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Theoretical study of electrorheological behavior of a nematic liquid crystal confined by two
cylindrical surfaces with different anchoring energies
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Electrorheological response of a nematic liquid crystal confined in the region between two coaxial and rotating
circular cylinders is studied theoretically. Utilizing weak anchoring conditions, the physical properties of 4-n-
pentyl-4-cyanobiphenyl (5CB), nonslip boundary conditions, and contrasting surface anchoring energies, we
numerically obtain the equilibrium configurations for the nematic director under the influence of an external
low-frequency radial electric field and the corresponding (angular) velocity profiles. The Fréedericksz transition
is parametrized by the cylinders’ radii ratio for different values of the surface energies. The averaged apparent
viscosity of the nematic is calculated also.
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I. INTRODUCTION

Since their discovery in 1888 [1], liquid crystals (LCs) have
received increasing interest from the scientific community
because of their wide variety of technological applications,
such as liquid crystal displays [2], electro-optical devices [3],
wavelength filters [4], and liquid crystal thermometers [5].

Systems involving liquid crystals confined between two
concentric cylinders have been investigated to elucidate their
flow [6], the Fréedericksz transition occurring in the absence
of external electric field [7], and their flexoelectric instability
[8] by applying a stability analysis based on the orientational
profile [9]. These studies were motivated by the original
problem proposed by Meyer, solved in a special case by
Parodi, and then discussed in the book of de Gennes [10].
Subsequently, the same problem was reexamined by Williams
[11] by considering that the elastic constants of splay and
bend are different, in the strong anchoring approximation.
Very recently, the equilibrium problem for a nematic liquid
crystal confined within two parallel eccentric cylinders with
homeotropic anchoring on the lateral boundaries has been
rigorously analyzed by Rosso et al. [12] in the framework of
a purely director approach.

However, electrorheological fluids (ERFs), which consist
of polarizable particles immersed in a nonpolarizable solvent
from which fibrillated structures are formed when external
electric fields are applied, have been widely used. Contrary
to traditional LCs where agglomeration and sedimentation
of particles and erosion issues are constantly found [13],
ERFs are highly homogeneous due to the absence of sus-
pended particles which has encouraged its application to
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microsystems [14]. Also, apparent viscosity of ERFs is con-
trolled by external electric fields. In 2002, Yoshida et al. [15]
studied the properties of ERFs to manipulate the flow through
micro valves.

Yang et al. [16] demonstrate the ability of a LC to function
as an ERF and also that the viscosity of a polymeric liquid
crystal increased an order of magnitude after the application
of an external field. In the work of Volder et al. [13], a
microcapillary tube filled by nematic liquid crystal (NLC) was
considered and variations of the flow due to the presence of an
external electric field were studied.

Electrorheological response of a confined NLC is strongly
influenced by the physical properties of the boundary walls
[17,18]. Depending on the methods or techniques used to in-
duced a surface alignment [19,20], anchoring conditions could
be strong [21,22] or weak [23,24] and their general properties
can be expressed by using the Rapini-Papoular model [25].
Experimentally, there is also a wide range of values for this
surface anchoring energy [26,27].

Fréedericksz transition, first discovered in magnetic exper-
iments [28,29], is related to the reorientation of the molecules
of the NLC once the external field (electric or magnetic) has
reached some threshold value and overcomes the anchoring
energies at the confining surfaces and the elastic energy of
the bulk [30]. This configurational transition has been widely
used in electro-optical devices [31].

In this paper we study the response of the 4-n-pentyl-4-
cyanobiphenyl (5CB) NLC confined in the region between
two coaxial circular cylinders, which rotate at different con-
stant angular velocities and where a low-frequency (KHz)
radial electric field is applied. By considering no-slip bound-
ary conditions and weak anchoring conditions, in Sec. II we
establish the total energy density, and use variational methods
to derive the equilibrium equations satisfied by the director at
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FIG. 1. Longitudinal section of the coaxial circular cylinders. A nematic liquid crystal between two coaxial cylinders which rotate at
different angular velocities �1 and �2. Also, the radial AC electric field applied to the nematic and the angle of inclination θ (r) of the director
n = sin θ (r)êr + cos θ (r)êφ are shown.

the cylindrical surfaces. From the nematodynamic theory, we
also derive differential equation for the director in the bulk
and for the velocity profile. In Sec. III, we solve numerically
these equilibrium equations to obtain the director configura-
tion of the NLC, the velocity profile and the threshold field
for different values of the surface anchoring energies ratio
and parametrized by the cylinders radii ratio and the electric
field strength. In Sec. IV, we obtain the averaged apparent
viscosity. Finally, in Sec. V we give some concluding remarks.

