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Two-fluid model for the breakdown of flow alignment in nematic liquid crystals
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We present a macroscopic two-fluid model to explain the breakdown of flow alignment in nematic liquid
crystals under shear flow due to smectic clusters. We find that the velocity difference of the two fluids plays a
key role to mediate the time-dependent behavior as soon as a large enough amount of smectic order is induced
by flow. For the minimal model it is sufficient to keep the nematic degrees of freedom, the mass density of the
smectic clusters and the degree of smectic order, the density, and two velocities as macroscopic variables. While
frequently a smectic A or C phase arises at lower temperatures, this is not required for the applicability of the
present model. Indeed, as pointed out before by Gihwiller, there are compounds showing a breakdown of flow
alignment over a large temperature range and no smectic phase, but a solid phase at lower temperatures. We also
demonstrate that, using a one velocity model, there is no coupling under shear flow between induced smectic
order and the director orientation in stationary situations thus rendering such a model to be unsuitable to describe
the breakdown of flow alignment. In a two-fluid description, flow alignment breaks down and becomes unstable
with regard to a space- and time-dependent state due to an induced finite velocity difference. In an Appendix we
outline a mesoscopic model to account for the sign change in the anisotropy of the electric conductivity observed

in nematics with smectic clusters.
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I. INTRODUCTION

Macroscopic two-fluid descriptions have been applied to a
variety of complex fluids and soft matter materials composed
of two immiscible subsystems. Systems include two immis-
cible liquids [1,2], for example, concentrated emulsions and
colloidal suspensions, two immiscible compound materials
in solids and gels [3], and combinations of an ordinary or
viscoelastic liquid with a nematic liquid crystal [1]. This ap-
proach has also been generalized quite recently to bioinspired
materials [4,5].

A general framework using macroscopic dynamics, lin-
ear irreversible thermodynamics and symmetry properties has
been set up to derive systematically a two-fluid description of
complex materials [1]. Most recently this concept has been ap-
plied to two-fluid effects in magnetorheological fluids (MRFs)
for which many of the macroscopic properties can be tuned
continuously in a small to moderate magnetic field [6].

The classical examples for the application of two-fluid
descriptions historically are the superfluid phases of *He [7,8]
and *He [9-13]. In this case there are two truly hydrodynamic
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velocities due to the broken gauge symmetry, which gives
rise to the superfluid velocity [7,8,14]. There is, however,
one key difference to the two-fluid descriptions of normal
fluid complex liquids with two velocities: in this case there is
only one truly hydrodynamic velocity, namely, the barycentric
velocity. Other combinations of the two velocities such as the
velocity difference relax on a long, but finite timescale.

Here we will investigate the macroscopic properties of a
nematic liquid crystal with smectic clusters, which can lead
to a qualitative change in the macroscopic properties of the
nematic. While in ordinary nematics without smectic clusters
there is a phenomenon called flow alignment [14—18], this
behavior is replaced by a time-dependent behavior of the
director in two or three spatial dimensions. By flow alignment
one describes the scenario of a planar nematic sample under
shear flow for which the director moves away from the planar
alignment to include a finite angle with the plates and the
normal to the plates. This can arise as a stationary situation
and the so-called flow alignment angle is found to be indepen-
dent of the shear rate experimentally and theoretically for low
molecular weight nematics [14-20]. In the presence of smec-
tic clusters flow alignment is replaced by a time-dependent,
frequently irregular motion of the director denoted as tum-
bling or breakdown of flow alignment [21-29]. In addition, in
an experiment on the dynamics of point defects it has been
shown that smectic clusters can lead to a temporally irregular
stick-slip motion of the defect (hedgehog) due to the presence
of smectic clusters [30]. Another macroscopic phenomenon
observed for a nematic with smectic clusters is a sign change
in the anisotropy of the electric conductivity [31-34]. For both
experimental observations there is so far no macroscopic or
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mesoscopic model to describe these phenomena. It also turns
out that the occurrence of a smectic phase at lower tempera-
tures is not a prerequisite of these phenomena to arise: There
are materials that show a breakdown of flow alignment for a
temperature range of 50 K without having a smectic phase at
all [22].

In the following we will present a two-fluid model for
the breakdown of flow alignment leading to dynamic motion
of the director: One fluid is the nematic component and the
second fluid corresponds to the smectic clusters. The degree
of smectic order enters the picture as a macroscopic variable,
which relaxes on a long, but finite timescale. We thus consider
two velocities, v/ and v} for the nematic and the smectic com-
ponent, respectively, or, equivalently, the barycentric velocity,
v; and the velocity difference, w; = v}’ — v;. In addition, we
have two densities, p, and p; (or two concentrations ¢ = p,,/p
and 1 — ¢ = ps/p with p = p, + py).

As an extra tunable parameter (except for temperature and
pressure) of the nematic with smectic clusters one can use
an electric field, as it has been pioneered by Skarp’s group
[35,36], which can be used to shift the boundary between
the flow alignment and the tumbling regimes for otherwise
constant parameters. Another candidate to tune this boundary
continuously are ferromagnetic nematics with smectic clus-
ters in a weak to moderate magnetic field. Flow alignment
in ferromagnetic nematics without smectic clusters has been
investigated quite recently [37].

