominant focus
of this paper has not been studied elsewhere, especially in the
context of actively driven filament systems. To the best of our

knowledge, a nonlinear and fully three-dimensional analysis
as ours has also not been presented.

The organization of this article is as follows. In Sec. II,
we present the continuum rod model for animated geometri-
cally nonlinear slender elastic rods also subject to fluid drag.
In Sec. III, we summarize results for filaments with planar
prestressed base states, and then we move to results for base
states that are fully three-dimensional. To isolate the effect of
boundary conditions from the role of prestress and activity,
we present here results for two practically important types
of boundary constraints—clamped-clamped rods and pinned-
clamped rods in the planar postbuckling regime. We then turn
to rods with clamped-clamped constraints in the secondary
bifurcation (bent and twisted) regime. We find that nonpla-
nar base states if activated by any nonzero follower force
give rise to a swirling (purely rotational) motion around the
end-to-end axis of the rod. In addition, we find that swirling
oscillations undergo a sudden reversal of direction, i.e., a
periodic flipping akin to the phenomena of relaxation oscilla-
tions seen in diverse fields such as lasers, cellular phenomena,
and electronic circuits [67]. We conclude in Secs. IV and V
with a summary of results, their significance, and sugges-
tions to extend current work and motivate future theoretical
work.

II. COMPUTATIONAL SCHEME: MODEL
FOR AN ACTIVE CONTINUUM ROD

A. Governing equations following the Kirchhoff approach

The continuum rod model that we use follows Kirchhoff’s
approach [68] assuming each cross section of the rod to be
rigid and is described in detail elsewhere [69]. Here we pro-
vide a summary. Note that we use the description “slender
rod” and “filament” interchangeably in what follows.

We start with a rod with length L when straight (unde-
formed) and diameter d . The rod is composed of a continuum
elastic material; the mass density (mass per unit length) is m.
Let s parametrize the arclength of the rod and thus the location
of material points along its backbone (centerline), t denote
the time, and tensor Im(s) denote the moment of inertia per
unit length. In the Kirchhoff-Love framework, the equilibrium
equations [Eqs. (1) and (2)] and the compatibility conditions
[Eqs. (3) and (4)] are

m

(
∂v
∂t

+ ω × v
)

−
(

∂f
∂s

+ κ × f
)

− fe = 0, (1)

Im · ∂ω

∂t
+ ω × Im · ω −

(
∂q
∂s

+ κ × q
)

+ f × r − qe = 0,

(2)

∂r
∂t

+ ω × r −
(

∂v
∂s

+ κ × v
)

= 0, (3)

∂κ

∂t
−

(
∂ω

∂s
+ κ × ω

)
= 0. (4)

Equations (1)–(4) encapsulate both effects of geometry as
well as the forcing driving the filament away from its straight
base shape. Geometry dictates that the centerline tangent vec-
tor is r(s, t ) and its variations along the length (∂r/∂s) capture
shear and extension. In this paper, such variations are assumed
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FIG. 1. Computational results relating to two- and three-dimensional buckling deformations of an inextensible, unshearable passive elastic
slender rod (no follower forces). The rod has undeformed length L, uniform diameter d ≡ εL with ε � 1, and is comprised of linearly elastic
material with Young’s modulus E (Table I). The rod is then prestressed by pushing the ends together. The ratio of torsional to bending stiffnesses
is A. Ensuing deformation fields are analyzed using the Kirchhoff-Love equations as in Sec. II. To specify the shape of the filament, we employ
a reference coordinate system defined by unit vectors â1, â2, and â3 as shown. Tile (a) summarizes results for a fixed-fixed (FF) boundary
condition while tile (b) summarizes results for pinned-fixed (PF) boundary conditions. (a) (i) is a schematic representations of a prestressed,
buckled fixed-fixed rod with end-to-end distance Lee < L while (b) (i) is the corresponding sketch for the pinned-fixed rod. Arclength s
parametrizes the location of Lagrangian material points in both. As illustrated in (a) (ii) and in (b) (ii), the initially straight filament buckled
to a stable, static planar shape when load on the boundary, f3(0), the component along â3, reaches the Euler buckling value. This compression
or prestress is controlled by the value of the slack 1 − Lee/L. The critical values are PFF

cr = 4πB/L2 for fixed-fixed and PPF
cr = 2.045πB/L2 for

pinned-fixed conditions. Fixing A = 0.8, we determined the evolution of static shapes as well as distribution of internal forces in the tangential
direction, f3, as a function of Lee/L for both FF and PF cases. These are shown in rows (a) and (b) (ii) and (a) and (b) (iii), respectively. The
corresponding bifurcation diagram indicating the variation in f3(0) as a function of Lee/L is shown in (a) (iv) and (b) (iv). For the specific case
of the FF filament, we find that beyond a critical value of compression (equivalently 1 − Lee/L), planar buckling shapes are not absolutely
stable; the configurations stable to both in-plane and out-of-plane disturbances are three-dimensional twisted shapes emerge. The onset of
this secondary bifurcation governed by the torsional-to-bending stiffness ratio, A, shown in (a) (iv). The two-dimensional shapes prior to the
secondary bifurcation as well as twisted shapes after secondary bifurcation are shown in (a) (ii) for the specific instance A = 0.8. The small
oscillations in (a) (iv) are numerical simulation artifacts partly due to very weakly non-quasistatic nature of the manner in which the rod
(filament) is loaded.

to be zero to ensure inextensibility and unshearability; there-
fore r becomes constant and collinear with the cross-sectional
normal vector â3 [see Fig. 1(a) (i)]. Vectors fe and qe are
the external distributed force and moment, respectively. The
spatial and the temporal derivatives in Eqs. (1)–(4) are relative
to the body-fixed frame (â1, â2, â3).

B. Constitutive laws relating bending to curvature

The unknown variables in Eqs. (1)–(4) are the vector κ(s, t )
that captures two-axis bending and torsion, the vectors v(s, t )
and ω(s, t ) that represent the translational and the angular
velocities of each cross section, respectively, and the vector
f (s, t ) that represents internal shear force and tension. For
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TABLE I. Representative numerical values for the properties of
the rod, and for the drag coefficients used in the simulations. The
density of the surrounding fluid is taken to be the density of water and
kept constant. The mass per unit length of the slender rod is assumed
to be constant as well for all our computations. Material properties
G and E are related through the Poisson ratio ν via G = E/2(1 + ν ).
Additional computations with varying ratios A ≡ B/T were further
conducted using different values of G/E obtained by varying Poisson
ratio.

Quantity Symbol Value

Bending stiffness B 29.2 × 100 N m2

Torsional stiffness T 23.3 × 100 N m2

Mass per unit length m 2.0 × 10−1 kg/m
Length L 8.0 × 100 m
Diameter d 9.6 × 10−3 m
Normal drag coefficient C⊥ 1.0 × 10−1

Tangential drag coefficient C‖ 1.0 × 10−2

Surrounding fluid density ρf 1.0 × 103 kg/m3

Surrounding fluid viscosity μ 2.5 × 10−3 Pa s

simplicity, we relate the internal moment vector q(s, t ) in the
angular momentum equation (2) to κ(s, t ) through the linear
constitutive law

q(s, t ) = B · κ, (5)

where B(s) represents the rod’s bending and torsional
stiffness.

