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Phase diagram of brittle fracture in the semi-grand-canonical ensemble
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We present a simulation method to assess the quasistatic fracture resistance of materials. Set within a
semi-grand-canonical Monte Carlo (SGCMC) simulation environment, an auxiliary field—the bond rupture
potential—is introduced to generate a sufficiently large number of possible microstates in the semi-grand-
canonical ensemble, and associated energy and bond fluctuations. The SGCMC approach permits identifying
the full phase diagram of brittle fracture for harmonic and nonharmonic bond potentials, analogous to the
gas-liquid phase diagram, with the equivalent of a liquidus line ending in a critical point. The phase diagram
delineates a solid phase, a fractured phase, and a gas phase, and provides clear evidence of a first-order phase
transition intrinsic to fracture. Moreover, energy and bond fluctuations generated with the SGCMC approach
permit determination of the maximum energy dissipation associated with bond rupture, and hence of the fracture
resistance of a widespread range of materials that can be described by bond potentials.
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I. INTRODUCTION

Consider a solid composed of particles subjected to a vol-
ume change at constant temperature. The system is further
subjected to an external energy source that targets the bonds
in the system, akin to a bulk radiation source. At a given
energy of this radiation source, denoted by �μ, fracture at
the macroscopic level of the sample may occur between two
equilibrium states of the system. This transition is defined by
the bond rupture potential, �μ, the prescribed volume, V , and
temperature, T . In this semi-grand-canonical ensemble, we
measure the ensemble energy average of possible microstates
of the system, 〈U 〉, and the energy fluctuations, as a function
of the average number of bonds, 〈N〉, and their fluctuations.
As we repeat the experiment by sweeping possible values
for volume changes, stress-strain curves can be traced out for
different prescribed bond potentials, �μ [Figs. 1(a) and 1(b)].
Similarly, sweeping all possible values of �μ we obtain char-
acteristic bond isochores, 〈N〉 − �μ, for different prescribed
volume strains [Figs. 1(c) and 1(d)].

The described thought experiment aims at addressing some
unsolved issues in fracture mechanics, such as homogeniza-
tion of fracture properties of heterogeneous solids, which
cannot be satisfactorily resolved with classical continuum
theories based on Griffith’s 1921 energy-based quasistatic
fracture approach [1,2], that requires notches and other
discontinuities to trigger fracture propagation, local stress
intensities [3], and cohesive crack zones [4–7] to deter-
mine the fracture resistance of solids. More contemporary
simulation approaches have extended the realm of classical
fracture mechanics to discrete (including molecular) fracture
processes [8–10]. Statistical lattice-based models of fracture
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addressed size effects of materials’ strength, bursts of micro-
failures, and morphology of cracks [9–13]. Others consider
the competition between crack propagation and dislocation
mechanisms [14–16]; role of interatomic and mean force po-
tentials [17–21]; role of phonons [18,22,23]; crack velocity
and dynamic instability [20,24–27]; crack growth kinetics of
microcracks in crystals [28]; and effect of crystal orienta-
tion, grain boundaries, texture, chemical environment, and
impurities [25,29–35]. Compared to this rich and insistently
increasing body of fracture literature, our approach differs in
two fundamental aspects: (1) it defines the fracture process as
bond rupture in the semi-grand-canonical ensemble (�μV T ),
in contrast to the canonical (NV T ) and microcanonical
(NV E ) ensembles that restrain our current knowledge of the
physics of fracture processes; and by doing so (2) it enables a
new understanding of fracture resistance of solids, in terms of
energy and bond fluctuations, in the �μV T ensemble.

We start by rationalizing the thought-experiment into a
simulation framework for equilibrium-based fracture analysis.
First, we perform the thought-experiment by means of almost
classical Monte Carlo simulations [36], with one exception:
instead of inserting or deleting randomly selected particles
(GCMC), the acceptance criterion in the SGCMC approach
changes the identity of bonds:

acc(o → n) = min (1, po→n), (1)

where po→n stands for the probability of either switching a
bond from OFF to ON, (N → N + 1), or from ON to OFF
(N → N − 1):

pN→N+1 = exp

[
1

kBT
(+�μ − �UN→N+1)

]
, (2a)

pN→N−1 = exp

[
1

kBT
(−�μ − �UN→N−1)

]
, (2b)
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FIG. 1. Work-conjugate pairs in the semi-grand-canonical en-
semble. At fixed bond potential �μ, successive MC simulations at
different prescribed strains trace out a stress-strain curve for (a) har-
monic and (b) Morse potentials. For a fixed volume strain, at different
�μ, bond number N is measured generating bond isochores for
(c) harmonic and (d) Morse potentials.

with �Uo→n = Un − Uo the difference in potential energy of
microstate M = (o, n).