The approach presented is actually not restricted to smectic
clusters in a nematic, but can be equally applied to a nematic
with columnar clusters as they arise for compounds composed
of column-forming molecules [38—41]. Another field of appli-
cation are smectics with bond-orientational order like smectic
I, F, and L [42—44]. In this case we expect bond-orientational
clusters in the associated smectic C phase, which is known
theoretically [20] and experimentally [45] to show flow align-
ment in freely suspended films for the in-plane director.

The paper is organized as follows. In Sec. II, we analyze
a model with only one velocity field, the barycentric velocity.
The bulk part is dedicated to the study of the macroscopic
behavior of systems with two velocity fields. Their description
is given in Secs. III A (macroscopic variables), III B (stat-
ics), III C (dynamics), III D (dissipative currents), and IITE
(reversible currents). In Sec. IV we study shear flow in the
framework of the two velocity model and demonstrate the
breakdown of the stationary, homogeneous flow alignment
state. In Sec. IV A we set up the equations under shear flow,
and in Secs. IVB and IVC we present a linear stability
analysis, first for the smectic density as a conserved quantity
and second for the smectic density as a relaxing variable.
We summarize by conclusions and perspectives in Sec. V.
In Appendix A we present a simple mesoscopic model for
the sign change of the anisotropy of the electric conductivity,
and in Appendix B we explore the case when the in-plane
variations of the smectic density have a wavelength large
compared to the sample thickness.

II. MODEL WITH ONE VELOCITY

For comparison purposes with the two-fluid model inves-
tigated in Sec. III and thereafter, we discuss here a model

with one velocity field, v;, related to the density of momen-
tum, g; = pv;, the latter being a conserved quantity. Another
relevant variable is the nematic director, n; with n;6n; = 0,
related to the spontaneously broken rotational symmetry. Fi-
nally, we use the degree of smectic order, 1, associated with
the presence of smectic clusters. It is not a truly hydrody-
namic variable, but it relaxes on a sufficiently long, but finite
timescale. In this section we can assume incompressibility,
div v = 0, without loss of generality.

In the local formulation of the first law of thermodynamics,
the entropy density, o, and the energy density, ¢, are related to
the macroscopic variables by [46,47]

Tdo =des — Uidgl‘ + hid}’li — /,L,/,dlp, (1)

where the thermodynamic conjugate quantities temperature
T, the velocity v;, the molecular field 4; associated with the
director, and the conjugate of v, ., are defined via Eq. (1).

For the dynamic equations for the hydrodynamic variables
we have

6+ V. j’P =2R/T, 2)

8+ Vip — MjiV jhi + BjiV iy +Vj0,-? =0, (3

i+ A Vv + Y2 =0, “4)

W+ BiViv; +XP =0, (5)

with the dots representing time derivatives d/d¢, thereby sup-

pressing all transport derivatives, which are irrelevant for the
purposes of this section.

Reversible contributions are due to the pressure p, due to

the well-known nematic flow alignment tensor A, and due

to a tensor f3;;, introduced by Liu in his macroscopic dynamic
description of the nematic—smectic A transition [48]

Aijk = %(1 - A)Sink - %(1 + M)8ien;, (6)
Bij = Byninj + BL:. (7
with the transverse Kronecker delta (Sfj- = &;j — nmin;.
The dissipation function, R, the source term of the dynamic
equation of the entropy density, is associated with the second
law of thermodynamics, R > 0,

R = —jquViT — O—,?Aij —_ YiDhi +XD/,L¢,, (8)

and contains the dissipative currents and quasicurrents

YP = ——n,, )
4
s 1
X" = —py, (10)
Ty
70 = —k;; VT, (11)
0,? = —V;juAi, (12)

withA;; = %(Vivj + Vv).
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We further need here the static relation of ., with ¥,
Ky = Xy Y. (13)

Adding the standard textbook expression for the molecular
field of nematics, h; [15], the setup of the relevant equations
is completed.

Now we proceed quite in parallel to the usual discussion
of flow alignment in uniaxial nematics, while additionally
taking into account the dynamic equation for the macroscopic
variable . We look for a stationary flow situation under a
simple shear flow § in the y-z plane:

S=V,v.. (14)

We assume that a stationary solution for the director can be
found in the y-z plane. Therefore, we make the ansatz for n;

n; = (sinfy, cos6y), (15)

with a constant flow alignment angle 0.
For the director equation we have for a stationary situation
the condition

. 1
EijkN g = —)LijijUk + ;hi =0, (16)

leading to
cos(20r) = 1/A, (17)

the classical result from textbooks [15]. We thus find that in
this one velocity model the degree of smectic order is not
influencing the flow alignment angle.

Next we investigate the smectic order induced by shear
flow. For a stationary situation we obtain from Eq. (5)

Sy = z%(m — B)Ssin(26)). (18)

From Eqgs. (17) and (18) we infer that in the present one-
fluid model there is no connection between the flow alignment
in a uniaxial nematic and the build-up of smectic order by
shear flow; the flow alignment angle given by the flow align-
ment parameter A is independent of the applied shear rate, S,
while the induced amount of smectic order is proportional to
the shear rate, S. We note that taking into account additionally
the smectic concentration variable ¢ would not lead to any
change regarding flow alignment, since ¢ does not couple to
shear flow, nor to director rotations.

We therefore conclude that to describe the breakdown of
stationary flow alignment by smectic clusters, the present one-
fluid model is insufficient and has to be replaced by a more
general framework. To cope with the nonstationary situation
(n; # 0), we will introduce a two velocity model.