II. BASIC EQUATIONS

We consider a nematic between two coaxial circular cylin-
ders with radii R1 and R2 (R1 < R2) which rotate at constant
angular velocities �1 and �2, respectively (Fig. 1). It is im-
portant to mention that the same system and geometry was
previously analyzed in Refs. [6,32], but by assuming strong
anchoring boundary condition for the nematic director and in
the absence of electric field. This problem indeed was already
considered by Atkin and Leslie [6] many years ago where a
similar notation to the one we use here was employed.

Under the action of a low-frequency electric field, the di-
rector is spatially homogeneous along the axis of the tubes.
Thus, in cylindrical coordinates (x1, x2, x3) = (r, φ, z), we ex-
press the director and the velocity field as

n = sin θ (r)êr + cos θ (r)êφ (1)

and

v = vφ êφ ≡ rω(r)êφ, (2)

where θ (r) is the orientational angle measured from the φ axis
and êr and êφ are the unitary vectors along the radial and the
azimuthal direction, respectively. Also, we assume the no-slip
boundary conditions

ω(r = R1) = �1, ω(r = R2) = �2. (3)

For the present physical system, the elastic Frank-Oseen
energy density is

2Ff o = K1(∇ · n̂)2 + K2(n̂ · ∇ × n̂)2 + K3(n̂ × ∇ × n̂)2

− K24∇ · (n∇ · n + n × ∇ × n), (4)

where the elastic moduli K1, K2, and K3 refer to splay, twist,
and bend deformations, respectively, while K24 is the saddle-
splay elastic constant [32,33].

Also, for an applied low-frequency radial electric field
between the cylindrical surfaces, E(r), the electric energy
density is given as

Felec = −1

2
D · E = −1

2
εrr (r)E2, (5)

where D is the electric displacement and εrr (r) is an element
of the dielectric tensor εi j . Since we are dealing with an
uniaxial nematic, the dielectric tensor is expressed as [34]

εi j = ε⊥δi j + εanin j, (6)

with εa = ε‖ − ε⊥ the dielectric anisotropy, and ε‖ and ε⊥ the
parallel and perpendicular dielectric constants of the nematic,
respectively.

Moreover, if �	 is the fixed electric potential maintained
at the cylinders, then the electric field between the surfaces
r = R1 and r = R2 is given as E(r) = −ur�	/r ln (R2/R1).
It is worth to mention that this is only a electrostatic solution,
so we are assuming a quasistatic approximation to model a
low-frequency field in the order of KHz. Hence, from Eqs. (1),
(5), and (6), the electric energy density can be written in the
following way:

Felec = −qK1

2r2

(
sin2 θ + ε⊥

εa

)
, (7)

where the parameter

q ≡ εa(�	)2/K1 ln2 (R2/R1) (8)
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is the ratio of the electric and elastic energies. As can be seen
the value q does not depends on the sign of �	 so it does not
matter which cylinder has the larger voltage. Thus, for q � 1
the influence of the field is weak, meanwhile for q � 1 the
applied electric field overcomes the molecular elastic forces.

However, the energy density due to the movement of the
LC is

Fh = 1
2ρv2, (9)

where ρ is the mass density of the nematic and v ≡ |v| is the
magnitude of the velocity field.

We obtain the total energy of the nematic by using Eqs. (4),
(7), and (9) and by taking into account that the surface energy
density of the NLC at each cylindrical surface energy den-
sity is modeled by the Rapini-Papoular anchoring potential
[25,35]

Fs[θ (Ri )] = τ0

2
sin2 (θ (Ri ) − θ0), i = 1, 2, (10)

where θ0 is the tilt angle [36] and τ0 is the surface anchoring
energy whose values depend on the LC properties at each
cylindrical surface.