II. PHASE DIAGRAM OF BRITTLE FRACTURE

We now corroborate the predictive power of the proposed
SGCMC bond-fracture approach. For illustration, we con-
sider a 10 × 10 × 10 face-centered cubic (FCC) lattice with
four atoms in each unit cell (4000 atoms in total, N0 =
24 000 bonds), and periodic boundary conditions. Simula-
tions start with fully bonded particles. Two types of bond
potentials are considered: a truncated harmonic potential and
the Morse potential [37]. We begin with an analysis of
recorded stress-strain curves [Figs. 1(a) and 1(b)]. In the
semi-grand-canonical ensemble, we prescribe the volume in
the form V = V0(1 + εV ), where V0 is the volume of the
undeformed simulation box, and εV the volume strain. In this
displacement-controlled test setup, simulations are carried out
at different volume strains, whereas the bond potential, �μ,
is held constant over the entire range of the volume strain
applied. The displacement-controlled test setup is repeated for
different values of �μ. The impact of the prescribed bond
potential on the stress-strain response is shown in Figs. 1(a)
and 1(b), in the form of a decrease in stress-strain capac-
ity with decreasing bond potential. Alternatively, in a bond
potential-controlled setup, we analyze the work-conjugated
bond number N at constant volume strain, i.e., the bond iso-
chores [Figs. 1(c) and 1(d)]. Akin to a gas, the number of
bonds goes to zero as the bond potential tends to negative
values, whereas no bonds break when bond potential tends
to positive values. The bond isochores [Figs. 1(c) and 1(d)]
provide a means to understand the flattening of the stress-
strain response [Figs. 1(a) and 1(b)] with decreasing bond
potential. Indeed, the lowering of the bond potential entails
bond breakage, which ultimately shifts the system from a
bonded solid state to an unbonded gaslike state.

FIG. 2. Phase diagrams of brittle fracture for harmonic (closed
circles) and Morse (open squares) bond potential systems. The phase
diagram is characterized by three domains corresponding to (I)
�μ < �μgas: the system is a collection of non-interacting particles
and cannot undergo fracture. The line terminates in a critical point,
CP (near-vertical line, �μ controlled). (II) �μgas � �μ � 0: solid
undergoes fracture when εV > εVcrit or �μ < �μcrit (sloped line).
(III) �μ > 0: fracture is controlled by constant εVcrit (flat line). Insets:
(a) Near zero strain the phase boundaries meet at a triple point.
(b) Liquidus lines terminate at a CP.

The analysis of the stress-strain diagrams and bond iso-
chores calls for a generalization in form of a phase diagram.
This is achieved by sweeping the (�μ,V ) phase space in
search of phase boundaries defined by the pair of coordinates
at which fracture occurs, namely the critical bond rupture
potential [�μcrit = �μ̂crit (〈N〉crit )] and the critical volumet-
ric strain [Vcrit = V0(1 + εVcrit )]. Figure 2 displays the phase
diagrams for the harmonic and Morse potentials, including
the transition lines between solid and gas state of the sys-
tem. Irrespective of the bond potential, the phase boundary
begins with a near vertical line delineating the minimum bond
rupture potential below which the system is effectively a gas
(domain I), and above which the bonded system is fractured
or a solid. In this domain, the phase diagram has much in
common with classical pressure-temperature phase diagrams
of pure substances, when considering the prescribed strain
as the analog of temperature, the prescribed bond rupture
potential as the analog of pressure, and the fractured state as
the analog of the liquid phase. In fact, the phase line starts at a
triple point close to εV = 0 [inset (a) in Fig. 2], and terminates
in a critical point, CP [inset (b) in Fig. 2]. In between these
two, we recognize—by analogy with pressure-temperature
phase diagrams—the existence of a liquidus line, along which
the bond rupture potential has such a low value that bonds
dissolve (rather than fracture due to bond stretching) inde-
pendently of the applied strain. The system is thus reduced
to a collection of noninteracting particles. In this unbonded
(N = 0) gaslike state there are effectively no interactions.
Mapped onto the pressure-temperature analogy, the measured
critical exponents near the critical point where the liquidus
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FIG. 3. Critical exponents fit from the simulation results. Lower
and upper bounds of the fits (red dashed lines) for the stress critical
exponent, α [(a) and (b), respectively], as well as for the bond number
critical exponent, β [(c) and (d), respectively] are in good agreement
with the same exponents in the Ising model.