III. TWO-FLUID MODEL FOR NEMATICS WITH
SMECTIC CLUSTERS

A. Variables

The hydrodynamics of a nematic liquid crystal is described
by the momentum density g;, the mass density p, and the total
energy density ¢ representing the local conservation laws of
a fluid, as well as by the director field n;. The latter is as-
sociated with the spontaneously broken continuous rotational
symmetry.

In the following we will investigate a new two-fluid model
for a nematic liquid crystal with smectic clusters.

On the macroscopic level we describe the system as a ho-
mogeneous mixture of smectic and nematic parts in the spirit
of a binary mixture of different mass particles. The director
orientation is assumed to be the same in the nematic and smec-
tic parts. In Sec. IV B of the manuscript the exchange between
smectic and nematic parts is described by a diffusive mass
transport according to two different velocities. Therefore, the
two types of densities are individually conserved quantities. In
Sec. IV C we allow for changes by mutual relaxation with the
result that only the total momentum is conserved. The degree
of smectic order, which is nonzero only in the smectic parts,
is on the macroscopic level an averaged relaxational degree of
freedom.

We note that in a macroscopic description the size and
shape of the smectic clusters enters through the values of the
coefficients in the macroscopic dynamic equations, in par-
ticular in the equations for the concentration, ¢, the relative
velocity, w;, and the degree of smectic order, y. Interfacial
effects are taken into account along the same lines in an
efficient way.

The smectic and the nematic mass density, p; and p,, re-
spectively, add up to the total density p = p, + p,. Similarly,
the two velocities give rise to a nematic momentum density,
g} = pyv!, and to a smectic one, g} = p,v; that add up to the
total momentum density g; = p,v] + p, v}, thereby defining
the mean velocity v; = ¢v] 4 (1 — ¢)v! = g;/p. For details
of these two-fluid aspects, cf. Ref. [1].

As additional variables compared to the one-fluid descrip-
tion, we therefore take the relative velocity, w; = v — v/,
between the nematic and the smectic velocities, as well as
the mass concentration of the smectic clusters, ¢ = p;/p. This
variable is conserved for incompressible fluids with constant
p and dive = 0.

The first law of thermodynamics relates changes of the
variables to changes of the energy density ¢ by the Gibbs
relation [46,47]

de =Tdo+pndp+1Tldep+v-dg
+m-dw + hidn; + pydy. (19)

The entropy density o represents the thermal degree of
freedom of the system. The appropriate thermodynamic con-
jugates are the temperature 7, the chemical potential w, the
osmotic pressure [1, the mean velocity v; = g;/p, the molec-
ular field of the director n;, h;, and the conjugate fields m;
and fiy.

From the requirement that the energy of the system is a first
order Eulerian form of all extensive variables, one gets for
the pressure p = —(3/8V)fst = —(9/dV)E the Gibbs-
Duhem relation

dp=o0cdT +pdu—Tldep +g-dv
—m - dw — hidn; — pydy. (20)
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B. Statics

The static behavior of our macroscopic system is conve-
niently described by the energy functional

+ L (507 + ——(56) + ——(5p)?
E =& — (00 _—
oy 2Ky Ky g

202

1 1 1
+ —(é¢)(é0) + —(8p)(80) + —(8p)(8¢)
(o2 Py PKx

1 Xy 2
+ EKijkl(ani)(Vlnk) + T(SW) + Xx,(8Y)(8p)
+ Xo (8Y)(80) + x(8Y%)(80), 21

where §o and §p are deviations from their equilibrium values
op and py and where v and ¢ are assumed to be zero in
equilibrium, although finite values of ¥ and ¢ due to thermo-
dynamic pretransitional effects would not change the analysis.
From Eq. (21) the conjugate fields follow by taking variational
derivatives according to the Gibbs relation, Eq. (19),

T 1 1
8T = —80 + —8¢p + —38p + x5V, (22)
Cy o oo P

My = Xyd¥ + Xp8p0 + Xob0 + x50, (23)
1 1 1
IM=—6¢p+ 8p+ —3d80 + xp0Y
K¢ PKx Ay
+w - g+ pw?(1 — 2¢), (24)
1 1 1
n=——68p+ 3¢ + ——380 + x, 8¢
PKp PKx pep
+w’p(l — ¢), (25)
SE

with i, = d¢/dn; and ®;; = de/(V jm;).

There is a total of six static susceptibilities from the binary
mixture fluid (Cv, oy, o), K¢, K7, k), four are related to the
smectic order (Xy, X, Xo» and xe) and three are the standard
nematic coefficients (K 2 3).

Finally, the remaining relations between conjugates and
variables,
_&

o
are not really static, but nevertheless follow from the
energy density, in particular from the kinetic energy density
exin = (1/20)[8™ 1 + (1/2p,)[8W ] = (1/2)¢% + (a/2)w?.
The w;-dependence of the chemical potential and the osmotic
pressure are due to the p- and ¢-dependence of «.

v; and m=¢(l—P)ow;, =aw;, ((27)

C. Dynamics

The dynamical equations for the director and fluid degrees
of freedom and for the smectic modulus are

E+Vile + v+ Vi(j "+ Py =0, (28)
6+ Vi(ovi + j %+ i) = 2R/T, (29)
p+ Vi(pv)) =0, (30)

¢ +v,Vp+ Vi(p(l — pwi + j %+ jPP) =0, 31

g+ Vi) + V(0" +of +o7) =0, (32

Wi +v;Vwi + Vil ' + XF + X2 =0,  (33)
v+ oV +28+ 2P =0, (34)

};li+vjani+YiD+YiR=0» (35)

with 2A4;; = V,v; + V;v;, and R the energy dissipation func-
tion. The stress tensor al.(j’h) = 8;ijp + ®;jVini contains the
isotropic pressure and the nematic Ericksen stress. These
equations follow from Refs. [1,2,6] and contain, apart from
the reversible (superscript R) and irreversible, dissipative (su-
perscript D) phenomenological currents, also transport and
convection whenever appropriate. The latter are reversible
and, indeed, all transport contributions (including the isotropic
pressure) add up to zero entropy production. The energy con-
servation law is redundant due to the Gibbs relation, Eq. (19).