Without the loss of generality, we choose the body-fixed
frame to coincide with the principal torsion-flexure axes of
the rod, so that the stiffness tensor B for an isotropic rod can
be expressed as a diagonal matrix

[B] =
⎡
⎣B 0 0

0 B 0
0 0 T

⎤
⎦. (6)

In Eq. (6), E is the Young’s modulus, G is the shear modulus,
and B and T are the bending and torsional stiffness, respec-
tively. The ratio of the two moduli

A ≡ T

B

serves as an independent parameter that we choose to vary
in our computations along with the magnitude of the active
force, F .

In our simulations, we kept filament geometry and material
properties constant. For a slender filament or rod with circular
cross section and uniform properties, the second moment of
area I and the polar moment of inertia J are proportional. Fur-
thermore, G and E are related through the Poisson’s ratio ν via
G = E/2(1 + ν) for a linearly elastic and isotropic material.
In addition to computations using parameters listed in Table I,
further calculations were conducted by varying the Poisson’s
ratio. For constant filament geometry (radius and length), this
amounts to changing A while keeping I and J fixed.

We are interested in general features of oscillations under
follower forces that are translatable to macroscale systems;
therefore we have chosen parameter values corresponding to
a macroscopic rod. Nonetheless, to understand how phys-

ical properties of the rod govern its mechanical response
regardless of the range of values chosen here, we work
with nondimensional parameters such as slenderness ratio,
L/d , torsion-to-bending ratio, A, and nondimensional force,
FL3/(4π2B).

C. External forces: Active forces

In addition to internal forces and torques that act on each
elemental section of the filament, we have externally exerted
forces and torques on the system. These terms could be a
consequence of boundary conditions imposed at the ends at
s = 0 and at s = L. Additionally, in the interior domain of
the filament 0 < s < L, external forces acting on segments
of the rod can arise from two independent physical processes
or actions. The first one is the active animating force treated
here as a distributed follower force that enters in (1) as the
force density (per unit length) F t . This force always acts
along the local instantaneous tangent vector, t , and is always
directed (arclength-wise) toward the boundary at s = 0. For a
straight rod this constitutes a compressive force that initiates
the buckling process. The active force thus pumps energy into
the system.

D. External forces: Fluid drag

The second type of external force we consider is dissipative
fluid drag, fM, and serves to draw and extract energy away
from the system. As a result, total external force is calculated
by fe = F t + fM. Note that in general, the resultant fluid drag
comprises both inertia forces in phase with the local flow
acceleration (the functional form as found in potential flow
theory) and drag components dependent on the relative far-
field velocity (of the form for a rigid body placed in a steady
flow). The drag component furthermore can be quadratic
(nonlinear) or linear depending on the Reynolds number char-
acterizing the flow patterns. Here, we use tractable forms for
the drag coefficients and analyze results in two complemen-
tary limits. We use the Morison drag form for the nonlinear
high Reynolds number inertially dominated limit, and Stokes
drag for the low Reynolds number viscously dominated limit.

Note that a priori we cannot know the dynamics of the rod
as it deforms and thus timescales and length scales associated
with the deformation as these are emergent properties. Since
our focus is on the activity-elasticity coupling with fluid drag
playing a purely dissipative role, it is reasonable to seek a
low-dimensional form for the fluid drag that encapsulates the
essential physics while still allowing for a tractable problem.
Thus we look for effective drag coefficients that depend on
fluid properties and the speed at which the deforming filament
or rod moves through the ambient fluid ignoring edge effects
and coarse-graining details of the fluid flow (Appendix A).
Our aim is not to solve the fully coupled nonlinear time-
dependent solid-fluid problem but to use a reduced description
of the fluid drag on the filament that allows for exploration of
the role activity plays in enabling and sustaining oscillations.

1. Quadratic Morison drag

We look at the nature and form of the fluid drag valid
typically at high swirling speeds (high Reynolds numbers)
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where the fluid drag has a complex form (Appendix A). The
Morison formula captures the hydrodynamic resistive forces
applied to cylindrical structures in oscillatory or steady flows
[70–72] reasonably well. The local drag force calculated by
the Morison equation as in (7) depends on Reynolds number
and surface roughness. To calculate the drag force fM, we here
choose to implement the equation in the form used in previous
work [66,70],

−fM
1
2ρfd

= C⊥|v × t|t × (v × t) + πC‖(v · t)|v · t|t, (7)

where ρf is the fluid density, d is diameter of the rod, t is the
unit tangent vector to centerline, and C⊥ and C‖ are the normal
and tangential components of drag coefficients, respectively.
These are chosen to be constants (please see discussion in
Appendix A that justifies this lower-dimensional form for the
purposes our our analysis).

2. Linear Stokes drag

In the limit of very low speeds characterizing the rod defor-
mation such as low swirling rates and/or bending oscillation
frequencies, the fluid resistance is primarily due to viscous
drag and without inertial components. In this limit, the drag
force per unit length of the rod (even as it is deforming and
moving) can be approximated using the resistive force theory
(see Refs. [52–55]). To leading order, the drag per unit length
may be written as a linear functional of the velocity of the rod
relative to the far-field ambient (no flow) value and takes the
form

−fS = Cnt × (v × t) + Ct (v · t)t. (8)

In this equation

Cn ≈ 4πμ

ln(L/d )
,

Ct

Cn
≈ 2.

In the Stokes limit, density does not come into the drag expres-
sion and it is instead the fluid viscosity μ that is important.

In our simulations in order to keep the simulation time
reasonable while still being able to capture relevant dynamics,
we set the viscosity of the surrounding fluid to be slightly
higher than the viscosity of the water. This is reasonable also
because the relevant situations such as in microfluidics where
our results may be applied usually involve liquids that are
polymeric with viscosities greater than that of water.

III. RESULTS: COMPUTATIONAL SIMULATIONS
AND DISCUSSION

In previous work [66], we investigated the effect of both
linear (Stokes) and quadratic (Morison) drag on planar flap-
ping of clamped rods. While the form of the drag force
has a quantitative effect on the amplitude and frequency of
two-dimensional flapping oscillations, we found that once os-
cillations were initiated, the qualitative response was similar.

In the following sections and discussions, we focus on
Morison drag, that is, the quadratic form of the drag. There-
fore, unless explicitly stated, our results are to be taken as
corresponding to this form of the fluid force. At the same
time we present results to confirm that changing the drag to

the linear Stokes form does not qualitatively change the spa-
tiotemporal patterns we observe. Specifically, transitions to
stable three-dimensional swirling and the swirl-flip transitions
we identify are independent of the precise form of the drag.

