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Effects of curvature on the propagation of undulatory waves in lower dimensional elastic materials
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The mechanics of lower dimensional elastic structures depends strongly on the geometry of their stress-free
state. Elastic deformations separate into in-plane stretching and lower energy out-of-plane bending deformations.
For elastic structures with a curved stress-free state, these two elastic modes are coupled within linear elasticity.
We investigate the effect of that curvature-induced coupling on wave propagation in lower dimensional elastic
structures, focusing on the simplest example—a curved elastic rod in two dimensions. We focus only on the
geometry-induced coupling between bending and longitudinal (in-plane) strain that is common to both rods in
two dimensions and to elastic shells. We find that the dispersion relation of the waves becomes gapped in the
presence of finite curvature; bending modes are absent below a frequency proportional to the curvature of the rod.
By studying the scattering of undulatory waves off regions of uniform curvature, we find that undulatory waves
with frequencies in the gap associated with the curved region tunnel through that curved region via conversion
into compression waves. These results should be directly applicable to the spectrum and spatial distribution
of phonon modes in a number of curved rod-like elastic solids, including carbon nanotubes and biopolymer
filaments.
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I. INTRODUCTION

Lower dimensional elastic structures are materials in which
one (or more) of their characteristic length scales is small,
while the others are not. Examples include biopolymer fila-
ments [1] (two such small lengths and one large one), ribbons
[2], and membranes or shells (one small length and two large
ones) [3]. The physics of lower dimensional elastic structures
is broadly applicable to problems ranging from nanometer
lengths in carbon nanotubes [4,5] to ≈106 meters when dis-
cussing continental plates [6]. In the purely biological context,
lower dimensional elastic structures are central to several
systems, including viral capsids [7–10] and cell membranes
[11–13] as well as filaments and and their bundles.

Due to their having one (or more) small dimensions, lower
dimensional elastic structures have a large separation of com-
pliances typically separating the soft modes associated with
bending normal to the small thickness direction and stiffer
modes associated with deformations whose displacements lie
normal to the small dimension directions. For example, a
thin rod is typically easier to bend than it is to stretch [14].
This is also well known in the study of flat elastic plates, in
which the out-of-plane motion of the sheet, that arises due to
bending deformations, requires low energies when compared
with in-plane deformations. For a shell of lateral extent L
and thickness h � L, this separation of energy scales can
be parametrized by the Föppl-von Kármán number νK ∼
(L/h)2 � 1 [15,16]. For a flat plate within linear elasticity
theory, these soft bending modes decouple from the stiff in-
plane deformations. When the elastic reference (stress-free)
state of the shell is not flat, these modes are coupled by the

local curvature. The result is that shells with complex geome-
try have significantly different elastic behavior [17–19]. For
example, thin shells with local positive Gauss curvature in
their stress-free state inhibit bending undulations [20]. Pre-
vious studies of the dynamics of undulatory waves on curved
shells have shown that, in the geometric optics limit, these
waves are reflected and refracted by changes in the local cur-
vature. They can even undergo total internal reflection when
propagating from regions of negative to positive Gaussian
curvature [21]. Such effects have measurable implications for
the spatial distribution of thermal undulations on red blood
cells, which have regions of both positive and negative Gauss
curvature [22].

The coupling of bending to stretching by curvature alters
the normal-mode frequency spectrum by mixing in-plane and
out-of-plane deformations. One may ask whether one could,
in effect, “hear” the curvature of a shell by examining its
eigenfrequencies of vibration. Famously, such a question was
posed with regard to hearing the shape of a drum [23], which
was in the negative [24]. We suggest by an example discussed
below that one can, in fact, hear the shape of a bent rod; this
has implications for understanding the phonon structure of
some carbon nanotubes [25].

In this paper, we study the propagation of elastic waves
on an undamped filament, where the elastic reference state
couples bending and stretching deformations within the
framework of linear elasticity. Our goal is go beyond the ge-
ometric optics analysis of undulatory waves and produce the
analog of the Fresnel equations, allowing one to understand
the transmission and reflection of elastic energy intensity at
various geometric interfaces. The simplest model that retains
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FIG. 1. Schematic representation of an undulatory wave on a
curved rod. The (black) solid line is the space curve of the unde-
formed rod with radius of curvature R supporting a sinusoidal wave
(not to scale) shown as the (red) dashed line. Deformations about
the undeformed state are decomposed locally into a displacement
u (wide blue arrow) along the local tangent, and a displacement f
(wide red arrow) along the local normal. The weak-curvature approx-
imation assumes that the radius of curvature R of the stress-free state
(solid black line) is much larger than wavelength λ of characteristic
deformations (dashed red line).

the geometric coupling of in-plane deformation and bending is
the elastic rod. While we believe that these results will inform
work on membranes with more complex curvature, the theory
is directly applicable to a wide variety of filaments. After
introducing the elastic Hamiltonian in Sec. II, we analyze in
Sec. III the effect of uniform curvature on the eigenmodes of
a rod, addressing the question of whether one can, in this in-
stance, observe the effect of curvature on the mode spectrum.
In Sec. IV, we look at the scattering of elastic waves on an
infinite rod by localized regions of curvature, where we find
that undulations can tunnel through curved regions that do not
support such undulations in the bulk. Finally, we summarize
our results and comment on their implications in Sec. V.