Therefore, the total free energy for the NLC is expressed
as

F =
∫

V
(Ff o + Felec + Fh)dV +

∫
S1

Fs[θ (R1)]dS1

+
∫

S2

Fs[θ (R2)]dS2. (11)

By performing the change of variable x = r/R2, introduc-
ing the parameters κ = K3/K1, a = R1/R2, expressing ∇ · n
and ∇ × n in cylindrical coordinates, and considering that
at the cylindrical surfaces the tilt angles satisfy θ0(a) = 0 =
θ0(1), we obtain that the total free energy per unit length,
f ≡ F/L (L the length of the cylinders), can be written in
the following form:

f =
∫ 1

a
fB

(
θ,

dθ

dx

)
dx + fS[θ (a)] + fS[θ (1)], (12)

with fB and fS the bulk and surface functions given as

fB

(
θ,

dθ

dx

)
= πK1x

(
cos2 θ + κ sin2 θ

)(dθ

dx

)2

+ πK1

x
(sin2 θ + κ cos2 θ )

− πK1qx

(
sin2 θ + ε⊥

ε‖

)
+ πR4

2ρω2x3, (13)

where

fS[θ (a)] = πK1σa sin2 θ (a), (14)

fS[θ (1)] = πK1σ1 sin2 θ (1) (15)

are functions defined only at the cylindrical surfaces and

σa ≡
(

aR2

K1

)
τ0a + κ − 1, σ1 ≡

(
R2

K1

)
τ01 − (κ − 1),

(16)
with τ0a and τ01 the anchoring energies at inner (x = a)
and outer (x = 1) cylinders, respectively. The dimensionless

parameters σa and σ1 can be considered as ratios between the
effective surface anchoring energy at each cylinder and the
elastic bulk energy.

To obtain the anchoring conditions satisfied by the director
n, the total free energy of the nematic must be minimized.
Thus, using a standard variational calculus procedure, we can
derive the bulk expression fB with respect to both θ and
dθ/dx, and considering the surface function fS to obtain that

δ f =
∫ 1

a

[(
∂ fB

∂θ

)
δθ +

(
∂ fB

∂ (dθ/dx)

)
δ

(
dθ

dx

)]
dx

+
[(

d	S

dx

)
δθ (x)

]
x=1

+
[(

d	S

dx

)
δθ (x)

]
x=a

. (17)

Since δ( dθ
dx ) = d

dx (δθ ) and using the identity

d

dx

(
∂ fB

∂ (dθ/dx)
δθ

)

= d

dx

(
∂ fB

∂ (dθ/dx)

)
δθ + ∂ fB

∂ (dθ/dx)

d

dx
(δθ ), (18)

thus, Eq. (17) can be written as

δ f =
∫ 1

a

[
∂ fB

∂θ
− d

dx

(
∂ fB

∂ (dθ/dx)

)]
δθdx

+
[

d	S

dθ
+ ∂ fB

∂ (dθ/dx)

]
x=1

δ[θ (1)]

+
[

d	S

dθ
− ∂ fB

∂ (dθ/dx)

]
x=a

δ[θ (a)]. (19)

From the condition for extrema δ f = 0, we obtain the
coefficients for each of the independent variations δθ , δθ (1)
and δθ (a) must vanish simultaneously. Therefore, fB satisfies
the Euler-Lagrange equation,

∂ fB

∂θ
− d

dx

(
∂ fB

∂ (dθ/dx)

)
= 0, (20)

meanwhile, from the coefficients for δθ (1) and δθ (a), the
weak anchoring conditions at the cylindrical surfaces are
given as

dθ

dx

∣∣∣∣∣
x=a

= σa sin θ (a) cos θ (a)

cos2 θ (a) + κ sin2 θ (a)
, (21)

dθ

dx

∣∣∣∣∣
x=1

= − σ1 sin θ (1) cos θ (1)

cos2 θ (1) + κ sin2 θ (1)
. (22)

For low frequencies excitations, by using the sum con-
vention and by denoting ∂k ≡ ∂