A. Solution methodology, accuracy, and convergence

To compute the numerical solution of this system, sub-
jected to necessary and sufficient initial and boundary
conditions, the generalized-α method is adopted. It is a sec-
ond order, implicit, and unconditionally stable method with
controllable numerical dissipation. Discretization parameters
used in space and time are respectively ds = 0.1 m and dt =
0.01 s. We varied the value of dt and tested for convergence.
A detailed description of this numerical scheme applied to
the rod formulation is given in [69] and references therein.
Our computational model has been validated by comparing
the critical value of the follower force in the planar cantilever
scenario with analytical results of Beck’s column [66]. In
this paper, we analyze the spatiotemporal response and long-
time stable dynamical states attained by prestressed rods with
fixed-fixed (FF) and pinned-fixed (PF) boundary conditions
subject to and animated by a uniformly distributed follower
force.

In all the computations, an initially straight cylindrical rod
is used with the properties given in Table I, chosen to represent
a soft filament. These parameters helped us run our simula-
tions in a reasonable time while still being able to capture
the complete range of dynamical response. Before applying
the distributed follower force, the prestress is generated by
axial compression of the rod that leads to buckled equilib-
rium shapes as shown in Fig. 1. Starting from a relaxed and
straight cylindrical rod, we load the filaments quasistatically
to always remain close to the equilibrium configuration. Once
the desirable level of prestress is achieved (defined in terms
of the end-to-end distance, Lee) we allow the small vibrations
generated during the quasistatic loading to decay before the
application of follower forces. The buckled shapes can be pla-
nar or out-of-plane and are described next, before exploring
the effects of follower force.

B. Buckled shapes in the absence of follower force

Figures 1(a) and 1(b) show the postbuckling equilibria
for FF and PF boundary conditions, respectively. For both
the boundary conditions, the buckling onsets in plane as the
compressive load f3(0) reaches Euler buckling load, which
is Pcr = 4πB/L2 for FF and Pcr = 2.045πB/L2 for PF con-
ditions. The compressive load f3(0) initially increases with
the prestress 1 − Lee/L in each case. ESM Movie 1 in the
Supplemental Material [73] shows the quasistatic simulation
of how the rod shapes evolve for A = 0.8.

For the FF case, however, which is torsionally constrained,
once compression increases beyond a critical limit (for ex-
ample, 1 − Lee/L ≈ 0.60 for A = 0.8), planar buckled shapes
become unstable and the rod transitions to energetically more
favorable out-of-plane configurations that allow for the par-
tial storage of strain energy in torsion [70,74]. This critical
limit of secondary bifurcation increases as the torsional-to-
bending stiffness ratio, A = T/B increases, as depicted in
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the bifurcation diagram of Fig. 1(a) (iv). Figure 1(a) (ii) for
instance shows both the stable two-dimensional shapes (for
prestress less than that required for secondary bifurcation)
as well as the fully twisted, three-dimensional stable shapes
attained after secondary bifurcation. Previous studies by one
of us have revealed (see also Appendix A, Fig. 10) that the
out-of-plane buckled shapes have smaller bending energy and
larger torsional energy in such a way that a net energetic
advantage is reached for out-of-plane configurations, as soon
as the end-to-end compression goes beyond a critical limit.

In the PF case, by contrast, which is not torsionally con-
strained, no secondary bifurcation emerges by increasing the
end-to-end compression. ESM Movie 2 in the Supplemental
Material [73] demonstrates quasistatic simulation used to gen-
erate the results for the equilibria shown in Fig. 1(b). Note that
Fig. 1(b) (iv) shows the bifurcation diagram for the PF case
with Fig. 1(b) (ii) pictorially depicting the two-dimensional
shapes that are determined via computation.

In the following sections we take a representative variety
of stable buckled configurations as base states for exploring
the dynamics under distributed follower forces with homo-
geneous intensity. In particular, we first focus on the range
of end-to-end values with planar base states in both FF and
PF scenarios for A = 0.8, i.e., the interval between points 1
and 2 in Fig. 1, bottom row (0.1 � 1 − Lee/L � 0.5). Next,
we focus on the out-of-plane buckled configurations of the
FF scenario as base states. We also investigate the effect
of A as well as overall material stiffness. The role of A is
crucial as seen in the difference in the extent to which the
three-dimensional base states curve and bend out of plane—
illustrated in Fig. 2.

C. Flapping motion of planar base states

We next examine how the level of prestress (through the
imposed value of Lee/L) and the magnitude of the active
force density F control (1) the stability of base states, and (2)
the frequency of emergent oscillations. In order to generate
the appropriate boundary conditions, we envision the rod or
filament as being constrained at the ends via two clamps (for
the FF case) or with a pin joint and a clamp (for the PF
case). By controlling the end-to-end distance Lee, we can then
first generate stable buckled shapes, and then subsequently
apply a follower force of intensity F along the local tangential
direction of the rod’s centerline.

Keeping the torsional-to-bending stiffness ratio constant
at A = 0.8, for nearly the entire range of end-to-end values
within the planar buckling regime, i.e., 0.05 � 1 − Lee/L �
0.5, our numerical analysis shows that beyond a critical
value of the follower force, Fcr, buckled shapes no longer
maintain static equilibrium, and planar oscillations—flapping
oscillations—emerge when the rod is subject to any infinites-
imal planar perturbations. This result is consistent with the
onset of Hopf bifurcation that is obtained by linear stability
analysis in the cantilever scenario [52–54,66]. ESM Movie 3
in the Supplemental Material [73] demonstrates an example
of flapping oscillations with the spatiotemporal distribution
of curvature and angular velocity in the fixed-fixed scenario.
Fast Fourier transforms (using Matlab) of the midspan planar
curvature field are used to compute the frequency of oscil-

FIG. 2. For a slender rod with fixed-fixed (FF) boundary con-
ditions, the ratio of torsional stiffness to bending stiffness, A,
determines the slack 1 − Lee/L at the onset of secondary bifurcation.
This in turn sets the value of the internal compressional stress field
at bifurcation. The shapes of the rod before (shapes on the right)
and after (shapes on the left) the secondary bifurcation are shown
for multiple A values. The inset in red rectangle indicates the sen-
sitivity of the bifurcation to A. For very small values of A and as
it approaches zero the slack threshold of the secondary bifurcation
asymptotically decreases. The inset in red indicates the sensitivity of
the bifurcation to A.

lations. In evaluating this, we choose a minimum of eight
flapping cycles and typically more with these cycles sampled
after initial transients have decayed and oscillations are stable.