II. MODEL

We consider the elastic dynamics of a thin, curved rod
embedded in two dimensions. We neglect twisting or torsional
modes of deformation. Neglect of twisting can be justified
by our treatment of the rod’s cross section as infinitesimal.
By neglecting this coupling, we focus on the geometric bend-
stretch coupling that is common to both rods and elastic shells
or membranes. We note that, for the case of shells in three
dimensions, we may neglect torsion because it does not exist
for surfaces of codimension one. A more detailed explanation
is given following Eq. (5). We do not consider the elastic
deformation of the material in the rod’s cross section. Where
applicable, we state the results for a rod of uniform cross
section and composed of isotropic elastic continuum with
uniform elastic constants.

We develop the mechanics of curved rods by determining
the action from which the equations of motion are derived.
We work in the weak-curvature limit shown schematically in
Fig. 1. The weak-curvature limit is equivalent to the inequali-
ties h � λ � R, where h represents the cross-sectional radius,
λ is the length of characteristic deformations, and R is the
local radius of curvature. This is a one-dimensional version
of the linearized shallow shell theory approximations [15,21].

The stress-free configuration of the rod, shown in Fig. 1,
is described by a two-dimensional space curve X0(s), where
s denotes the arclength. The local tangent is given by t̂ =
dX0/ds. One may also compute the local normal (and binor-
mal, which is trivial for the rod embedded in the plane) vectors
via the well-known Frenet-Serret relations [26]. We may write
these relations as

d t̂
ds

= κ (s)n̂,
dn̂
ds

= −κ (s)t̂, (1)

where κ (s) is the arclength-dependent curvature [equivalent to
the inverse radius of curvature R(s)], n̂ the local normal vector,
and bold-face symbols refers to two-dimensional vectors.

We choose to neglect self-intersections of the rod primarily
because these introduce nonlocal (in s) interactions, which
cannot be addressed using this formalism. There are two
ways to justify this. One may assume that the curvature is
sufficiently weak and the rod’s length is sufficiently short that
the curvature of the elastic reference state does not generate
self-intersections. Second, one might assume that the rod is
vanishingly thin and that, even upon looping, it avoids self-
collisions by being displaced by an infinitesimal amount in the
third dimension. However, the extension to three dimensions
is known to introduce torsional instabilities. We do not address
these here. We expect these torsional effects to be small in the
limit of infinitesimally thin rods and note that the extension of
the problem to infinitely long rods simplifies the analysis of
the dispersion relation of coupled bending or stretching modes
on the rod, as shown below.

Having neglected such self-intersections, we observe that
the rod’s elastic energy density is determined solely by its
local state of deformation.

For small deformations δX (s), the space curve describing
the deformed state is then

X(s) = X0(s) + δX(s). (2)

Translational invariance demands that the elastic energy U be
a function of dX0

ds , dX
ds , and their derivatives. Given the curved

stress-free state of the rod, we also require that U vanishes
when X = X0. We obtain the elastic energy

U = 1

2

∫
ds[aU 2 + bK2], (3)

where a and b represent phenomenological parameters. We
have also introduced the one-dimensional longitudinal strain
tensor

U = 1√
2

[∣∣∣∣dX
ds

∣∣∣∣
2

−
∣∣∣∣dX0

ds

∣∣∣∣
2]1/2

= t̂ · dδX
ds

+ O(δX 2), (4)

and the bending tensor

K = 1

κ
√

2

[∣∣∣∣d2X
ds2

∣∣∣∣
2

−
∣∣∣∣d2X0

ds2

∣∣∣∣
2
]1/2

= n̂ · dδX
ds

+ O(δX 2).

(5)
For the case in which the reference state is straight, these
two contributions to the elastic Hamiltonian—see Eqs. (3)–
(5)—reduce to the standard definition of longitudinal strain
or stretching and out-of-plane bending. As a result, we re-
fer to the first and second terms of Eq. (3) as bending and
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stretching, respectively. Then, a and b have the interpretation
of elastic constants. We define the stretching [Eq. (4)] and
bending [Eq. (5)] strains, with square roots and squares in
the energy functional in order to align with the generalized
representation of elasticity in higher dimensions [10,15]. One
can certainly derive the energy functional without introducing
the squares and square roots—see Refs. [27,28]. As shown in
these references, one obtains the correct geometric nonlinear-
ities for the problem using that method. We do not explore
these higher-order in δX corrections.

For rods (and generally for objects of codimension greater
than one), there exist additional torsional degrees freedom that
contribute to the elastic energy [29]. These consist of displace-
ments normal to both the local tangent(s) as well as the unique
bending normal orthonormal to the covariant derivative of a
local geodesic. The generalized Serret-Frenet relations require
that each additional normal vector be proportional to the m >

1 derivative of the local tangent with respect to arc length. For
weakly curved rods, these torsional terms constructed out of
higher-order derivatives may be neglected in comparison with
the aforementioned bending and stretching contributions.