line ends fall in the range of 0.1075 < α < 0.114, when ex-
tending the analogy to include the mean stress as the analog
of the isochoric heat capacity in the Ising model. Similarly,
taking the bond number as the analog of the magnetic order
parameter, we can measure 0.3246 < β < 0.3292 (see Fig. 3),
in close agreement with the values of the three-dimensional
Ising model (α = 0.1096 and β = 0.32653 [38]). This shows
that the proposed SGCMC model around the critical point
exhibits features similar to the compressible Ising model [39],
which merits further exploration.

The remaining part of the (�μ, εV ) phase diagram de-
fines the phase transition between the solid and fractured
phases. The solid-fracture phase transition is a first-order
phase transition, as all work-conjugated energy derivatives
(i.e., mean stress, bond number) exhibit discontinuities at
fracture. Specifically, these quantities exhibit jump disconti-
nuities at a critical value corresponding to the crossing of the
phase boundary, shown for �μcrit = 0.033 and εcrit

V = 0.3216
in Fig. 4. Moreover, these discontinuities occur in the first-
order derivative of the energy; namely: the mean stress, σm =
∂U/∂εV , bond number, N = −∂U (= −kBT ln �S )/∂μ, and
heat of bond rupture, qbr = −∂U/∂N , where �S is the semi-
grand-canonical partition function. The combination of these
observations unambiguously defines fracture at the crossing
of the phase boundary as a first-order phase transition.

Furthermore, the phase boundaries exhibit a characteristic
shape, namely a phase line with a finite slope for �μgas <

�μ < 0 (domain II) and a horizontal line defined by a con-
stant maximum critical strain for �μ > 0 (domain III). In
domain II, the solid region is characterized by strains below
the phase boundary, εV < εVcrit , corresponding to stress-strain
curves with a positive slope [Figs. 1(a) and 1(b)] and by bond

FIG. 4. First-order phase transition of brittle fracture: Jump dis-
continuities in (a) stress, [(b),(d)] bond number, and (c) heat of bond
rupture occur at the same point (red open circles) qbr = 0 as predicted
by the fluctuation-dissipation approach to fracture mechanics.

rupture potentials to the right of the phase boundary, �μ >

�μcrit , in accordance with the bond isochores [Figs. 1(c) and
1(d)]. In contrast, domain III (�μ > 0) is characterized by a
maximum critical stress and strain at fracture. Increasing the
bond rupture potential does not yield higher strains at fracture.
These observations explain the (close to) zero slope of the
phase boundary in the (�μ, εV ) space. If we remind our-
selves that classical fracture mechanics operates at �μ = 0
with notches or other initial discontinuities to trigger fracture
propagation, we recognize from analyzing the phase diagram
that �μ = 0 defines the onset of the maximum critical strain
capacity of any (un-notched) material, and that this critical
strain holds for higher positive values of bond rupture poten-
tial as well (Fig. 2). This suggests that the constant critical
strain delineating the solid-fracture phase transition is an order
parameter.