In the whole set of dynamic equations the mean velocity
v; has been chosen as the convective velocity for all vari-
ables. This ensures zero entropy production of the convective
derivatives. Due to various material dependent contributions
in the reversible currents (see below), the actual convective
velocities can be different from v; and can be specific for the
different variables.

For the phenomenological parts of the currents the second
law of thermodynamics requires

R = —ji(a)*ViT — jf‘ﬁ)*Vil'I — O’JVJU,‘
+m X A RSV + ey 2 >0, (36)
with the equal sign (> sign) for * = R (x = D).

D. Dissipative currents

The dissipative parts of the currents introduced above can
be deduced from a potential, the dissipation function R, that
reads in bilinear approximation

2R = «;j(V;T)(V;T) 4 D;j(VT1)(V,IT)
+ DY (Vipy )V jpay) + 2D52 (VTD(V j1ay)
+2D] 7 (ViT)(V,IT) + 2K;j”.T(V,-T)(VjM)

1 1
+—ud +Em’ + —hih;s}:
Ty 4!

l

+ i (Vjui)(Vivg), (37)

where all second rank tensors are of the uniaxial form «;; =
Knin; + K L8i‘lj and where also the 4-rank material tensors
reflect the uniaxial structure and contain five parameters each
[47,49].

From Eq. (37) the following dissipative currents are ob-
tained:

+ 2050 (Vo) (Vi) + v, 5 (V mi)(Vimy)

JP = —@R)/@VT)
= —i;V,;T — ¢(1 — ¢)d " V;1I

—c!TV 1y, (38)
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0} = —(3R)/(IV jv;)
= —Viju Vi — Ukz ) Vimy, (39

D= (6R)/(5m:)

=§&m—V; ( ki )V my + szz] V;vk) 40)
Y,” = (3R)/(3h:)
= %53;1,, (41)
i = OR)/(3ViI)
= —D; V;ll—¢(1 —)d'V,T
—D!*V jpuy, (42)

ZP = (5R)/(Bpy)
1
=k ViD}'V )
—Vi(D}?V; I+ v, T), (43)

where thermodiffusion is written in the usual way with DSJ.T) =

o1 — ¢)di(jT). The relative velocity, w;, always relaxes, since
it is not related to any broken symmetry, nor to a conservation
law. The same reasoning applies to the variable ¥r. All other
variables are conserved or related to broken symmetries and
show diffusional behavior.

E. Reversible currents

For the reversible parts of the currents in Eqs. (31)—(35) we
find

% = Biymy, “4)
o =2Bymiw;j + Bijity — hijilu, (45)

R = ByV,T + vVl + frw;j(Viv; + V;v)

+ Bam;(Vjw; — Viw;) + Baw;(V jv; — V,v;)
+V(Bjity) = BihjVin; — (k/ﬁ'}’,)hk)
+Bsuy Vi, (46)
YiR = iV — )‘kaV img + B1m;Vin,  (47)
K= BijAij + BijVim; — Bsm;V i, (43)
3R =yiymy, (49)

with )Lf}’,? = %A(lm)Sii + A(m)cS,knj, ijk given by Eq. (6) and
the rank-2 material tensors by Eq. (7).

These reversible currents add to the reversible v-dependent
contributions already made apparent in Sec. III C. They can
be used to tune the transport and convective velocities of
the different variables, cf. Ref. [1], Sec. 6. In particular, the
orientation r; is transported and convected by the mean ve-
locity, since the n; is the same in both phases. As a result
B1 = 0 and k(m) A(m) For p, and g; (") the transport velocity

is v(”) while for p, and g(x) itis v; @) resultinginy, =0 =y,
and Br=pB4=1/2 and B3 = 1/;03 — 1/p,. For the smectic
order v the transport velocity is v;’ leadlng to Bs = —1/p;.
Nonlinear contributions are 1ncluded where they contribute to

the transport and convection of variables.

IV. SHEAR FLOW IN A TWO-FLUID DESCRIPTION

A. The coupling of all hydrodynamic degrees of freedom under
shear mediated by the relative velocity field

In this section we study the question of flow alignment
under external shear flow using the two-fluid model presented
in detail in Sec. III. As in Sec. II we will focus on a two-
dimensional situation with the shear flow applied in the y-z
plane.

This assumption of an in-plane director field greatly facil-
itates the analysis. Clearly a three-dimensional analysis will
be useful in the general case leading to out-of-plane director
motions. These will play an especially important role in the
boundary layers close to the bounding surfaces of the sample.

Nevertheless, already the two-dimensional analysis reveals
the basic mechanism for the breakdown of the flow alignment
state, but may not allow for quantitative comparisons with
experiments.