Deformations are parametrized in normal coordinates [3]

δX = ut̂ + f n̂, (6)

where u represents a local in-plane displacement that leads to
stretching deformations, and f represents local out-of-plane
displacements that lead to bending. Rewriting U and K in
terms of normal coordinates, we find (using primes to denote
arc length derivatives)

U = u′ − κ f , (7)

and

K = f ′′ + 2κu′ + κ ′u − κ2 f . (8)

In the weak-curvature limit, the second and fourth terms are
negligible. The third term is more subtle. It can certainly be
discarded for rods with constant curvature, which we study
here, but also may be discarded provided R′/R is small. We
thus find K ≈ f ′′.

To determine the action, we introduce the kinetic energy,
taking the mass density (mass per unit length) of the rod to
be ρ. In the weak-curvature limit, the kinetic-energy density
can be approximated by its flat rod result, as corrections are
higher order in curvature. Using dots (primes) for time (spa-
tial) derivatives, we obtain the action

S = 1

2

∫
ds{ρ ḟ 2 + ρu̇2 − a(u′ − κ f )2 − b f ′′2}. (9)

For a uniform elastic rod with Young’s modulus Y , cross
sectional area A, and moment of inertia I , the two phenomeno-
logical elastic constants can be expressed in terms of these
more microscopic ones as a = YA and b = Y I/2 [14]. We
may eliminate the dependence on a, b by a suitable rescaling
of length and time, introducing dimensionless independent
variables: s → s/�∗ and t → t/t∗, where

�∗ =
√

b

a
, (10)

t∗ =
√

bρ

a
. (11)

Variations with respect to u and f yield the equations of
motion

∂2
t f + ∂4

s f + M2 f = M∂su, (12a)

∂2
t u − ∂2

s u = −∂s(M f ), (12b)

where we have defined the dimensionless curvature

M(s) = �∗/R(s), (13)

in terms of the arc length dependent stress-free radius of cur-
vature R(s). Equations (12a) and (12b) are one-dimensional
versions of the linearized shallow shell equations governing
thin shells [15].

The boundary conditions are also obtained by variation of
the action. In addition to continuity of u, f , and f ′ across
the boundary, we find three force balance equations. These
equations require the continuity

	(u′ − M f ) = 0, (14)

	( f ′′) = 0, (15)

	( f ′′′) = 0, (16)

across an interface where the curvature of the rod changes,
say at s = 0. In the above equations we use the notation
	(φ) = lims→0+ φ − lims→0− φ to represent the discontinuity
of some variable φ across a boundary. At a boundary where
the curvature changes discontinuously, there is a subtlety in
that κ ′ is not well defined, suggesting that we are not justi-
fied in discarding the term κ ′u in the bending tensor K—see
Eq. (8). However, in the presence of discontinuous curvature,
our assumptions leading to the derivation of K cease to hold
as well. Physically, the boundary conditions (14)–(16) repre-
sent longitudinal force balance, transverse force balance, and
torque balance across the interface, respectively. Within the
linearized shallow shell theory [15] approximation K ≈ f ′′,
these boundary conditions still provide the correct physical
continuity of force and torque. Equation (12) and boundary
conditions (14)–(16) represent the minimal coupling of an
elastic rod to curvature.

III. EIGENMODES AND FREQUENCIES

We consider the case of constant curvature, which corre-
sponds to the replacement M(s) → M. Equations (12a) and
(12b) now constitute a set of linear partial differential equa-
tions. In the frequency domain, these equations can be made
to appear like the time-independent Schrödinger equation for
a spinor-valued state ket |ψ〉:

Ĥ |ψ〉 = ω2 |ψ〉 , (17)

which may be written in the s or arclength basis

〈s|ψ〉 = f (s) | f 〉 + u(s) |u〉 , (18)

in terms of basis spinors | f 〉 = (1 0)T and |u〉 = (0 1)T , and
two “wave functions” f (s) and u(s), which correspond to
the amplitude of bending and stretching deformation, respec-
tively. In terms of this spinor f u basis, the Hamiltonian is
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given by

Ĥ =
(

∂4
s + M2 −M∂s

M∂s −∂2
s

)
. (19)

Note that the f and u problems decouple on a straight rod
(M = 0) as expected—see below. We look for traveling-wave
solutions of the form eiks |ψk〉, where the spinor |ψk〉 is s-
independent. The Hamiltonian acting on such a state becomes

Ĥ (k, M ) =
(

k4 + M2 −iMk
iMk k2

)
. (20)

A. Zero curvature

We briefly review the case of zero curvature (M = 0). The
Hamiltonian is diagonal, with eigenfrequency and eigenstate
pairs

(ω = k) ↔ |u〉 , (ω = k2) ↔ | f 〉 . (21)

f and u waves have quadratic and linear dispersion relations,
respectively. In their mode spectrum there are three points of
degeneracy: k = 0,±1.