Our analysis reveals that in both fixed-fixed and pinned-
fixed scenarios, (1) Fcr increases linearly with prestress [see
Fig. 3(a)], (2) near the critical point, the frequency of steady
oscillations is sensitive to end-to-end distance [Fig. 3(b)], (3)
and far from the critical point (for large values of F ) the fre-
quency of oscillations becomes independent of the prestress
and scales roughly as fflap ∼ F

5
6 . To rationalize the origin of

the power law exponent, we consider period averaged quanti-
ties. For stable oscillations, the rate at which energy input into
the system due to the action of the nonconservative follower
forces balances the rate at which energy is dissipated by the
fluid drag. For F � Fcr the effects of slack (end-to-end dis-
tance Lee) become negligible. The characteristic length over
which significant deformations are accommodated is seen to
be (see [54,66]) λ ∼ (B/|F |) 1

3 . The active energy is gener-
ated from the work done by follower forces (characteristic
timescale here chosen as a period) is ∼ |F |λ2ω and thus the

013005-6



THREE-DIMENSIONAL NONLINEAR DYNAMICS OF … PHYSICAL REVIEW E 103, 013005 (2021)

FIG. 3. Critical load for the onset of flapping, Fcr , versus the compression rate, 1 − Lee/L, for both pinned-fixed (PF) and fixed-fixed
(FF) scenarios varies with a linear relationship as shown in panel (a). Here, the pink arrows schematically represent the follower forces and
indicate the direction in which these are exerted. Frequency of the flapping oscillations is plotted in panel (b) as a function of the force
density, F , in logarithmic scales to illustrate two salient features: (1) as the follower force increases to values much larger than the critical
limit, the effect of the prestress diminishes—far from criticality, similar frequencies are observed for all boundary conditions including the
cantilever scenario—and (2) flapping frequencies in the limit F � Fcr scale roughly as fflap ∼ F

5
6 consistent with theoretical prediction [66].

The pinned-fixed results may be compared to results for the fixed-fixed case which were analyzed previously by us. Note that significant
deviations from linearity in (a) for the red data points correspond to the pinned-fixed case. For the particular case where the follower forces are
directed always toward a clamped (fixed) end, fflap ∼ F 5/6 when F/Fcr � 1 independently of the pinned boundary.

energy dissipated by the drag force is ∼ Ceffλ
4ω3; here Ceff

captures the effective drag as predicted from the Morison for-
mula. A balance thus provides the relationship ω3 ∼ |F | 5

2 /B
consistent with our computations.

We further observe from Fig. 3(b) that for very large values
of F , the nature of the boundary conditions seems to play a
diminishing role in setting the value of the flapping frequency.
This may be rationalized as follows. Far from the critical
point, such as when the scaled follower force becomes one
order of magnitude larger than the critical bifurcation force
[FL3/(4π2B) ≈ 10], the effect of the prestress becomes dom-
inated by (negligible with respect to) the relatively large forces
induced by the active force, F .

Interestingly, we find that for the pinned-fixed scenario, the
existence of oscillations depends on the direction of the fol-
lower forces. Specifically, when the follower force is directed
from the clamped end toward the pinned end, no dynamical
instability is induced [75]. This results suggests that altering
boundary conditions independently of the strength of the fol-
lower forces or mechanisms generating these can be used to
initiate or quench flapping oscillations.

Finally, we would like to point out that we do not inves-
tigate the onset of oscillations. In the system described by
Eqs. (1)–(6), fluid drag, active forces, rod elasticity, and the
inertia of the rod all enter into the picture. In earlier work on
cantilever rods [66], we used a simple model to study how
each of these influences the onset of oscillations and the loca-
tion of the critical point. For the prestressed rods with inertia
considered here, the critical points are not easily identifiable
using time stepper techniques such as our model. Hence we
focus on the fully nonlinear and large amplitude solutions far
from the onset of oscillations.

D. Swirling motion with periodic reversal
of nonplanar base states

For the range of parameters with nonplanar base shapes
tested here (0.60 � 1 − Lee/L � 0.675 and A = 0.8 and A =
1.0) we find purely rotational oscillations about the end-to-end
axis to arise when a nonzero follower force is applied to the
rod. We call this swirling motion. Figure 4 shows an example
of the rod’s configuration subject to an active distributed fol-
lower force in this range. By keeping the force constant and
letting the dynamics reach a steady state we find that swirling
rates decrease gradually until an abrupt reversal of direction,
or flipping occurs (see Fig. 4 and, in the Supplemental Ma-
terial [73], ESM Movie 4). Therefore, from simulations we
extract a second characteristic timescale: the rate at which
flips are observed.

The follower forces contribute moments that drive swirling
and flipping. To understand these moments, refer to Fig. 4.
Figure 4(a) demonstrates the shape of the rod in three or-
thogonal views and an isometric view with the distributed
follower force. For swirling, we track the net moments of the
follower force about the end-to-end axis, ê3. We first calculate
the moment about an inertial frame of reference located at
the middle of the two clamped ends. The net moment of the
follower force M1 = (M1, M2, M3) is calculated by the for-
mula

∫ L
0 (Rc1 × F t)ds where Rc1 is the position vector of the

cross section at s with respect to the inertial frame {êi} located
at the midpoint between the two clamps. The component of
the moment generated about the end-to-end axis, M1 · ê3, is
shown with blue color in panel (b) of Fig. 4, and is the main
driver of the rotational swirling.

For flipping, we look at the moment about the Frenet-Serret
normal vector at the midspan of the rod. This moment will
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FIG. 4. Three orthogonal views and a perspective view of the rod with 1 − Lee/L = 0.6 and A = 0.8 after the application of a follower force
with intensity F = 4 N/m are shown in panel (a) in 3rd angle projection of engineering convention. The red, green, and blue arrows represent
the global reference frame in each view. The distributed follower force, F t, acts along the tangent vector and is shown here by magenta colored
arrows, and gives rise to the swirling oscillations about the end-to-end axis, ê3. The direction of swirling motion periodically flips along this
axis. The net moment of the follower force M1 = (M1, M2, M3) is calculated by the formula

∫ L
0 (Rc1 × F t)ds where Rc1 in panel (b) is the

position vector of the cross section at s with respect to the inertial frame {êi} located at the midpoint between the two clamps. The component
of the moment generated about the end-to-end axis, M3, is shown with blue curve in panel (b), and is the main driver of the rotational swirling.
On the other hand, the effect of the moments generated about ê1 and ê2, i.e., M1 and M2, is to reduce the torsional deflection toward zero
and to increase the bending deflection. This is ascertained by calculating the net moment of the follower force about the Frenet-Serret normal
vector at the midspan of the rod, n(L/2). This moment is obtained using a similar formula M2 = ∫ L

0 (Rc2 × F t)ds but Rc2 is here defined as
the position vector of the cross section at s with respect to the s = L/2 and is shown in panel (c). The Frenet-Serret normal vector n(L/2)
lies in the plane of bending of the centerline and with the knowledge of the net moment along this axis we can determine the direction of the
movement of the plane of bending. We find that the net moment about n(L/2) always drives the rod back into a planar configuration. In this
process twist is reduced and bending is increased and it continues until the shape of the rod becomes nearly planar. Subsequent to this, a flip
occurs and the swirling direction reverses.

also help explain why the twist is reduced and the bending is
increased during the swirling motion before the flip happens.
We calculate the Frenet-Serret normal vector of the rod cen-
terline at the midspan, n(L/2), using the following equation
which is valid for all values of s between zero and L:

n(s) = 1√
κ1(s)2 + κ2(s)2

κ(s) × t (s). (9)

In this equation κ(s) is the curvature and twist vector, t (s)
is the unit tangent vector to the centerline of the rod, and√

κ1(s)2 + κ2(s)2 represents the principal curvature of the rod.
Because the normal vector, n, is in the plane of the curvature
of the rod [pointing toward the center of curvature with the
radius 1/

√
κ1(s)2 + κ2(s)2], the net moment of the follower

force about n(L/2) determines whether the plane of curvature
rotates toward or away from the planar configuration. To cal-
culate the net moment of the follower force about n(L/2) we
use a similar integration, M2 = ∫ L

0 (Rc2 × F t)ds, where Rc2
is defined as the position vector of the cross sections at s with
respect to the s = L/2. Panel (c) of Fig. 4 demonstrates the
component of this moment about n(L/2), namely M2 · n. This

moment drives the out-of-plane loop (or configuration) of the
rod back toward a planar shape and ultimately flips it on the
other side.