∂xk
, thus the nematodynamic

equation for the director is written in the following way:

dni

dt
= Wiknk + λ(δil − ninl )Alknk + 1

γ1
(δi j − nin j )Hj, (23)

where λ = −γ2/γ1 is a dimensionless parameter defined as
the ratio of two viscosities,

Hj = ∂ jπi j − ∂F/∂ni, πi j = ∂F
∂ (∂ jni )

(24)
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is the molecular field, and

Ai j = 1
2 (∂ jvi + ∂iv j ), (25)

Wi j = 1
2 (∂ jvi − ∂iv j ) (26)

are the rate of strain tensor and the vorticity tensor [32,33],
respectively. Moreover, the dynamic equation for the velocity
field is given as

ρ
dvi

dt
= −∂i p + ∂kσik, (27)

where ρ is the mass density, p is the pressure field and σi j

is the stress tensor of the nematic which can be expressed as
[32,37]

σi j = α1nin jnknpAkp + α2Nin j + α3niNj + α4Ai j

+ α5n jnkAik + α6ninkA jk, (28)

with

Ni = dni

dt
− Wi jn j (29)

and αi the Leslie viscosities coefficients which satisfy the Par-
odi relation [33] α2 + α3 = α6 − α5. Also, in terms of these
viscosities, γ1 = α3 − α2 � 0, γ2 = α2 + α3.

In the case of a Couette flow [38], Eqs. (23) and (27) take
the form

0 = (cos2 θ + κ sin2 θ )

(
d2θ

dx2
+ 1

x

dθ

dx

)

+ 1

2
(κ − 1) sin (2θ )

(
dθ

dx

)2

+ κ + q − 1

2x2
sin (2θ )

− R2
2

2K1
(γ1 + γ2 cos 2θ )

(
x

dω

dx

)
(30)

and

0 = d

dx

[
η(θ )x

dω

dx

]
+ 2η(θ )

dω

dx
, (31)

where

2η(θ ) = 2α1 sin2 θ cos2 θ + (α5 − α2) sin2 θ

+ (α6 + α3) cos2 θ + α4 (32)

is the local viscosity of the nematic [32,39]. From the no-slip
condition established by Eq. (3), the solution of Eq. (31) is
found to be

�ω ≡ ω(x) − �1 = bK1

R2
2

∫ x

a

ds

s3η[θ (s)]
, (33)

where b is an integration constant given by the relation

�� ≡ �2 − �1 = bK1

R2
2

∫ 1

a

ds

s3η[θ (s)]
. (34)

Therefore, from Eqs. (30), (31), and (33), the nonlinear
differential equation satisfied by θ (x) is

0 = (cos2 θ + κ sin2 θ )

(
x2 d2θ

dx2
+ x

dθ

dx

)

+ 1

2
(κ − 1)x2 sin (2θ )

(
dθ

dx

)2

+ κ + q − 1

2
sin (2θ )

− b

2η(θ )
(γ1 + γ2 cos 2θ ). (35)

The numerical solutions for Eq. (35) corresponding to the
NLC 5CB were performed by using the shooting method
[40,41] and are described in the next sections.

III. NLC DIRECTOR’S ORIENTATION, VELOCITY
PROFILE AND FRÉEDERICKSZ TRANSITION

The parameters used in the numerical solutions are K1 =
1.2 × 10−11N, K3 = 1.5792 × 10−11N, α1 = −0.0060 Pa − s,
α2=−0.0812 Pa − s, α3=−0.0036 Pa − s, α4=0.0652 Pa − s,
α5 = 0.0690 Pa − s, α6 = −0.0208 Pa − s, γ1 = 0.0777 Pa −
s, γ2 = −0.0848 Pa − s, ε⊥ = 6.6 and εa = 13.15 [32,42].
Furthermore, we consider that TIN − T = 10 ◦C where TIN =
35 ◦C is the clearing temperature at which 5CB suffers the
transition from nematic to isotropic phase [43], and chosen
dimensions of the cylinders such that a = 0.5.

Since the surfactant coating applied experimentally to each
surface could be different in each of them, we define the
ratio β = τ0a/τ01 . To show the effect of the surface anchoring
energies on θ (x), numerical results are given by considering
β and the effective surface anchoring energy σa [Eq. (16)].