Therefore, we take for the director field the same ansatz,

n; = (sinf, cos9), (50)

which reads in terms of deviations from the flow alignment
state

dn; = (cos Oy, —sin67)d6. (29

For the imposed shear flow we assume a linear profile,
S=V,v, (52)

where v, is now the barycentric/mean velocity, because this
is the quantity which is controlled in a classical shear flow
experiment. Deviations of S will be mostly neglected, and in
addition we set v, = 0.

The assumption of a linear velocity profile of the shear
velocity in Eq. (52) will become problematic well above the
onset of an instability of flow alignment. Therefore, we focus
on the linear instability. Well above threshold, that is in the
strongly nonlinear regime, deformations of the linear velocity
profile can be expected to arise in general, making the whole
analysis rather complicated and requiring a full numerical
treatment.

In addition we assume that w, = 0, in agreement with a
strictly two-dimensional situation.

Discarding higher order gradient terms associated with the
diffusion of n;, we then have the dynamic equation for the
director field,

0 +Y®) =0 (53)
n X —n =0,
ot
or, explicitly,
nyn, — n;ny

S )L(m)
= a(n? - ”5)[5 BTy

(Vyw, + Vzwy):l — ;, 54
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with « given in Eq. (27). Clearly, this equation reduces to the
special case of the one-fluid model by taking w; = 0.

In terms of deviations from the flow alignment angle we
get

6 = —2Ssin(20,)80 — %W) c0s(20)(Vyw, + V.wy).

(55)

Next we come to the dynamic equation for the degree of

smectic order, ¥. For the dynamic equation for ¥y we have in
lowest order and neglecting the convective term

lp+);_w5w+ﬂiinj+Bijanwi =0, (56)
v

where the tensor B;; has already been discussed in Sec. II
and where B; ; represents the two-fluid contribution. Note
that 8y = 8y/; + 8¢ contains the stationary smectic order
induced by the shear flow, §v/¢, Eq. (18), and the deviations
from the flow alignment state, 8.

In terms of deviations from the flow alignment state we get

v+ ’T‘—Z’ay} — (B) — BL)S cos(20;)86
+O{BL(Vywy + Vzwz)

+a(B) - fh)[(cos 07)*V w, + (sin67)*Vywy

1
+ 5 $in0,)(Vyw; + Vzwy)} =0. (57)

Inspecting Eqgs. (54)—(57) we see that, due to w;, there is
a coupling between the nematic orientation and the smectic
order, which is absent in the one-fluid description.

In the dynamic equation for the smectic mass concentra-
tion, Eq. (31), we neglect transport terms of the form v;V;¢
and w;V;¢, as well as the cross-diffusive terms in Eq. (42).
Taking into account that y;; = 0 in Eq. (49), we are left with
a rather simple equation,

. 1
6+ =V, — —d;;jViV$ =0, (58)
P Ko

describing the coupling to the divergence of the relative ve-
locity and the smectic mass density diffusion. This coupling
provides the indirect coupling of ¢ to shear flow and director
rotations in the two-fluid description, which is absent in the
one-fluid model. In Sec. IV B we will approximate the diffu-
sional term when discussing the oscillating instability, to get
an analytical result. Note, in Sec. IV C we will replace this
diffusion by a relaxation and show what will be changed.

For the dynamic equation for the velocity difference, w;,
we have, discarding the convective nonlinearity,

w; + Vi(I/p) + XX+ xP = 0. (59)

Inserting the lowest order terms from statics, Eq. (24), dissi-
pative dynamics, Eq. (40), and reversible dynamics, Eq. (46),
and neglecting the convective term we obtain two equations
for wy and w,,

1 -
W, + ﬁqub + agwy + xy Vy8¢ =0, (60)
¢

1 o
w, + HVZ¢+a$wz+Swy+X¢,VZ(SW =0, (61)
¢

with the operators
R N n Ly .
Vy = [BL + Basin®(00)1V, + E.Ba sin(207)V.,  (62)

. N N 1.
Vo = [BL + Bacos @IV: + 2 Busin@0))V,. (63)

From Eqgs. (61) we see that the externally applied shear flow
leads to a coupling of wy, and w; via the contribution ~S,
while the B; ; tensor provides the coupling to gradients of .

Finally, there is the generalized Navier-Stokes Eq. (32)
describing the dynamics of the momentum density g;. In the
flow alignment state the stress tensor is constant and g; = 0. In
the general state there is a reversible contribution B;;x, 8y to
the stress tensor, Eq. (45), which is not constant. In principle
this can be compensated by a deviation of the mean velocity
dv; from its flow alignment state, Eq. (52), via the viscosity
contribution. This contribution is irrelevant otherwise.

Thus, we observe that Eqgs. (55), (57), (58), (60), and (61)
provide us with a closed set of five equations for the five vari-
ables 86, 8V, 8¢, wy, and w,. These equations also indicate
how the instability mechanism analyzed in the following sub-
sections proceeds intuitively. The external dynamic force, the
shear flow S, acts as a source term for the velocity difference,
w;. Inspecting the dynamic Egs. (58), (60), and (61), we see
that relative velocity and concentration ¢ are coupled. In the
following we will show that the feedback between w; and
¢ can start an instability for large enough magnitude of the
driving force S leading to spatially and temporally varying
nonzero values for w; and §¢. Those in turn trigger time-
dependent behavior of the director angle 6 and the smectic
degree of order ¥ via the dynamic Eqs. (55) and (56).