Note that prior to exertion of this force the base state has a
plane of symmetry that passes through ê1. Application of the
follower force breaks this symmetry by deforming the rod as is
obvious in Fig. 4(a). If the follower force were superimposed
on the symmetric base state to calculate the flipping moment
M · n, it would be zero. It is the asymmetry in the shape
caused by the follower force that contributes to a nonzero mo-
ment about n(L/2) and thus drives the flipping phenomenon.
By contrast, the swirling moment would be nonzero even if
it were calculated by superimposing the follower force on the
symmetric base state.

Recognize that as the out-of-plane loop returns to planar
shape, the twist must vanish, and the bending energy must
increase. This is the reversal of out-of-plane bifurcation ex-
plained in [70], wherein the bending energy decreases with
some increase in torsional energy reducing overall strain en-
ergy to favor the out-of-plane bifurcation. A detailed budget
of energy exchange during oscillations is explained in the next
subsection.
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FIG. 5. Variations in time of torsional energy, ET , bending energy, EB, total strain energy, ES , and kinetic energy, EK , with respect to the
energy levels at the base state, E0, are shown in panel (a) and variations of energy dissipated by fluid drag, WfM , and work done by follower
force, WF , are depicted in panel (b). The results reveal that a relatively small change occurs in both the strain energy (the green curve) and the
kinetic energy (the black curve), while the torsional energy (blue curve) falls bellow its corresponding magnitude at the base state (E0) and the
bending energy increases to significantly larger values compared to the based state. As a measure of the swirling frequency, the component of
the angular velocity about â3 at the midspan length is plotted in time for |F | = 1 N/m, 1 − Lee/L = 0.60, and A = 0.8 in panel (c). A set of
superimposed shapes during an entire swirling cycle (the shaded interval) is also given in panels (c) and (d). Evolution of angular velocity at
the midspan length during the flipping along with the rendition of the shapes is illustrated in panel (d).

E. Energy exchange during oscillations

In each flipping cycle which approximately takes about two
orders of magnitude longer than a swirling cycle, the total
strain energy slightly increases (less than 0.1% per cycle); the
bending energy however increases significantly (about 4% per
cycle) and the torsional energy decreases most significantly
(about 100% per cycle). Expressions used to evaluate the
torsional energy, ET , bending energy, EB, total strain energy,
ES , kinetic energy, EK , energy dissipated by fluid drag, WfM ,
and work done by follower force, WF , from simulation results
are given below, respectively,

Es = 1

2

∫ L

0
(B · κ) · κ ds = EB + ET

= 1

2

∫ L

0
B
(
κ2

1 + κ2
2

)
ds + 1

2

∫ L

0
T κ2

3 ds, (10)

EK = 1

2

∫ L

0
m(v · v) ds, (11)

WfM =
∫ t

0

∫ L

0
(fM · v) ds dτ, (12)

WF =
∫ t

0

∫ L

0
(F t · v) ds dτ. (13)

Figure 5(a) demonstrates various forms of energy relative
to the energy levels of the base state configuration after a unit
follower force is applied to a buckled rod with 1 − Lee/L =
0.60 and A = 0.8. Once the force is applied and rotational

(swirling) cycles begin, we observe a gradual decrease in
kinetic energy and a gradual increase in total strain energy;
see Figs. 5(a) and 5(c). With further swirling, when enough
of torsional energy is converted to bending, the rod reaches
a nearly planar configuration that is not stable. This triggers
a change in direction of the swirling rotations through which
high levels of bending energy are discharged back into tor-
sional form; see Fig. 5(d). The discharge of bending energy
back into the torsional form also contributes to a small jump in
the kinetic energy that passes through zero during the moment
of reversal. Flipping thus involves the relaxation (or drop) of
both bending and total strain energy.

Figure 5(b) illustrates that work done by the follower force,
WF , has almost the same rate of change and magnitude as the
energy dissipated in the fluid medium, WfM . This suggests that
a much smaller proportion of the work done by active forces is
stored in the system as strain energy. However, the constrained
configuration allows for a periodic transfer of entire elastic
energy in the torsional mode into and from bending, thus re-
sulting in a dynamical trajectory with two distinct timescales
of swirling and flipping.

F. Frequencies of oscillations: Swirling and flipping frequencies

This section examines the sensitivity of steady state os-
cillations to both prestress and force intensity. Figure 6,
top row, shows the rates of both swirling and flipping
dynamics as a function of follower force intensity and pre-
stress. The results belong to three distinct prestress values,
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FIG. 6. The swirling frequency and the rate of flipping as a function of follower force density in the interval 0.325 � Lee/L � 0.375 and
for A = 0.8 are shown in panels (a) and (b), respectively. The results reveal that for a fixed value of follower force by enhancing the end-to-end
compression (reducing Lee) the swirling frequency, fswirl, increases, while the rate of flipping, fflip, decreases. We also find that fswirl increases
roughly linearly with the follower force intensity (over the range investigated), but fflip initially increases and then becomes insensitive to the
force intensity. The results for a rod with the same A value but with bending and torsional stiffness B and T half of those given in Table I
are also shown in panels (c) and (d). For this softer filament we find frequency of rotations to be more sensitive to the follower force and less
sensitive to the compression Lee.

Lee/L = {0.325, 0.350, 0.375}. In all cases, we find that
swirling frequency, fswirl, linearly varies with follower force
intensity, while having a low sensitivity to the prestress. On
the other hand, the flipping frequency, fflip, shown in the same
figure is found to be more sensitive to the prestress values and
becomes approximately independent of the follower force for
very large active force densities.

We find that the rate of flipping seems to saturate to a value
that depends on the initial compression ratio Lee/L. More
generally, our computations suggest that swirling rates seem
very sensitive to the follower force and drag while flipping
rates are dominantly determined by the interplay of bending
and torsion. Keeping F constant while varying the initial level
of prestress results in an increase in the swirling rate but a
decrease in the flipping rate.