For a finite rod of length �, boundary conditions restrict the
allowed values of wave number k, producing a discrete spec-
trum of eigenvalues or frequencies. We consider a clamped
rod, requiring that u, f , and f ′ vanish at the boundary. The
eigenvalue equation [Eq. (17)] has a solution of the form
|ψ (s)〉 = eiks |ψk〉, provided that det(ω21 − Ĥ (k)) = 0. This
is satisfied for any wave number k that fulfills the condition

(ω2 − k2)(ω2 − k4) = 0. (22)

There are six solutions. These include two propagating u
waves of the form e±iωs |u〉, two propagating f waves of the
form e±i

√
ωs | f 〉, and two exponential (evanescent) f waves

corresponding to imaginary solutions of wave number. These
are given by e±√

ωs | f 〉.
We determine the allowed frequencies by first projecting

|ψ〉 onto the wave number basis,

ψ (k) =
∑
σ=±

cu
σ eσ iωs |u〉 + (

c f
σ eσ i

√
ωs + cE , f

σ eσ
√

ωs
) | f 〉 , (23)

in terms of the undetermined coefficients cu
±, c f

±, cE , f
± . The six

boundary conditions (three at each end) produce a set of six
equations for the six coefficients. A solution exists provided
the determinant of the coefficient matrix vanishes, yielding
the eigenfrequency condition

[cos(
√

ω�) cosh(
√

ω�) − 1] sin(ω�) = 0. (24)

Frequencies ω f that cause the bracketed expression to vanish
correspond to purely | f 〉 bending modes, whereas frequencies
ωu that cause the sine to vanish are purely |u〉 stretching
modes. Since the function cosh(x) grows exponentially with
its argument, to good approximation, we may use the ap-
proximate f -mode frequency condition cos(

√
ω f �) = 0 when√

ω� > 1. This leads to the (approximate) solutions for the
bending-mode eigenfrequencies

ω f ≈
(

(n + 1/2)π

�

)2

, (25)

FIG. 2. Dispersion relation of a uniformly curved rod of infinite
extent with M = 0.05. The degeneracy between the M = 0 disper-
sion curves (dashed black lines) is lifted due to curvature. Level
splitting between the upper branch (red) and lower branch (black)
is O(M ) near wave numbers k = ±1 and k = 0.

for positive integers n. The stretching eigenfrequencies, which
correspond to vanishing of sin(ωu�), are easily found to be

ωu = nπ

�
. (26)

B. Uniform curvature

In the presence of uniform curvature M, the eigenfrequen-
cies of Eq. (20) split into two branches:

ω2
± = 1

2 [(k4 + k2 + M2) ±
√

(k4 + k2 + M2)2 − 4k6], (27)

where the (+) subscript refers to the upper branch, and the
(−) subscript to the lower. In the limit M → 0 and |k| > 1,
these reduce to ω+ = k2 and ω− = k, indicating that the up-
per branch corresponds to a bending mode, and the lower
branch to a stretching mode. For |k| < 1, the identification
is reversed, with ω+ = k and ω− = k2. These identifications
are further supported by looking at the (unnormalized) eigen-
modes, which may be written as

|+〉 = | f 〉 + −ikM

k2 − ω2+(k, M )
|u〉 , (28)

|−〉 = |u〉 + ikM

k4 + M2 − ω2−(k, M )
| f 〉 . (29)

For |k| > 1, the M → 0 limit recovers the zero-curvature re-
sults |+〉 = | f 〉 and |−〉 = |u〉. Again, the identifications are
reversed for |k| < 1. For a rod of infinite length, the range of
allowed k values is continuously infinite. For a finite-length
rod, these modes become discrete with a countably infinite
number of allowed values of k; these values depend on the
details of the boundary conditions imposed at the ends of the
rod.

In Fig. 2, we plot the dispersion relations of elastic waves
on the rod at fixed M 
= 0. Curvature lifts the degeneracies at
wave numbers k = 0,±1. The magnitude of the level splitting
is O(M ). The upper branch is gapped; it does not tend to
zero with wave number, but instead to ω(k = 0) = M. In this
sense, the upper branch acts as if it has acquired a mass
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FIG. 3. The dispersion relation of a rod with uniform curvature,
color-coded according to the normalized amplitude of its correspond-
ing | f 〉 eigenstate. M = 0.15 and � = 1. Mode mixing is strongest
near the degeneracy points of the M = 0 case. In the inset, we show
the behavior for larger curvature M > 1. At small k, the upper branch
is essentially flat, while the lower branch develops an ω− ≈ |k|3/M
power law, in contrast to its quadratic dispersion relation at small
curvature.

due to curvature, hence our use of the notation M. If the
system possess frequencies ω < M, they must have complex
wave number and are necessarily bound. At finite M, in the
limit k → 0, the eigenmode of the upper branch becomes a
pure | f 〉 mode. Bending modes are gapped in the presence of
curvature, which can be viewed as the one-dimensional analog
of the suppression of undulations on thin shells at areas of
positive Gauss curvature [20,21]. In the case of shells, this
suppression is due to a change in character of the elasticity
equations from hyperbolic to elliptic upon changing the sign
of Gauss curvature [15]. Here, the effect manifests as a gap in
the dispersion.