To further characterize the different phases of the system,
Fig. 5 displays the radial distribution functions (RDFs) ob-
tained from simulations, together with characteristic sample
snapshots of the particle energies. The RDFs illustrate the
impact of fracture on relative position of the particles in
consequence of the energy release due to bond breakage. In
fact, as the system is strained from the undeformed reference
configuration [Fig. 5(a)] to just before fracture [25.2% strain,
�μ = −0.354, Fig. 5(b)] the RDF shifts to higher distance
values as energy is stored into the stretched bonds. After frac-
ture [25.6% strain, Fig. 5(c)], a part of this energy is released
in bond breakage across a crack surface which leads to a
visible shift of the RDF to the left (see Supplemental Material
[40]). Finally, for domain I we obtain an RDF [shown for
�μ = −1, Fig. 5(d)] reminiscent of an ideal gas of noninter-
acting particles, with a first shell distance peak much smaller
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FIG. 5. Radial distribution functions around fracture and in the
gas phase. Starting from (a) the reference (unstrained) state, the
system is (b) stretched, storing energy and shifting the RDF peaks
to higher lattice distances. Comparing the RDFs before and after
fracture, (c) peaks are noticeably shifted back to lower distances,
indicative of a fracture-induced energy release in the system. (d) The
gas RDF approaches ideal gas behavior as the system is a set of
noninteracting particles. Insets: color-coded simulation snapshots of
the potential energy (color bar on the far left).

than the reference FCC lattice distance. The movie in the
Supplemental Material [40] also demonstrates how damage is
sustained in the system prior to catastrophic failure through
a series of microcracks that form randomly throughout the
material. Precursory to the macrocrack formation, several
microcracks are created throughout the entire system. At a
critical strain, the fluctuating number of microcracks exhibits
collective behavior marked by percolation across the entire
sample to form the macrocrack. This microcrack formation is
heterogeneous even in the case of a homogeneous reference
lattice.

III. HEATS OF BOND RUPTURE

The last focus of our analysis is to quantitatively pin
down the fracture resistance of the material. This is achieved
by considering (1) the bond number fluctuations, Var(N ) =
〈N2〉 − 〈N〉2, and (2) the associated energy fluctuations,
Cov(U, N ) = 〈UN〉 − 〈U 〉〈N〉. These fluctuations, outputs
from the SGCMC simulations, are key to assessing the frac-
ture resistance of a material. In fact, akin to adsorption
processes [41,42], equate energy fluctuations with the heat of
bond rupture [43]:

qbr = −∂〈U 〉
∂〈N〉 = −Cov(U, N )

Var(N )
. (3)

Then, split the total energy U in two parts, one related to
the ground-state energy of the system, U 0 = ∑N

i U i(−→r i ),
representative of the internal bond energy (cohesion) in the
absence of any deformation of the system, the other related to
the deformation in consequence of, e.g., two-body interactions
between particles i, j, U λ = ∑N

i, j U i j (−→r i j = −→r j − −→r i ).
Consequently, a critical value of the bond rupture resistance

FIG. 6. Heat of bond rupture when crossing phase boundaries.
There is no unique condition for fracture across all values of imposed
bond rupture potential, across all domains. This is evidenced by the
value of the heat of bond rupture when crossing a phase boundary
in the different domains I, II, and III. Instead the value of qbr when
crossing a phase boundary serves to identify the different domains or
phases of brittle fracture across all possible values of bond rupture
potential.

can be defined at which the heat associated with the change in
strain energy, (qλ

br = −∂〈U λ〉/∂〈N〉), is equal with opposite
sign to the heat release due to ground-state energy release,
(q0

br = −∂〈U 0〉/∂〈N〉); that is, for qbr = 0,

qλ
br = −Cov(U λ, N )

Var(N )
≡ −q0

br = Cov(U 0, N )

Var(N )
. (4)

Expression (4) is nothing but Griffith’s quasistatic fracture
criterion [1] expressed in terms of energy fluctuations: −qλ

br
is the bond energy release rate (analogous to Griffith’s en-
ergy release rate [2]), and q0

br its critical value (analogous
to Griffith’s fracture energy). In this sense, for −qλ

br < q0
br ,

there are still enough strain energy reserves in the system
to redistribute the elastic strain energy due to a prescribed
volume change without further bond breakage. This process
can be associated with a stable bond fracture process. In con-
trast, for −qλ

br > q0
br , the system has exhausted its maximum

energy release capacity, defined by Eq. (4), releasing more
ground-state energy in the form of heat than redistributing
work internally in form of recoverable energy. This is shown
in Fig. 6 for the three domains identified from the phase dia-
gram. It is of interest to condense these results into simplified
bond fracture criteria. To this end, consider the probability of
switching a bond ON, pN→N+1, equal to the probability of
switching a bond OFF, pN→N−1, and rewrite the acceptance
criteria (2), while approximating the change in energy by
�UN→N+1 � ∂〈U 〉/∂〈N + 1〉 = −qbr :

exp[β(�μ + qbr )] = exp [β(−�μ − qbr )], (5a)