B. Linear instability of the flow alignment state with the smectic
density as a conserved variable

It is easily checked that the stationary homogeneous flow
alignment state with w; = 0 is always a solution. The chal-
lenge is to find a regime of the driving force S, where this
solution is becoming unstable giving way to a generally time-
dependent, inhomogeneous solution with a nonzero w;. It
appears to be rather difficult to find such a solution satisfying
all five of the nonlinear coupled partial differential equations
simultaneously, even the already simplified ones, Eq. (53),
(56), (58), and (59).

Therefore, we will consider the special case that the B,- j
tensor can be neglected. In that case the variables ¢ and 6
are decoupled from the others and we can analyze the linear
stability of the three Eqgs. (58), (60), and (61). We will inves-
tigate for which values of the external driving force, the shear
S, the solution w = 0 becomes unstable. Along the lines of a
linear stability analysis as it is done frequently for the onset
of a hydrodynamic instability, for example, for the onset of
thermal convection from the heat conduction state, we start
with the plane wave ansatz,

(d)’ Wy, wz) = (q)v W/y’ VVz)exp(Dt + [iwt + lkyy + ikZZ])’
(64)
with free amplitudes ®, W,,, W,. We look for which values of
w and S we find a solution with D = 0, where (¢, w,, w;) do
not decay to zero anymore. Here we will assume that &, is not
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fixed externally, but must be optimized, while k, has a fixed
value to accommodate the conditions at top and bottom plate
of the shear setup, e.g., k;, = w /L with L the thickness of the
layer. This procedure closely parallels that of Ref. [S0] where
the instability of shear flows in nematics has been studied.

Inserting the ansatz Eq. (64) into Egs. (58) and (60) we
obtain for D = 0 the two coupled equations

d
2£k2>ia), (65)
K¢

dy

ke

iw = (52012 + 2 2k2 +
Ko
go?

K¢,02

2ota = 2212 — SkzkyKLpz + S22 — 2,
¢

(66)

with k* = k7 + k2. To simplify the formulas, we have approx-
imated d;; by its isotropic form d, §;;. Equation (65) allows
for two solutions, w = 0 and w # 0, which give rise to a
stationary and an oscillatory instability, respectively.

In the stationary case, minimizing of S in Eq. (66) with
respect to ky leads to the critical value of ky, &,

1
kS = Sk,— (1 + &d, p>)~ L. 67
. 7 (1 T EdLP") (67)

Inserting k7 into Eq. (66) we obtain the critical shear S2
S = 4a’E* (1 + £d L p* ). (68)

for the onset of a stationary, space-dependent state, with
nonzero w.

In the oscillatory case, combining Eqs. (65) and (66) and
minimizing with respect to k, we obtain for the critical value
of ky, k°,

1
kS ~ —Sk,—(1 + 4&d, p>)~". 69
. c35q (| T 46dLPY) (69)

This approximate result is obtained by disregarding fourth
order terms in the wave vector. Results for the case when only
terms ka;‘ are neglected, corresponding to a long wavelength
instability in the plane of the sample, are listed in Appendix
B.

Inserting k;o into Egs. (65) and (66) we obtain for the

critical shear S2,

8
S2 = da’EX(1 + 46d, p*)* + ﬁa3pzx¢§4(l +4&d | p?),

Z (70)
and for the critical frequency at onset

,1+3¢8d,p?
1 +4&d, p?

Comparing Egs. (67) and (68) to Egs. (69) and (70)
we make the following observations. In general, S2) > SZ,
meaning that the stationary instability comes first, when in-
creasing the driving force S. Second, the critical shear rate
for the stationary instability does not depend on k,, while for
the oscillatory instability it does. Third, the dependence of the
critical shear rate of the instability on k, leads to a higher
threshold for thicker samples and finally the length scale of
the transverse pattern is larger in the oscillatory case, since
ko < [k3®I.

w? =3’

20
+ k(1 +2&d,.p*).  (71)
v

From the results of this simplified, two-dimensional model
several observations emerge. First of all the threshold shear
is essentially determined by the dissipative effects involved.
The first one is the relaxation of the relative velocity wy;,
with the associated dissipative channel ~£. Its inverse also
sets the characteristic time dependence for the velocity dif-
ference w;—large relaxation times correspond to velocity
differences arising on a long timescale. Second, the diffusion
of the concentration ~d enters the critical quantities and al-
ways in the combination ~&d | p?, where p is the total density.
In addition, the critical quantities are proportional to various
powers of the generalized susceptibility « = ¢(1 — ¢)p, con-
necting the conjugate field of the relative velocity, m;, to the
relative velocity, w;.

Taking into account the relaxation of ¢ naturally further in-
creases the threshold value of S as will be shown in Sec. IV C.

It is very likely that for more realistic models, complicated
space- and time-dependent instabilities emerge above the lin-
ear instability threshold. There, more degrees of freedom
become available to trigger such higher instabilities, in partic-
ular in three dimensions. We also note that the linear stability
analysis presented could be pre-emptied by finite amplitude
instabilities. From the experimental results available we know
empirically that time-dependent behavior—tumbling, irregu-
lar and chaotic oscillations—dominates [24,25,29].