In the absence of curvature, the linear and quadratic dis-
persion corresponded to directly to |u〉 and | f 〉 normal modes.
In the presence of curvature, these normal modes are mixed.
In Fig. 3, we show the same free dispersion relation color
coded by normal-mode amplitude. The amplitudes obey the
normalization constraint |u|2 + | f |2 = 1, which implies that
| f | = 1 when |u| = 0, and vice versa. The effects of mode
mixing are most prevalent at wave numbers near level split-
ting. At these points, the normal-mode amplitudes of the
two branches switch character between u and f dominated.
This ensures that only bending (stretching) dominated normal
modes exhibit quadratic (linear) dispersion at large wave num-
ber. For wave number k < 1, the lower branch ω− ∼ |k|3/M,
in contrast to the zero-curvature quadratic dispersion.

At fixed k, the frequencies on the upper (lower) branch of
Eq. (27) increase (decrease) with increasing M. At large k,
the frequencies on the lower branch decrease ≈M−1, while
those on the upper branch are hyperbolic and approach the
asymptote ω = M. As a result, frequencies ω+ may never fall
below M. This is due to the k = 0 band gap shown in Fig. 2
(see the inset of that figure).

The large-curvature limit of Eqs. (28) and (29) shows
that the eigenstates that mix bending and stretching modes
once again decouple so that |+〉 → | f 〉 and |−〉 → |u〉.
Interestingly, this is the same result as for M → 0. Since at

large M the |+〉 states become pure bending modes, we de-
duce that bending-dominated modes may not have frequencies
ω < M. Moreover, by increasing the curvature, one can iden-
tify which eigenfrequencies are related to primarily bending
(stretching) dynamics, by seeing if they increase (decrease)
with M. At larger curvature, due to the frequency gap, these
frequencies are separated by the line ω = M.

We now turn from the case of an infinite rod to a finite one.
For a finite rod, we must impose boundary conditions at the
ends, which generally lead to a quantized set of eigenfrequen-
cies ωn. To study how the frequency spectrum changes with
respect to curvature, we fix clamped boundary conditions at
the ends and vary only the curvature M. Thus, we demand
that u, f , and f ′ vanish at the endpoints s = 0, �.

Following the steps of Sec. III A to determine the eigen-
frequencies involves solving a cubic characteristic equation
for k2 as a function of ω, followed by finding the roots of
an analytically complicated transcendental equation. Instead,
we compute the eigenfrequencies and eigenfunctions directly
in position space numerically, using collocation methods on
a Chebyshev grid [30]. The eigenmode amplitudes are deter-
mined via numerical integration∫ �

0 | f |2ds∫ �

0 (| f |2 + |u|2)ds
,

performed via quadrature.
In the upper panel of Fig. 4, we plot the eigenfrequencies as

a function of curvature for a rod of length � = 20, color coded
so that an increasing ratio of bending to stretching amplitude
runs from dark to light. Broadly speaking, frequencies that
increase with respect to curvature are associated with bending
f modes, and such modes are still restricted to frequencies
ω > M. The lower frequency modes show more mixing of
bending and stretching.

Due to changing the rod’s curvature, spectral lines (fre-
quencies) corresponding to different modes cross. There are
three regimes, dictated by the strength of interaction between
different harmonics. At high frequency (and accordingly
high |k|), curvature-induced coupling between bending and
stretching is negligible. The spectral curves can be well ap-
proximated by using the zero-curvature k values, Eqs. (25) and
(26), in the equations for the ω+ and ω− branches. As for the
infinite rod, bending (stretching) modes increase (decrease)
with increasing curvature. At low frequencies, curvature sig-
nificantly affects the rod, and the free dispersion relation gives
a poor fit.

At intermediate frequencies (approximately 1 < ω < 1.75
in the upper panel of Fig. 4), frequencies exhibit oscillatory
behavior due to level splitting between other harmonics. To
understand this effect, we expand the state |ψ〉 of Eq. (17) in
the basis of zero-curvature eigenmodes

|ψ〉 =
∑

n

cn(M )
∣∣ψ (0)

n

〉
, (30)

for some M-dependent coefficients. This leads to an equation
for the coefficients cn:[

ω2(M ) − ω2
n

]
cn =

∑
m

〈
ψ (0)

n

∣∣V̂ ∣∣ψ (0)
m

〉
cm, (31)
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FIG. 4. The frequency spectrum of a clamped rod of length � =
20 as a function of curvature M. (top) The M-dependence of the fre-
quency spectrum, color coded by the relative amplitude of its f to u
mode, where lighter colors represent more bending f amplitude. Due
to parametric M dependence, each curve represents one eigenmode.
We find three distinct regimes: high ω where the curves look like
their infinite-rod counterparts, intermediate ω, where the spectrum is
approximated by free dispersion curves with level splitting, and low
ω where curvature strongly distorts the spectrum. (bottom) a close
up view of the frequency spectrum (black solid lines) overlaid with
the infinite rod dispersion curves for several modes labeled by n in
the figure (dashed lines). Level splitting occurs between even- and
odd-numbered modes, as explained in the text.

where we have introduced the M = 0 eigenfrequencies ωn

corresponding to the eigenmodes |ψn〉, and we have defined
the perturbation operator

V̂ =
(

M2 −M∂s

M∂s 0

)
. (32)