�μ = −qbr = −q0
br − qλ

br . (5b)

Equations (5) suggest two limit states that link the ex-
ternal fields (�μ,V, T ) to the fracture resistance q0

br ;
i.e., 0 � −qλ

br = q0
br + �μ � q0

br (noting that −qλ
br > 0).
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Furthermore, the bond rupture potential exhibits two bounds,
−q0

br � �μ � 0. The upper bound of Eq. (5b), �μ = 0, co-
incides with definition (4) of the critical bond energy release
rate, and is thus recognized as the critical fracture point, asso-
ciated with the maximum release of strain energy due to the
dissipation of groundstate energy. The bound of �μ = 0 also
marks the point of equilibrium of the bond rupture potentials
where �μ = μOFF − μON = 0. The lower bound �μ = −q0

br
can be attributed to the depletion of the energy storage of
the bonds before any strain is applied in accordance with
Eqs. (2) and (5a). Such a drastic shift in energy content of the
bonds pushes the system into a gaslike state where the most
favorable configuration of the system has no bonds, N = 0.
The actual lower bound found from simulations, while close to
−q0

br , is denoted by �μgas in order to reflect its deviation from
the predicted value and to associate it with the gas phase of the
system for �μ < �μgas. In between these two limit states the
effect of the bond rupture potential on the potential energy of
the system is absorbed by qλ

br in the acceptance probabilities
of the SGCMC moves, and therefore is visible from the bond
number of the system. These limit states are summarized by
the following set of fracture criteria in function of the bond
rupture potential across the considered domains I, II, and III:

qbr = q0
br

⎧⎨
⎩

1, �μ < �μgas (I),
�μ

�μgas
, �μgas � �μ � 0 (II),

0, �μ > 0 (III).
(6)

The agreement of the fracture criteria (6) with simulation re-
sults for the entire phase space is shown in Fig. 6. Specifically,
domain I corresponding to the gas phase exhibits no fracture,
since the system has no bonds to carry load. This results in
a zero heat of stretching (qλ

br = 0, thus qbr = q0
br). Domain II

is characterized by a solid phase where fracture occurs before
complete exhaustion of the ground-state energy of the material
along fracture surfaces; hence qbr > 0. Finally, domain III
corresponds to the solid phase where fracture occurs when the
heat associated with the change in strain energy is equal with
opposite sign to the heat due to ground-state energy release in
accordance with Eq. (4).

IV. CONCLUSIONS

In summary, we have shown that quasistatic fracture me-
chanics in the semi-grand-canonical ensemble provides a
versatile means to determine phase diagrams of brittle fracture
of solids. Modularity of the framework with respect to choice
of energy potential and geometry leaves open avenues for
investigation of fracture of heterogeneous materials. While
heats of bond rupture in the context of fracture have not
been measured, the simulation measurements can still be
compared to existing fracture resistance measurement tech-
niques. Furthermore, heats of bond rupture formulated in
this work can—at least theoretically—be measured through
calorimetry experiments. This work can lead to better un-
derstanding and implementation of such experiments in the
future. Furthermore, the approach permits assessment of the
fracture resistance of materials based upon fluctuations with-
out the need to concentrate these fluctuations into notches and
other discontinuities. The fact that the proposed semi-grand-
canonical method is not limited by bond potential expressions

and geometric texture of materials provides a promising venue
to investigate fracture phenomena of heterogeneous materials
with reference to the intimate interplay between structure and
fracture resistance.
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APPENDIX: METHODS

Simulations are carried out in the semi-grand-canonical
(SGC) ensemble. The semi-grand-canonical ensemble is char-
acterized by four prescribed state variables: total number
of bonds, N0, bond rupture potential, �μ, volume, V , and
temperature, T . In contrast to the grand canonical (μV T )
ensemble, the SGC ensemble is termed a �μV T ensemble,
because the total numbers of bonds, N0, is constant, admitting
only a change in identity of the bonds, being switched “ON”
or “OFF.” Therefore, N0 is the sum of these ON and OFF
bonds, N0 = NON + NOFF, with NON the work conjugate of
the prescribed bond potential �μ. Analogous to insertion
and deletion moves in GCMC-simulations, the ON and OFF
setting of bonds is at the core of SGCMC trial moves, together
with the bond topology of the considered texture model. The
bond topology is dictated by the nearest neighbors of a mass
point in the reference lattice. Randomly chosen ‘ON and OFF
Monte Carlo moves are completed with alternating molecular
dynamics (MD) runs in the NV T ensemble, to reach relaxed
equilibrium states.