G. Role of elasticity parameters B and T

To understand the effect of elasticity, which is captured in
our model with parameters B and T representing bending and
torsional stiffness, respectively, we keep all other properties

constant and examine the dynamics of a filament with bending
and torsional stiffness twice as small as the values reported
in Table I. Figures 6(c) and 6(d) show the results for pre-
stress rates belonging to Lee/L = {0.325, 0.350, 0.375}. For
the softer filament with smaller elastic properties we find the
relationship between the rotational frequency and the follower
force to be linear although with a larger slope compared to the
stiffer rod shown in Figs. 6(a) and 6(b). This can be explained
by the fact that rotational oscillations in this regime emerge by
the interplay of (1) active energy entering the system, (2) elas-
tic energy of bending and torsion, and (3) energy dissipated
due to fluid viscosity. During rotational cycles in between
flapping events, part of the active energy must be spent on
increasing the strain energy of the system [see green curve,
Es, in Fig. 5(a) (i)]. For the softer filament this strain energy
barrier is smaller; hence a larger portion of active energy
remains available to overcome fluid resistance and to gain
rotational momentum. The rate of swirling, fswirl, is calculated
by taking the Fourier transformation of the bending curvature
about one of the filament’s two axes of bending, namely κ1,
over at least four cycles of flipping at s = L/2. The flipping
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FIG. 7. Frequency of oscillations as a function of follower force density is compared for torsional-to-bending stiffness ratios varying from
A = 0.8 to A = 1.0 (by keeping the bending stiffness constant at the value given in Table I, and increasing the torsional stiffness, T ), and for
prestress level of Lee/L = 0.325. Panel (a) shows that by increasing A (with F fixed), the torsional deflection of the base states decreases and
so do the swirling frequencies fswirl. In contrast, we find that for fixed F , the frequency of flips is higher for the larger value of A (1.0 compared
to 0.8). Note also the intriguing result that for A = 0.8, the flipping rate increases with F . At the higher value of A = 1, however, we observe
a nonmonotonic regime with an increase followed by a steady decrease in fflip with F . Panels (c) and (d) show the dependency of swirling and
flipping frequencies on the variations of A when the slack and force intensity are kept constant (F = 4 N/m, Lee/L = 0.325). By increasing
A the torsional deflection decreases which results in a smaller swirling frequency. However, by increasing A the internal stresses decrease (as
shown in Fig. 1) which results in larger flipping frequency.

frequency, fflip, on the other hand is found via the Fourier
transformation of torsion, κ3, over the same time interval at
the same cross section.

For the flipping frequency we find a response pattern
similar to the filament with larger stiffness; however the
saturation frequencies, i.e., the rate at which flipping rates
become independent of the follower force, are smaller for
softer filaments. Moreover, for the softer filament we observe
a diminished sensitivity of both swirling and flipping rates
to the prestress in comparison to the stiffer rod. This is due
to the fact that for the softer filament, restoring effects at
the base states (e.g., PFF

cr = 4π2B/L2) are relatively smaller
too.

We then examine the role of torsional-to-bending stiffness
ratio, A, on swirling and flapping. For that, we keep the
bending stiffness, B, constant (at the value given in Table I)
and increase the torsional stiffness, T , to enlarge A from 0.8
to 1.0. As shown in Fig. 7, the base state with A = 1.0 has
much smaller torsional deflection compared to the rod with
A = 0.8 for the same compression level of Lee/L = 0.325.
When a follower force is applied to these two base states we
find that larger torsional-to-bending stiffness ratio results in

smaller swirling frequencies, which nonetheless vary with a
similar slope against force density.

The rod with larger A exhibits smaller out-of-plane de-
flection, when all else is kept constant, and thus the follower
forces generate smaller net moments that in turn give rise to
smaller swirling frequencies, compared to the application of
the same forces to the rod with smaller A and larger out-of-
plane deflection.

While the difference in the functional dependence of fflip

on F for A = 0.8 and A = 1.0 may be surprising, a possible
explanation can be recognized by considering more closely
the value of Lee/L = 0.325 and the distance the base state is
located from the secondary bifurcation point. The inset is a
close-up of Fig. 1(a) (iv). Since 1 − Lee/L = 0.625 which for
A = 1.0 is closer to the secondary bifurcation point than A =
0.8, this suggests that the absolute values of Lee/L and the
value of A control the frequencies. The shape of the base state
and the energies stored in this state are thus very different.

Synthesizing our observations together, we find that the
swirl-flip combination—the periodic changes in direction of
the swirling rotations—is intricately associated with a spe-
cific sequence of energy interchanges between bending and
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torsional deformation modes of the filament. The nonconser-
vative and configuration slaved dependence of the follower
force direction succeed in mediating this transfer even as the
magnitude of the follower force is fixed. In this respect, our
system may also be considered as generating relaxation oscil-
lations due to the effect of periodic excitation forces, except
that here the frequency of this excitation is not imposed but
emergent.

We deduce that the swirl-flip-swirl sequence is a self-
generated emergent oscillation controlled intrinsically by the
fact that an initially planar filament is unbiased insofar as
the direction of swirling is concerned by the fact that the
clamped-clamped filament is torsionally constrained. Indeed,
relaxing the constraint at one end by converting the boundary
conditions to a clamped-free cantilever type and approxi-
mating distributed follower forces by a single follower force
exerted at the free tip (see Fig. 8 and, in the Supplemental
Material [73], ESM Movie 6) results in the loss of the flips
and continuous swirling.

H. Linear and nonlinear drag forms yield qualitatively
similar spatiotemporal dynamics and oscillations

In this section we summarize a subset of computations
performed using the linear resistivity drag (valid for Stokes
flow) as described by Eq. (8) for the fluid force per unit length
on the rod rather than the quadratic Morison form given by
Eq. (7). Our goal is to ascertain whether the change from
quadratic to linear drag changes the qualitative picture we
have just described and analyzed in detail—specifically, the
emergence of swirling oscillations characterized by a long
timescale interspersed with very sharp flips that change the
direction of the rotational motion.

Figure 9 illustrates the results both for the variations of
swirling and flipping frequencies against the force intensity
[panels (a) and (b)] and the emergence of limit-cycle in-
stabilities [panels (c) and (d)]. Comparing Fig. 9(c) with
Fig. 8(c) demonstrates that changing the form of the drag
coefficient does not qualitatively change the type of solu-
tions and bifurcations observed. Quantitatively, we find that
swirling frequencies are changed as the dissipation due to
activity changes. Over the narrow range of |F | values plotted
in Fig. 9(a), it is seen that the frequency increases with the
magnitude of the follower force density. Note however that
for very large values of |F |, we do not expect to see a linear
increase. Rather, as in the case of Morison drag, dissipation
due to viscous drag needs to balance active work done by the
follower force; this requires that the swirling frequency vary
with a power law different from that for the Morison case.