The perturbed eigenfrequencies ω(M ) retain implicit depen-
dence on the curvature M. For the infinite rod, the direct
solution of Eq. (30) leads to the frequencies and states ω±,
|±〉. We do not try to recover this result, but instead look at
the possible straight-rod states coupled by the perturbation
operator. Evaluating the off-diagonal matrix elements of Vmn

we find

〈m|V̂ |n〉m 
=n = −2M
∫ �

0
fm∂sunds, (33)

where fm and um represent the zero-curvature eigenfunc-
tions corresponding to the mth and nth eigenfrequencies—see
Eqs. (25) and (26). The zero-curvature Hamiltonian Ĥ0 is
invariant under a parity transformation Ĥ0(s) = Ĥ0(−s). As
a result, the eigenfunctions fn and un are either even or
odd. Since the operator ∂s is odd under parity, the operator
V̂ connects states of opposite parity. The coupling Vm 
=n is
nonvanishing only when m is even and n is odd, or vice
versa. In the lower panel of Fig. 4, we show a close-up view
of the frequency spectrum overlaid with the free dispersion
curves shown as dashed red (bending) and blue (stretching)
lines. These lines are labeled by their mode number n shown
in the corresponding color above each line in the figure.
One observes level splitting and repulsion between odd and
even harmonics, which leads to the oscillatory-like behavior.
The level repulsion observed at, e.g., M = 0.4 and ω = 1.55
is well known in quantum mechanics [31]. We point out
that the small-ω modes at higher M have a sufficiently long
wavelength (small k) that they violate the weak-curvature
approximation that the wavelength of the modes be smaller
than the local radius of curvature: λ < 1/R.

IV. SCATTERING

We study the transmission and reflection of undulatory and
compression waves through regions of nonzero curvature. We
imagine the scattering problem as follows: Two semi-infinite
straight rod segments are appended to the left and right sides
of a region of constant curvature M (i.e., the arc of a circle),
such that both the rod and its tangents are everywhere contin-
uous. We choose a coordinate system so that the center s = 0
is the symmetry point of the figure and note that the circular
arc has length �. The curvature jumps discontinuously from
0 → M on the left, and M → 0 on the right. See Fig. 5.

In the straight domains |s| > �/2, waves are defined by
the eigenmodes and eigenfrequencies of Sec. III A. Radiative
incoming and outgoing states are thus determined solely by
the basis of plane-wave solutions, i.e., values of k that satisfy
the infinite-rod dispersion relation. After demanding that the
solution be finite at ±∞, each semi-infinite rod has five such
solutions: an incoming and outgoing f wave, an incoming and
outgoing u wave, and one evanescent f wave.

In the curved domain s ∈ [−�/2, �/2], k can take complex
values. This differs from the well-known transmission through
a barrier in quantum mechanics, where the allowed k values
are either purely real or imaginary [31]. In general, states
with real k correspond to propagating solutions and facilitate
transmission. We refer to the number of propagating solutions
in the curved region as the number of channels, whereby a
wave may be transmitted through the curved domain. Before
computing transmission or reflection coefficients for an in-
coming plane wave, we study how the number of available
channels is set by the combination of both the curvature of the
rod and the frequency of an incoming plane wave.

The characteristic equation is found by demanding that the
eigenvalue problem defined by Eq. (17) with the Hamiltonian
given by Eq. (20) has a solution. This is ensured provided

det[ω21 − Ĥ (k, M )] = 0. (34)
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tf

tu

tEf
rE
f

rf

ru R

Bending f wave 

Compression u wave 

M > ω :M < ω :
4 channels 2 channels 

R = 0 R = ∗/M R = 0

s = − /2 s = + /2

FIG. 5. Schematic representation of an elastic rod (solid gray
line) formed by adjoining two semi-infinite straight rods at the
(black) dashed lines to the left (s = −�/2) and right (s = �/2) of
the curved rod segment (arc of a circle with radius R), such that
the rod and its tangent are everywhere continuous. We consider the
scattering of an incoming bending f wave from the left, through
the region of constant curvature M. Curvy arrows correspond to
propagating asymptotic states, and decaying arrows to evanescent
states. The darker (lighter) colors refer to u ( f ) modes. There are
six unknown transmission and reflection amplitudes. In the curved
region, there are either two or four propagating channels, determined
by the value of M.

We find that the characteristic equation for κ = k2 is cubic:

κ3 − ω2κ2 − ω2κ − ω2(M2 − ω2) = 0. (35)

Real solutions κ < 0 and κ > 0 correspond to evanescent and
propagating waves, respectively. Complex κ corresponds to
damped propagating waves.

The number of channels is twice the number of real, pos-
itive roots κ . These roots are a function of frequency and
curvature. At zero curvature (M = 0), there are three roots at
κ = ±ω, κ = ω2, leading to four channels (two pure f waves,
and two pure u waves). At nonzero M, Descartes’ rule of signs
states that the number of positive (negative) roots is equal to or
less than (by an even number) the number of sign changes of
the coefficients when ordered in decreasing powers of κ (−κ).

For M > ω, the polynomial coefficients undergo one sign
change. There is only one positive root. When 0 � M < ω,
Descartes’ rule determines that there are either two or zero
positive roots. In the limit M = 0, we already know that the
characteristic equation contains two positive roots, and has
a positive y intercept. Increasing M will only serve to shift
the characteristic polynomial downward, while keeping the y
intercept positive for 0 � M < ω. This shift cannot remove
the two positive roots. We conclude that for 0 � M < ω the
characteristic polynomial has two positive roots.