For purposes of illustration of the SGCMC simulation
approach, we consider a face-centered cubic (FCC) lattice,
with scale factor

√
2, for the reason of keeping identical the

reference bond length, r0 = 1 in reduced units. The simulation
box is a 10 × 10 × 10 lattice in a periodic box of side length
L0 = 10

√
2r0, with four atoms in the unit cell for a total of

4000 atoms and 24 000 bonds (coordination number of the
FCC lattice is 12).

Two types of bond potentials are considered: a truncated
harmonic potential and a Morse potential, both defined by a
ground-state energy parameter, ε0

i , and a stiffness parameter,
ki, in addition to the reference bond length, r0, and cutoff
distance for the harmonic potential, rc = r0(1 + √

2ε0
i /ki ), so

that, for the harmonic case,

U H =
{−ε0

i + 1
2 ki(ri − r0)2, r � rc,

0, r > rc.
(A1)

And for the nonharmonic, Morse potential,

U M
i = Di(1 − exp−α(ri−r0 ) )2 − Di, (A2)

where the Morse parameters, Di = ε0
i and αi = √

ki/2Di,
are obtained from a Taylor expansion of the Morse poten-
tial around r0, in order to match the harmonic case. The
approach can be extended to heterogeneous solids by con-
sidering a distribution of ground state energies and stiffness
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values either through random placement or texture. Fur-
thermore, reduced units are employed for the ground-state
energy considering a low enough temperature (and associ-
ated thermal energy, kBT ) for the FCC to be a solid; that
is, in our simulations, T ∗ = kBT/ε0

i = 0.1. Similarly, due
to the the choice of the reference bond length, r0 = 1, in
reduced units, the stiffness parameter, ki, is expressed in re-
duced units, k∗

i = kir2
0/ε

0
i . The chosen value k∗

i = 61.32 is
representative of concrete when translating material proper-
ties into energy potential parameters in the lattice element
method [44].

The SGCMC approach requires specifying the state vari-
ables of the SGC ensemble: bond rupture potential �μ,
volume V , and temperature T , in addition to the constraint
of a constant total bond number, N0, fixed by the choice of
the system (here, N0 = 24 000). The prescribed volume is
parametrized in the form V = V0(1 + εV ), with V0 the unde-
formed reference volume of the simulation box, and εV the
volume strain. In the quasistatic strain-controlled test, the vol-
ume is increased by equally stretching the simulation box side
lengths Lx = Ly = Lz = L0(1 + λ). Strain increments of λ ≈
εV /3 = 0.1% are prescribed followed by long enough MD
simulations to reach quasistatic conditions in the displacement

controlled test. In these simulations, the reduced temperature
is controlled by means of a Nosé-Hoover thermostat, with
velocities sampled from a Gaussian distribution ensuring zero
angular momentum. The time step in MD simulations is set
to 0.005τ in Lennard-Jones reduced units (with unit LJ pa-
rameters). Between strain increments there are 1, 500τ and
2.1 million SGCMC swap moves. As this is a Monte Carlo
simulation, the time step is mostly relevant for the damp-
ing parameter of the Nose-Hoover thermostat, which is set
to 100τ , in order to reach the prescribed temperature. Once
relaxed, Monte Carlo simulations are carried out for each
strain-controlled test (volume Vk) at a given prescribed bond
rupture potential, �μ j , representative of the �μ jVkT ensem-
ble. That is, to sweep the (�μ,V ) phase space, a total of j × k
individual Monte Carlo simulations for each choice of pre-
scribed energy functional (harmonic or Morse) are carried out.
Starting with a fully bonded system, N = N0, displacement
loading is applied first before Monte Carlo simulations in the
�μ jVkT ensemble are performed. These simulations are car-
ried out with the LAMMPS Molecular Dynamics Simulator [45]
and visualizations are created using the Open Visualization
Tool (OVITO) [46].
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