We start by analyzing the case in which the surface an-
choring energies τ0a and τ01 which amounts to set β = 1.
In Figs. 2(a) and 2(b) we have depicted two sets of NLC
configurations for the inclination angle of the director, θ (x),
corresponding to σa = 5 and σa = 15, and parametrized by
the value of q. In calculating numerically these textures, we
have found that for each value of σa there is a threshold value
qc under which the NLC remains undistorted, that is θ (x) = 0
for q < qc. In other words, it was observed a configurational
transition whose threshold value depends on the anchoring
energy [30]. For the cases drawn in these plots, qc ∼ 7.8 for
σa = 5 and qc ∼ 13.3 for σa = 15. Moreover, the threshold
value qc not only depends on σa, but also on the dimensionless
parameter β as we will show below. Because for liquid crystal
under different geometries and boundary conditions [9] the
threshold qc depends on the share rate, it is reasonable to ask
this question. In the Appendix, we briefly show how for our
model, the threshold does not depend on ��.

Also, it is observed that as σa increases, the intervals within
the inclination angle at the cylindrical surfaces take values
which are closer to zero and their thicknesses decrease; also,
as the strength of the applied electric field increases, the values
of θ decrease. This behavior is a consequence of the rela-
tion between the corresponding effective anchoring energies
which for the case of the configurations of Fig. 2 satisfy
σa < σ1 for τ0a = τ01 .
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FIG. 2. Orientation of the NLC 5CB as a function of x. In panels (a) and (b), it is shown the plots for σa = 5 and σa = 15, respectively, and
for different values of q. Dashed lines are the configurations at the Fréedericksz transition q = qc where qc ∼ 7.8 in panel (a) and qc ∼ 13.3 in
panel (b).

Figures 3(a)– 3(c) show three sets of NLC configuration
plots corresponding to β < 1, β = 1 and β > 1, respectively,
and σa = 10. For β � 1 (σa < σ1), as the strength of the

applied electric field increases, it is observed that θ reaches
a maximum whose value is closer to the inner cylinder while
the director tends to get a parallel alignment at the outer

FIG. 3. Orientation of the NLC 5CB as a function of x. It is shown the plots for σa = 10 of the inclination angle θ (x) for q corresponding
to β = 0.1, 1, 10 for panels (a), (b), and (c), respectively. For each value of β, qc has a different value.
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FIG. 4. Threshold field for the NLC 5CB as a function of σa for
different values of β = τ0a/τ01 .

cylindrical surface [Figs. 3(a) and 3(b)]. For β > 1 (σa > σ1)
this maximum is closer to the outer cylinder, meanwhile the
NLC molecules tend to align perpendicularly to this surface
(x = 1), as it is observed in Fig. 3(c).

It is known that the Fréedericksz transition depends on
the relation between the strength of the surface anchoring
forces and that of the external electromagnetic force [30,33]
which in our case correspond to σa and q, respectively. There-
fore, for a given anchoring force at the cylindrical surfaces,
the parameter q has to reach the critical value qc to distort
the molecules within the bulk. On the contrary, if q < qc the
molecules of the nematic remain at the undistorted state which
corresponds to θ (x) = 0 for all x ∈ (a, 1), as can be seen in
Figs. 2(a) and 2(b).

In Fig. 4 it is shown the configurational transition threshold
field qc for β = 0.1, 1, 10. For each value of the parameter β,
it is found that qc is an increasing function of σa which tends
asymptotically to qc → 20.22. This fact is in accordance to
the result given by Reyes et al. [17], where electrorheological
response of the present physical system with hard anchoring

conditions (σa → ∞) is studied. Furthermore, for a given
value of σa the corresponding threshold value increases as β

decreases. In other words, from Eq. (16) and the definition of
β, it can be observed that qc increases or decreases depending
on whether the effective anchoring energy at the outer cylinder
(σ1) is lesser or greater than the one at the inner cylinder (σa).