In summary, there are four available channels when
0 � M < ω, but for M > ω there are only two available
channels. The reduction in the number of channels with de-
creasing frequency can be traced back to the vanishing of
f -dominated eigenmodes for frequencies ω < M. However,
the two available channels are not pure u modes but instead
some combination of f and u displacements. This mixing
of the modes allows pure f or u modes to interconvert in

the presence of curvature, which has implications for phonon
transmission through curved regions.

Transmission and reflection through constant curvature

We consider the case of an incoming, purely f -mode wave
ei

√
ωs | f 〉, or a purely u-mode wave eiωs |u〉. In both cases, we

take the incident wave to have unit amplitude far to the left
of the circular arc. The wave, scattered by the curved region,
produces two transmitted f and u waves with transmission
amplitudes t f and tu, two reflected waves with amplitudes r f

and ru, and two evanescent waves with amplitudes rE
f and tE

f ,
which decay exponentially away from s = ±�/2. The situa-
tion is summarized in Fig. 5.

The transmission (reflection) coefficient, denoted by a cap-
ital letter T (R), is defined as the ratio of the outgoing flux of
amplitude to the incoming flux. The flux is given by the prod-
uct of the amplitude squared times the group velocity. For an
incoming f wave of unit amplitude, the f -mode transmission
and reflection coefficients are

Tf = |t f |2, R f = |r f |2. (36)

However, since bending and compression waves obey differ-
ent dispersion relations, we must account for their difference
in group velocity. Compression u waves have unit velocity,
while bending waves have a group velocity of dω/dk = 2

√
ω.

For an incoming f wave, the transmitted and reflected u waves
are given by

Tu = |tu|2
2
√

ω
, Ru = |ru|2

2
√

ω
. (37)

To solve for the transmission and reflection coefficients, we
must explicitly solve Eq. (17) at nonzero M and then employ
the boundary conditions—(14)–(16)—to stitch together solu-
tions at the boundaries s = ±�/2.

Since we are looking for plane-wave solutions of the
form |ψ (s)〉 = eiks |ψk〉, we shall reformulate Eq. (17) as
an eigenvalue problem of the operator ∂s at fixed ω. This
is accomplished by reducing all higher-order derivatives ∂s

through the introduction of new fields fa ≡ ∂a
s f and ua = ∂a

s u,
for integers a � 0. The resulting system of equations may be
written as a vector differential equation

∂x |χ〉 = Â |χ〉 (38)

for the six-dimensional vector

|χ〉 =

⎛
⎜⎜⎜⎜⎜⎝

u0

u1

f0

f1

f2

f3

⎞
⎟⎟⎟⎟⎟⎠ (39)

and matrix

Â =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
−ω2 0 0 M 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 M ω2 − M2 0 0 0

⎞
⎟⎟⎟⎟⎟⎠. (40)
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FIG. 6. Transmission and reflection coefficients for a bending
wave of unit amplitude incident on a region of length � = 10, with
uniform curvature M = 3. (top) The transmission coefficients for
bending (orange) and compression (black) waves. (bottom) The total
transmission and reflection coefficients. Due to conservation of en-
ergy, the coefficients obey Tf + Tu + Rf + Ru = 1. Curvature mixes
eigenmodes, converting the incident pure bending wave into a linear
combination of bending and compression waves.

The boundary conditions are now algebraic relations among
all these fields. For a trial solution of the form eiks |χk〉, there
are six possible solutions in the curved region, one for each
value k that is a root of the characteristic polynomial—see
Eq. (35). The full solution is given by a linear superposition
of these trial solutions with six undetermined coefficients. We
also have six more undetermined coefficients associated with
the incident, reflected, and transmitted waves, giving a total of
twelve undetermined coefficients. These are fixed by impos-
ing the continuity of u, f , and f ′ at s = ±�/2 (six conditions),
as well as the three force balance conditions—Eq. (14)—at
s = ±�/2 (six conditions). Thus, we have a system of twelve
linear equations that can be solved for the scattering ampli-
tudes.

We solve these equations numerically. In Fig. 6, we plot
the transmission and reflection coefficients for an f wave of
unit amplitude incident on an interval of length � = 10, with
uniform curvature M = 3. In the upper panel of Fig. 6, we
show both the bending and compression transmission coeffi-
cients separately. Due to conservation of energy, we can define
a total transmission coefficient Ttot = Tf + Tu and reflection
coefficient Rtot = R f + Ru such that their sum Ttot + Rtot = 1

is unity. Although we consider only an incoming bending
wave, we find that curvature allows the rod to convert bend-
ing into stretching deformations, leading to the production of
compression waves.

At low frequencies, ω < M, the circular arc of the rod
cannot support bending-dominant modes. The nonzero trans-
mission coefficient for incident bending waves indicates that
the f waves can, in effect, tunnel through the curved region
via conversion to compression u waves, which then convert
back into outgoing bending f waves in the righthand straight
segment of the rod. In the curved domain, the incoming
bending mode propagates through one of the two available
channels. As frequency increases through ω = M, the number
of available channels in the curved domain jumps from two
to four. This leads to a dramatic increase in the transmission
coefficient.