Inserting the space- and time-dependent solutions for w;
and ¢ into Eqgs. (55) and (57) naturally gives rise to a space-
and time-dependence of the director field, n;, and the smectic
degree of order, ¥, as well. This is in accord with experimen-
tal observations of a time-dependent director field at the onset
of tumbling. As usual, the linear instability analysis relates
their amplitudes ® and W to the other amplitudes &, W,, W,,
where, however, one amplitude remains undetermined and has
to be fixed by a nonlinear treatment.

To make a quantitative comparison with experiments it will
be important to pin down more precisely as many of the static
and transport parameters involved as possible.

C. Linear instability of the flow alignment state with the smectic
density as a relaxing variable

In the last section we have assumed the different mass den-
sities of the nematic p,, and smectic parts p; change by mutual
diffusion, i.e., both are conserved quantities. This means that
ps and p, are redistributed in space and time in a diffusive
manner. However, as relaxing variables p; and p, can appear
and disappear without having to diffuse, and thus no transport
is involved. Which one of the two cases applies to experiment
is not known to date. It might actually depend on the class
of materials involved. For example, for a liquid crystalline
polymer diffusion over finite distances is most likely more
difficult than for small molecules. Therefore, we discuss both
possibilities in the present paper and consider in this section
the possibility that the densities are slowly relaxing variables.

Assuming the densities to relax we have

1
)bs = ... and ,by, == — U, (72)
Tn

according to the appropriate conjugates uy and u,. The dots
in Eq. (72) denote all the conserved contributions. Since the
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total density p, being a conserved variable, must not relax, we
have to require the condition /7 + w,/7, = 0. Expressing
the conjugates u, and w, by the conjugates IT and u of the
concentration ¢ and the total density p, respectively [1],

us=pn+ A =I/p and w,=upu—¢IM/p, (73)
we can write the parts of the entropy production associated
with the relaxations of Eq. (72) as

1 1
2R = —u} + —p;
2 Ty

1 1
= —(+ 1= @I/p) + —(n— ¢1/p)*. (74)
Since p cannot show any relaxation, there is 9R/du = 0 lead-

ing to (7, + ts),u = (3¢ — Tu[1 — @I/ p. As aresult

/o= P C g5
Tt T 2 PTy

2R =

with 74 = ¢(1 — $)p*(t, + 1,), where we have made appar-
ent the ¢ factors to make sure that there is no relaxation for
¢ =0and ¢ = 1. Finally Eq. (58) takes the form

(76)

¢ + gViwi - ij
p
We now investigate the stationary and oscﬂlatory instabil-
ity taking into account the relaxation of ¢, but neglecting the
diffusion V;V ;¢. Using the same procedure as in Sec. IV B,
the two equations

o?
iw —(s (H+w%+as y@
K p? PTpke
(77
o 2 2
Ko > (ky + k),) — Skky /<¢,o2
(—o” + a’&?) (78)
PTyKy
allow for a stationary instability at
4 2
S2 = 40?62 4 — &0 (79)
k2 pty
with a critical wave vector independent of 7,
kS = Sk L (80)
v T 2k’

In addition, for the oscillatory instability we find the critical
wave vector

k.S
R
y 25

with the abbreviation M = 1/(pk74£), the critical shear flow

(8D
2 24 8 3

S: —4a§(1+M) 2,o K¢,oeé(1+M) (82)

and the critical frequency at onset

a)—a$(3+M@+- ﬁ. (83)

We remark that all three critical quantities [Eqs. (81)-(83)]
for the oscillatory instability have a characteristic dependence
on M = 1/(pkyt4€), which contains the generalized suscepti-
bility x4 connecting the conjugate force of the phase, I, with
the phase variations, 8¢, as well as the £ and 1, describing
the relaxation of ¢ and of the relative velocity, w;, respec-
tively. In addition we notice that the stationary wave vector k;*
[Eq. (80)] does not depend on 7 in contrast to k;° [Eq. (81)].

Comparing with Sec. IVB the following remarks are in
order. (i) The role of the diffusion coefficient d is taken over
by the inverse relaxation time 1/74. (ii) Both quantities enter
the stationary and oscillatory threshold values for the critical
shear rate: Larger values of 74 and smaller values of d; lead
to a reduction of the threshold values. (iii) The dependence
of the oscillatory threshold value on 1 /k and of the critical
frequency on k2 is similar for the diffusmg and relaxing case.
A difference arises for the stationary instability threshold,
which does not depend on £, in the diffusing case, in contrast
to Eq. (79). The wave vector dependence governs the depen-
dence on the sample thickness D, since k; ~ k, ~ 1/D for all
cases.

V. SUMMARY AND PERSPECTIVE

In this work we have analyzed the macroscopic dynamics
of nematic liquid crystals in the presence of smectic clusters
under an applied shear flow. We have shown that the macro-
scopic dynamics for this system with only one velocity field
is insufficient to describe time-dependent director dynamics
due to the presence of smectic clusters, since there is no cou-
pling between the director orientation and the flow induced
smectic order. In contrast, we have demonstrated that a two-
fluid model leads to a coupling between shear flow induced
smectic order and the macroscopic director orientation. This
interaction is mediated by the velocity difference between the
two subsystems. In particular, we have shown the existence
of transitions from the homogeneous flow alignment state to
space-dependent states, being either static or time-dependent,
when the external shear is increased. It also emerges that for
this problem one needs for a consistent description at least
two macroscopic variables, which relax on a sufficiently long,
but finite timescale, namely, the velocity difference and the
degree of smectic order. Both variables are neither related
to conservation laws nor to spontaneously broken continuous
symmetries. Both instabilities are found for a diffusive as well
as for a relaxing smectic mass density.