However, since both cylinders are rotating at different
angular velocities and there is no relative motion be-
tween such surfaces along its symmetry axis, the NLC
develops a Couette-Taylor flow. From every configuration
of the nematic θ (x) the corresponding (angular) veloc-
ity profile is obtained from the numerical integration of
Eq. (33). In Fig. 5(a) we have drawn the velocity pro-
file for q = 20, σa = 50 and parametrized by ��, that
is, each of the curves corresponds to the values �� =
5 rad s−1, 10 rad s−1, 15 rad s−1, 20 rad s−1. It is found that
the angular velocity of the nematic is a monotonically increas-
ing function of x.

In Fig. 5(b) we considered specific values of the param-
eters σa and ��, namely, σa = 50 and �� = 20 rad s−1,
to show velocity profiles for different values of q including
the one corresponding to the threshold value at which the
Fréedericksz transition takes place. It is observed that there
is a common position x50 ∼ 0.72 where the relative angular
velocities have practically the same value. Moreover, this is
a inflexion point where the curvature of every curve shown
in this figure vanishes: d2ω/dx2 = 0. To explain this, let us
perform a direct calculation by using Eq. (33) which leads
to the expression (dθ/dx)dη/dθ = −3η/x for the inflexion
point. Notice that because the effective viscosity defined in
Eq. (32) is a monotonous function of the coordinate, the value
of x satisfying this condition only depends on dθ/dx. How-
ever, Figs. 2 and 3 exhibit that the maximum of θ (x) is almost
independent of q, so the inflexion point of the Δω curves as
well. This means that roughly speaking the inflexion point of
the angular velocity curve is controlled by the slope of the tex-
ture curve. Also, for x ∈ [a, x50] as the electric field strength
increases, �ω increases. Conversely, when x ∈ [x50, 1], we
have the opposite behavior.

FIG. 5. (Angular) velocity profile Δω as a function of x for the NLC 5CB. In panel (a) the values of the parameters q and σa are fixed at
q = 20 and σa = 50. In panel (b) we show the plots of �ω as a function of x for σa = 50, �� = 20 rad s−1 and different values of q, including
the plot for qc ∼ 17.6(--).
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FIG. 6. Apparent viscosity 〈η〉(q, σa ) corresponding to the case β = 1 and �� = 20 rad s−1. In panel (a) we show 〈η〉(q) as a function
of q for different values of σa. In panel (b) we show 〈η〉(σa) as a function of σa for different values of q; for the case q = 15, dotted line
corresponds to the viscosity for the NLC undistorted configuration.

IV. AVERAGED APPARENT VISCOSITY

Averaged apparent viscosity function 〈η〉 results from the
integration of the local viscosity of the NLC η(θ ) [Eq. (32)]
over the cross section area of the flow. Considering the strong
dependence of η(x) on the external electric field and on the
surface anchoring energy, thus

〈η〉(q, σa) = 2

1 − a2

∫ 1

a
η[θ (x); q, σa]xdx, (36)

where we have indicated the dependence of η[θ (x)] on the
dimensionless parameters q and σa. Electrorheological re-
sponse of the NLC for �� = 20 rad s−1, β = 1 and different
anchoring energies is shown in Fig. 6.

Figure 6(a) shows the apparent viscosity as a function of
the parameter q for different values of σa and where we have
considered that the coating applied anchoring energy at each
cylindrical surface is the same (β = 1). For a given value of
σa, 〈η〉 exhibits a constant behavior for q < qc (where the
NLC is in the undistorted state θ (x) = 0) which is clearly
observed in the case σa = 50 where qc ∼ 17.5. Once the cor-
responding threshold value has been reached (q � qc), it is
found that 〈η〉 is an increasing function of q and the NLC
is less viscous as σa increases [σa is the ratio between the
effective surface anchoring energy at the inner cylinder and
the elastic bulk energy, Eq. (16)], which is a consequence
of the director orientation at the confined surfaces due to the
effective anchoring forces. This behavior can also be observed
in Fig. 6(b), where we plotted 〈η〉 as a function of σa for
different values of q.

V. CONCLUDING REMARKS

We numerically obtained the configurations of an NLC
with the physical properties of 5CB confined between two
coaxial circular cylinders which rotate at different constant
angular velocities, submitted to an external low-frequency
radial electric field and where no-slip boundary conditions
and weak anchoring conditions were considered. Instead of
the surface anchoring energies τ0a and τ01 , we found that

electrorheological response of the NLC is based on the ef-
fective surface anchoring energies σa and σ1 [Eq. (16)]. In
addition to this, we introduced the parameter β to obtain the
orientation of the director in the bulk for some values of the
parameters ��, q and σa corresponding to the cases β < 1,
β = 1, and β > 1.