For higher frequencies ω > M, the circular arc can sup-
port bending-dominant modes. As a result, the transmission
coefficient for f waves in the upper panel of Fig. 6 is much
larger than that for u waves and tends to one as ω → ∞. The
two principal effects of curvature—conversion from bending
to compression and suppression of bending modes—diminish
at high frequency.

In addition to these jumps, the transmission coefficients are
oscillatory. It is well known that peaks in the scattering am-
plitude correspond to bound states under a change of sign of
the eigenvalue ω2 → −ω2 [32]. Since f has these peaks, they
must correspond to eigenmodes in the curved region, which
we know to be u dominant. Therefore, the incident bending
wave uses these u-dominant modes to “tunnel” through the
curved region.

When ω < M, the upper panel of Fig. 6 shows Tf and Tu

oscillating in phase. This supports idea that bending modes
propagate via compression-dominated eigenmodes in the
curved domain. Alternatively, for ω > M, Tf and Tu oscillate
out of phase. Peaks in Tf occur at frequencies corresponding
to bending-dominated bound states. The fact that Tf and Tu

are now out of phase shows that bending f waves are not
traversing the curved region by conversion into compression
u waves.

Finally, we observe that Tf is a decreasing function of
frequency in the domain 0 � ω < M, while Tu is an increasing
function of frequency on that same domain. Transmission
of bending waves is a minimum for frequencies just below
ω = M. This suggests that bending waves are most effective
at tunneling through curvature for both small and large fre-
quencies.

In Fig. 7 we show the transmission and reflection coeffi-
cients for the case of an incoming u wave. We find similar
results. The main difference lies at frequencies ω < M. Bend-
ing waves arise only if they are produced via mode coupling in
the curved domain. We find that Tf follows Tu, decreasing as
frequency goes to zero, in contrast to its behavior for a purely
bending incoming wave.

V. CONCLUSION

We investigate the interplay of bending and stretching in
a curved, one-dimensional elastic rod. This is the simplest
model that retains both bending and stretching deformations
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FIG. 7. Transmission and reflection coefficients for a compres-
sion wave of unit amplitude incident on a region of length � = 10,
with uniform curvature M = 3. (top) The transmission coefficients
for bending (orange) and compression (black) waves. (bottom) The
total transmission and reflection coefficients. In contrast to an inci-
dent bending wave, see Fig. 6, the transmission coefficients vanish as
ω → 0.

and allows their coupling via the geometry of the unstressed
state [33]. In the limit of small deformations, we find a
set of two coupled equations for out-of-plane deformations
f and in-plane deformations u, corresponding to bending
and stretching, respectively. These equations are the one-
dimensional analog of the linearized shallow shell equations
for a thin elastic shell. In fact, those equations reduce to the
ones we study here in the limit of a membrane in which spatial
variations occur along one direction only.

We find that there are two principal effects of curvature.
The first is the opening of a frequency gap in the dispersion

relation. This prevents bending f modes with frequencies
ω < M, with ω and M being the dimensionless frequency and
curvature, respectively. This is the simpler one-dimensional
equivalent of the suppression of bending undulations on mem-
branes at areas of positive Gauss curvature [20,21]. For a
finite rod with a discrete frequency spectrum, the restriction
of ω > M for bending eigenfrequencies causes eigenfrequen-
cies to cross with increasing curvature. By slowly bending a
ringing rod, one can, in effect, “hear” the effects of curvature
by noting that the modes split into an upper branch tending
to the curve ω = M and a lower branch tending to zero. In
this restricted sense, one can indeed hear changing curvature
in a rod. We also note that one observes an oscillation of
eigenfrequencies with respect to M as a consequence of level
splitting among harmonics.

The second principal effect of curvature is the ability for
undulatory f waves with frequency ω to tunnel through re-
gions of curvature M > ω. Although the curved region cannot
support such bending waves, by coupling to in-plane modes,
these undulatory waves can convert to compression waves in
order to tunnel through curvature. This tunneling effect may
be significant for understanding the propagation of flexural
(bending) phonons over large distances in rods or membranes
with complex curvature in their stress-free state. Physical
examples should include the propagation of phonons in bent
carbon nanotubes or ribbons. For the case of nanotubes, there
are more elastic modes, such as radial “breathing” oscillations
and torsion, which we do not address here. However, the
basic coupling between bending and stretching imposed by
the curvature of the elastic reference state will still apply to
this more complex system. Finally, we note that the same
geometrically induced coupling should affect the propagation
of membrane undulations along cell membranes [22].

Open questions include how constitutive nonlinearities of
the rod [34] which also cause flexural and longitudinal wave
mixing interact with the geometric effects explored here. Ad-
ditionally, one may inquire about rods with internal structures
that lead to twist-stretch coupling, as is well known for DNA
[35]. Finally, one may ask if multiple scattering of bending
waves from randomly curved surfaces can lead to localization,
and then consider how the “tunneling” of bending waves may
affect this result.
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