We notice some relationship of the present problem to the
macroscopic dynamics above the A-transition in superfluid
4He, where one has a relaxing superfluid density, ps, [7,51],
which plays a similar role as the relaxing degree of smectic
olrder, Y, used here. In particular, a contribution similar to
Y ~ BijA;; in Eq. (56) arises in Ref. [7] in the p; equation.
As a difference, our system is uniaxial, while the superfluid
system is isotropic. Another importance difference is manifest
in the superfluid velocity, which is a hydrodynamic variable in
“He due to the spontaneously broken gauge symmetry.

We also point out that our analysis can be used to describe
the breakdown of flow alignment of the in-plane director
inside fluid smectic layers, when bond-orientational order en-
ters the picture. The geometry of choice to demonstrate this
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behavior are freely suspended smectic C films with bond-
orientational clusters. This type of clusters can definitely
expected to occur above smectic F, I, and L phases [42—44].
Throughout the present paper we have studied the influence
of smectic clusters and clusters of bond-orientational order
thus focusing on the influence of layering in a broad sense.
We would like to point out, however, that a very similar type
of behavior should arise in systems, which have a tendency
toward column formation. We are thinking in particular of
columnar fluctuations above a nematic to columnar transition
[41]. We also note that the occurrence of the influence of
smectic or columnar fluctuations could arise as well when
the temperature is increased, namely, for reentrant nematics
in smectic systems [52,53] or for inverted and/or reentrant
columnar phases [38—40]. In both cases we expect time-
dependent director motion for growing temperatures.
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APPENDIX A: SIMPLE MODEL FOR THE SIGN CHANGE
OF THE DIELECTRIC ANISOTROPY

The most important macroscopic effect—aside from the
breakdown of flow alignment—signaling the presence of
smectic clusters is the sign change in the anisotropy of
the electric conductivity, o, = oy — o [31-34]. Here and
throughout this Appendix || and L denote the directions par-
allel and perpendicular to the director. In a nematic phase
without smectic clusters, o, is positive meaning physically
that the transport of charges parallel to the director r; is easier
than along the perpendicular direction and, therefore oy > o .
As the volume fraction of smectic clusters grows when a
sample is cooled down, a sign change in o, arises. Intuitively,
this opposite behavior compared to the case of a usual nematic
occurs, because the charge transport across smectic layers is
much harder than within smectic layers.

In this Appendix we analyze how this qualitative change in
behavior can be accounted for in a simple two-fluid model,
where the two velocities are the average velocities of the
charge carriers in a smectic and in a nematic environment,
respectively.

First we elucidate some macroscopic aspects. Denoting by
o' and o the electric conductivities in a pure nematic and
by o) and o] in a pure smectic A phase, we will assume that
we can make an effective medium approximation to obtain the
conductivities of a nematic phase with smectic clusters. This
means that we make the ansatz

oj = ¢of + (1 —¢)j,
ool + (1 —¢)oi,

oL (AL)

where ¢ is the concentration of nematics.

From Egs. (A1) it is straightforward to evaluate the critical

concentration, ¢, for which oy — o, = 0, = 0 with the result
o

¢ = (A2)

o) —ol
Note that 0 < ¢, < 1, since o, < 0.
Now we will add a simple mesoscopic model for the con-

ductivity of an isotropic, charged liquid with charge ¢ and
mobility u, where the conductivity o is given by

o=puq,
with the mobility, u ~ v, expressed by v and [ [54], the
average velocity and the mean free path of the charge carriers,
respectively. The proportionality factor is y = 1/(3kgT). In
the uniaxially anisotropic case we can write accordingly,

o _ vl

—_ = — (A4)

O Ulll.

(A3)

Since the electric conductivity tensor o;; is associated with
a linear material law (j; = o0;;E;) within linear response the-
ory, it appears natural to make for a nematic liquid crystal with
smectic clusters the linear superposition ansatz

o= y(1—=¢lvylj +ov[),

oL = y(1—-¢lvil] +ov1I). (AS)
For 0} and o) we then have
o =yl —vl}),
o) = y(1 =)} [} —vil}). (A6)

Combining the macroscopic and mesoscopic aspects of
picture suggested here, Eqs. (A1) and (AS5), we obtain a direct
relation between the critical value of the concentration, ¢., for
which the conductivity anisotropy changes sign, in terms of
four components of the mean velocities of the charge carriers
and their appropriate mean free paths,

vily — vl

b = 0 (A7)
vl

=t ol
It will be most interesting to check experimentally to what
extent Eq. (A7) can be verified for a real system.

APPENDIX B: THE CASE OF A LONG WAVELENGTH
INSTABILITY IN THE PLANE OF THE SAMPLE WHEN
THE SMECTIC MASS DENSITY
ps IS CONSERVED

Here we assume k)z, <« kZ, which allows to neglect the con-
tribution Nkﬁ. In that case we get for the oscillating instability

1
(BI)

kC()a ~ _Sk —_—,
Y “2EaN

2
S, coa

8
= 40’E°N? + ﬁa3p2K¢$4N, (B2)

z
1+ 2&d, p? 2
wi,=a252(1+2 ~28dup )+k§ © (1 +26d.0%),
N Kpp
(B3)

with the abbreviation

, . 2d
N =1+48d,p* + K

— (1 4 2£d, p?). (B4)
aE

ke
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