From Fig. 2, it is observed that the intervals within the
inclination angle of the director at the cylindrical surfaces
takes values are narrower as σa increases. Furthermore, the
orientation of the nematic molecules at the outer cylinder is
highly dependent on whether β � 1 or β > 1 (Fig. 3). Also,
for an increasing value of the electric field intensity, we ob-
tained that the nematic at x = 1 tends to a parallel alignment
for σa < σ1 [Figs. 3(a) and 3(b)], meanwhile for the case
σa > σ1, θ (x) tends to a normal alignment [Fig. 3(c)].

It was observed that for each value of σa there is a Fréed-
ericksz transition threshold field qc which is an increasing
function of σa and exhibits an asymptotic behavior as σa →
∞ (Fig. 4). Moreover, qc is related to the ratio of the effective
surface anchoring energies (β) and its value decreases as the
NLC molecules are stronger anchored at the outer cylinder
than in the inner one.

The velocity profile of the nematic proved to be an increas-
ing function of the parameters ��, q and σa (Fig. 5).

Since the director orientation at the cylinders tends to be
parallel to such surfaces as the strength of the effective surface
anchoring forces increases, the orientation of the molecules
in the bulk tends to be more aligned to the flow of the ne-
matic, which implies that the NLC has less viscosity (Fig. 6).
However, because of the presence of the external electric field,
NLC molecules are oriented along the radial direction, which
is perpendicular to the nematic flow and causes an increase in
the apparent viscosity.
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APPENDIX

Here we shall study analytically the threshold for occurring
the orientational transition. In the spirit of Ref. [10], for this
purpose let us use the linearized version of Eqs. (34) and
(35) around the undistorted configuration θ = 0, which are
given by

�� ≡ �2 − �1 = bK1

R2
2

∫ 1

a

ds

s3η(θ (s))

= − bK1

2R2
2η(0)

(
1 − 1

a2

)
+ O(θ2) (A1)

and (
x2 d2θ

dx2
+ x

dθ

dx

)
+ (κ + q − 1)θ

− b

2η(0)
(γ1 + γ2) + O(θ2) = 0, (A2)

respectively.
Solving Eq. (A1) for b and substituting in Eq. (A2), we get

d2θ

dς2
+ (κ + q − 1)θ + ��R2

2a2

K1(a2 − 1)
(γ1 + γ2) + O(θ2) = 0,

(A3)

where ς = ln x. The general solution for the last equation can
be expressed as

θ = A cos(ς
√

κ + q − 1) + B sin(ς
√

κ + q − 1)

− ��R2
2a2

K1(a2 − 1)(κ + q − 1)
(γ1 + γ2), (A4)

where A and B are constants to be determined by the linearized
expressions of the boundary conditions given by Eqs. (21) and
(22). Their explicit expressions are given by

A = a2��R2
2σ1(γ1 + γ2)

�
[aσa cos(

√
k + q − 1 ln a) +

√
k + q − 1 sin(

√
k + q − 1 ln a) − aσa], (A5)

B = a2��R2
2(γ1 + γ2)

�
[aσa(

√
k + q − 1 − σ1 sin(

√
k + q − 1 ln a)) + σ1

√
k + q − 1 cos(

√
k + q − 1 ln a)], (A6)

where

� = K1(a2 − 1)(k + q − 1)[(k + q − 1 − aσ1σa) sin(
√

k + q − 1 ln a) +
√

k + q − 1(aσa + σ1) cos(
√

k + q − 1 ln a)]. (A7)

The condition for this solution to be physically acceptable is that � > 0 because for � = 0 the solution is divergent and for
� < 0, it is a nonphysical reorientation angle provided by a complex valued solution. It is straightforward to check that the same
condition is hold for a vanishing flow (�� = 0). Indeed, the threshold value for q given by the condition � = 0 is independent
of the value of ��.
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