IV. PERSPECTIVES: CONNECTIONS
TO RELAXATION OSCILLATIONS

The results presented in Sec. III for the clamped-clamped
filament combined with results for the continuous swirling
of an cantilevered active rod [Fig. 8(a), with no torsional
constraints at s = 0] suggest that flipping involves the relax-
ation (or periodic and slow variations) of both bending and
total strain energy. The discharge of bending energy back into
the torsional form also contributes to a small jump in the

kinetic energy that passes through zero during the moment of
reversal. The role of filament inertia—as included in the time
derivative terms in Eqs. (1) and (2)—in perhaps enabling over-
shoot and thus a change in the sign of the rotation direction is
unclear and requires future exploration.

In the absence of active forces, fluid drag competes with
physical mechanisms that temporarily store energy and pro-
duced damped motions. One of us has previously worked
on theoretical and experimental systems with solid-fluid in-
teractions where bulk solid elasticity provides the storage
mechanism [54], as well as in purely fluid-fluid contexts with
surface tension serving to store energy temporarily [76,77].
Here in the active context, fluid drag plays a crucial dual
role: both dissipating the energy and providing a pathway to
stabilize the system by forcing the emergence of oscillations
with large amplitude and clear frequencies. The dependence
of the frequencies on the active force density F follows power
laws as shown in previous theoretical work by us [54,66]); the
exact exponent depends (provided one is far from onset) on
the form of the drag and is 5/6 for quadratic drag as shown
here, and 4/3 for linear drag forms such as low Reynolds
number Stokes drag.

We can make further connections to the classical relax-
ation oscillations eponymous with van der Pol’s paper [67]
studied in relation to self-sustaining nonlinear oscillations
in triode circuits. Self-oscillating relaxation oscillations have
been observed in electromagnetic devices [78], semiconductor
laser devices subject to feedback concomitantly with optical
injection [79], in the context of acoustics and music [80], and
more recently found ubiquitously in cell and system biology
contexts (see [81,82] and references therein). In many of these
instances, coupled positive and negative feedback loops are
hypothesized to yield hysteretic relaxation oscillations. An
alternate hypothesis suggests that the essential ingredients of
relaxation oscillators are a threshold device that enables a
switch in direction, for example a bistable system, and a nega-
tive feedback loop. These ingredients are for instance the main
components of the van der Pol oscillator in systems dynamics,
and the Fitzhugh-Nagumo oscillator [83], Morris-Lecar [84]
oscillators studied in neurobiology, and the comparator based
extension of the Pearson-Anson oscillator [85]. In the system
we studied extensively and presented in this article analogs to
each component exist with the active follower force serving
as the source of power.

We propose that the stable long-time relaxation oscillations
in our system can be modeled in a simpler manner by studying
the swirl-lip phenomenon as a two-timescale problem—with
one time constant being much larger than the other. The chal-
lenge here would be to identify the minimal set of variables
and parameters and is the subject of current work. Nonethe-
less, Eqs. (1)–(7) together constitute a complex but complete
set of time-stepper equations that in conjunction with con-
tinuation and bifurcation techniques may be used to analyze
the stability of time-dependent states as well as identify the
critical points of onset.

V. SUMMARY

In this paper we have used a geometrically nonlinear
continuum rod model to analyze the stable two- and three-
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FIG. 8. Limit cycles for oscillatory instabilities: (a) active cantilever rods, and (b), (c) fixed-fixed prestressed rods. (a) Results for a partially
constrained cantilevered rod with no prestress subject to follower force (see also ESM Movie 6 in the Supplemental Material [73]) when
f3(L) = −20.2π 2B/4L2. (i) and (ii) We show the limit cycle and a typical shape for flapping modes (green). The limit cycle in (i) features
the velocity of the free end of the tip as a function of its vertical height. (ii) Here, only planar disturbances are imposed. (iii) When three-
dimensional disturbances are allowed rod oscillations are fully three-dimensional with continuous swirling; see limit cycle in (i) and snapshot
in (iii). (b) Here we show the sequence of shapes (time instants 1 to 8; see ESM Movie 5 in the Supplemental Material [73]) for the swirl-flip
transitions. The parameters are F = 4, Lee/L = 0.4, and A = 0.8. Note the overshoot seen between numbers 6 and 8. (c) Illustration of the
swirl-flip limit cycles for the same parameters as in (b). We show only a few cycles immediately before (when the dynamics corresponds to
branch LC1) and after the swirl (when the dynamics correspond to branch LC2). The limit cycles are not absolutely coincident due to the
gradual changes in energy described in Sec. III E.
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FIG. 9. Limit cycles for oscillatory instabilities when the fluid drag is computed using the expression for Stokes drag: (a) and (b) exhibit
the rate of flipping and swirling oscillations, respectively, while (c) and (d) illustrate the swirl-flip limit cycles. The parameters used are F = 8,
Lee/L = 0.375, and A = 0.8.

dimensional oscillations of strongly constrained prestressed
rods activated by distributed follower forces. A dissipative
component resisting rod motion was imposed by assuming
that the ambient fluid medium exerts a resisting quadratic drag
following Morison’s form corresponding to flow fields char-
acterized by O(1) and higher Reynolds numbers. Nonetheless,
based on our previous work on planar flapping with both linear
and nonlinear drag models, we expect our results to change
quantitatively but not qualitatively for a different drag force
such as the linear drag valid at low Reynolds number.

Our results from this work can be summarized as follows.
For rods buckled to bent and twisted base states, we observe a
swirling motion around the end-to-end axis under any nonzero
follower force. Moreover, a second characteristic timescale of
this motion is identified by the rate in which swirling motion
undergoes reversal of direction, or flipping. We analyzed the
force-frequency behavior as a function of prestress, measured
by end-to-end compression, as well as material elasticity. For
the range of parameters examined here we identify a linear
relationship between the force density and swirling frequen-
cies. The flipping rate is found to be sensitive to the force
density only when forces are small. When force intensity
increases flapping becomes independent of the force and is
only a function of compression and torsional deflection.

To conclude, the dynamical responses of passive (See
Fig. 10) and animated (see Figs. 6–11) prestressed rods con-
stitute a rich, involved tapestry. Tuning the prestress and rod
elasticity allows us to choose stable solutions from possible
planar (2D) and twisted (3D) oscillating states. The con-
nection to relaxation oscillations motivates future theoretical

work that will help uncover the mechanistic and dynamical
principles, and allow for phenomenological physical exten-
sions of the theory to understand the role of inertia and other
forms of fluid drag on the eventual spatiotemporal patterns
attained. Practically, our results suggest avenues by which
prestress, elasticity, and activity may be used to as knobs in
exploiting active elasto-hydrodynamic instabilities to design
synthetic macroscale fluidic elements such as pumps or mix-
ers; see for instance Ref. [86].

APPENDIX A: DRAG COEFFICIENTS IN THE HIGH
REYNOLDS NUMBER LIMIT

The Morison formula is a phenomenological formula that
provides the net force on a long cylindrical body at moderate
to high Reynolds numbers. The total force is here decomposed
into a drag force per unit length that depends on the velocity
and an inertial force per unit length that depends on the accel-
eration as given below:

fM = 1

2
ρdCd |v|v + 1

4
πρd2Cm

dv
dt

. (A1)

In this equation, ρ is the density of ambient fluid, d is the
diameter of the cylindrical rod, v the speed of the cylinder with
respect to the ambient, and t is time. The drag coefficient, Cd ,
and the inertia coefficient, Cm, are evaluated using experimen-
tal measurements and are sensitive to the characteristics of the
flow such as Reynolds number as well as the properties of
the cylindrical rod such as surface roughness and slenderness
ratio. Edge effects due to the finite length of the cylindrical rod
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FIG. 10. (a) The tension force at the boundary, P, and (b) the strain energy, U , are plotted as functions of the end-to-end distance. As the
out-of-plane bifurcation occurs, the bending energy decreases and torsional energy increases while the combined effect is a reduction in the
total strain energy of the rod which favor the out-of-plane bifurcation.

are neglected. We choose to use (1) to also represent the drag
in the case of a moving flexible active slender rod analyzed in
this paper for reasons descried below; note also that the length
L is much larger than the diameter (L � d) so that edge ef-
fects are small. The reduction sought is to encapsulate the ef-
fect of the fluid on the moving deforming rod in terms of an ef-
fective drag per unit length that serves as a lower-dimensional
description of the fluid-solid interaction. Once this reduction
is employed, the actual flow fields in the fluid are ignored.

Consider a deformed slender cable or filament as described
earlier that is swirling slowly (rotational motion) in a fluid
quiescent far from the cable. There are two ways by which
time-periodic fluid flow fields may be generated.

First, when cross sections of the rod are executing rotations
about the line joining the ends of the rod (swirling motion), os-
cillatory flow fields can be set up in the fluid with a timescale

comparable to the time for a single rotation. For instance the
center point when laterally displaced by a distance R and
moving with angular velocity � (and thus moving through the
fluid with relative speed �R) will generate ambient rotational
flows with length scales R and timescales �−1. We note that
while the deformed rod is executing periodic motion, cross
sections of the cylinder do not oscillate about the centerline.
The rod here samples transient time periodic flows as it swirls
through the fluid.

Second, slender cylinders moving through a fluid at mod-
erate to large Reynolds number shed vortices; this process
is associated with a shedding frequency characterized by the
Strouhal number. In our case when the rotation is slow, the
representative center point on the cylinder as it moves may
shed vortices at a frequency �′ 
= � and instead set by its
translational speed �R.

FIG. 11. Swirling and flipping frequencies are calculated by taking the Fourier transform of the curvature and twist at the midspan of the
rod. The top row [(a), (b)] shows the twist data and the bottom row curvature [(c), (d)] for A = 0.8, F = 1 N, and Lee/L = 0.4. The peaks in
the frequency domain represent the dominant frequency of each plot.
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The unsteady flows in the two scenarios described above
can be quantified by the associated Keulegan-Carpenter num-
ber K ≡ |v|T/d with T being a suitable timescale. Thus the
two sources of unsteadiness map to dimensionless numbers
K1 = R/d and K2 = K1(�/�′). In reality, the above picture is
simplified since in deformed rods each material point moves
with a different value of R. Very importantly, in the case of the
actively driven rod, the slow rotational frequency of the rod
and any associated local vortex shedding frequencies cannot
be determined a priori as these are emergent solutions. That
is, the forms for the drag coefficients are unknown and cannot
be determined before solving the problem. Nonetheless to
obtain a reduced-dimensional form of the drag felt by the
moving deformed rod, that reasonably captures the physics,
we proceed as follows.

First, we look to previous studies on drag coefficients. It is
established [71,72,87] that for large values of β = d2/νT (ν
being the kinematic viscosity of the ambient fluid) the simple
approximations hold:

Cd = 3π3

2K

[
(πβ )−

1
2 + (πβ )−1

]
, (A2)

Cm = 2 + 4(πβ )−
1
2 . (A3)

Our emergent rotational frequencies, associated deformations,
and ambient fluid properties correspond to moderate values of
β (β < 70) and hence (2) and (3) are not quite appropriate.
Furthermore the K values associated with our simulations
based on the emergent solutions are much higher (a represen-
tative value being K ≈ 800) than those for which (2) and (3)
have been tested. For instance Fig. 1 of [87] and [71,72] cor-
respond to K values that fall in much smaller range K < 20.

Since there are no empirical data available for the rod
properties chosen in our study, and since the drag coefficient
cannot be calculated a priori, we use the previous results
that compare (2) and (3) with experimental data from the
referenced papers to estimate approximate drag coefficients.
We note that the average value of Cd ≈ 1 usually pertains to
rods with the slenderness ratio that is one order of magnitude
smaller (e.g., 10 or 25 as in [72]) than the ratio used in our
simulations. We have chosen the slenderness ratio of the rod
to be 800 (motivated by literature [29]). Figures 1–4 of [87]
then suggest that for K ≈ 800 the drag coefficient is expected
to be an order of magnitude smaller than 1 (by a factor of 40).
Since the K value based on vortex shedding is estimated to be
between 800 and around 50, we chose a drag coefficient value

equal to 0.1 that is between 1 and 1/40. This is also consistent
with forms previously used for deforming cables or rods with
similar slender geometries [64].

In our study the range of frequencies pertaining to swirling
and flipping lie between 0.1–0.35 Hz. In this interval the drag
component of the Morison formula is more important (always
larger) than the inertial component. Given that our aim is
to understand the spatiotemporal dynamics generated by the
interplay between elasticity and the nonconservative follower
force, we would like the dissipative component (i.e., the drag)
to represent simple yet physically meaningful forms. Thus we
choose the quadratic term associated with Cd for the nonlinear
regime and ignore the inertial contribution.

Note that we have also analyzed the dynamics for linear
drag proportional to v as happens for the Stokes low Reynolds
number regime. The details of the latter are in the main narra-
tive and are not included here.

APPENDIX B: EFFECT OF ADDED MASS

Added mass takes into account the inertial force required
for an object to accelerate in a fluid, in addition to the inertial
force of the body’s own mass. For an object with cylindri-
cal shape added mass is ma = V ρ f with V representing the
volume of the cylinder. Therefore in our model the effect of
added mass can be captured by adding the density of water to
the density of the solid material in the equations of motion. In
other words, we can consider our current results in the paper
to belong to a rod with density ρs2 = ρs1 − ρ f where ρs1 is the
density of the rod reported in Table I of the main narrative.

APPENDIX C: CALCULATING FREQUENCIES
BY FOURIER TRANSFORM

Figure 11 shows the curvature and twist in both time and
frequency domains. We calculate the frequency of oscillations
using the Fourier transform of the curvature and twist at s =
L/2. The rate of swirling, fswirl, is calculated by taking the
Fourier transform of the bending curvature about one of the
filaments’s two axes of bending, namely κ1, over at least four
cycles of flipping. The flipping frequency, fflip, on the other
hand is found via the Fourier transformation of the twist, κ3,
over the same time interval that is used for the calculation of
the swirling frequency. Using the results shown in panels (b)
and (d) of Fig. 11, the maximum values of Fourier amplitudes
are selected as the frequency in each case.
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