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The azobenzene-containing crosslinked liquid crystalline polymer is a potential candidate for a stimuli-
responsive soft robot, as it provides contactless actuation without the implementation of any separate component.
For facilitating practical applications of this novel material, complicated and predefined motions have been
realized by tailoring the chemical structure of the polymer network. However, conventional multiscale mechan-
ical analysis, which utilizes the all-atom molecular dynamics to represent a microscopic model, is unsuitable
for handling diverse material design parameters due to excessive computational costs. Hence, a multiscale
optomechanical simulation framework, which combines the coarse-grained molecular dynamics (CG MD) and
the finite-element (FE) method, is developed in this study. The CG MD simulation satisfactorily reproduces the
light-induced phase transition and photosoftening effect on the mechanical properties. In particular, using the
mesoscale analysis, the presented methodology can treat diverse morphology parameters (liquid crystal phase,
spacer length, and crosslinking density) to observe the associated photodeformations. The photostrain and elastic
modulus profiles in terms of photoisomerization ratio are implemented into the continuum-scale governing equa-
tion, which is based on the neoclassical elasticity theory. To efficiently reflect the light-induced large rotations of
liquid crystal mesogens and the corresponding geometric nonlinearity, a corotational formulation is employed in
the FE shell model. We examine the mesostructural-morphology-dependent photobending deformations of the
nematic and smectic photoresponsive polymers (PRPs). In addition, the mesoscopic-texture-mediated unique 3D
deformations are investigated by modeling the topological defects. This study offers insight into the engineering
of PRP materials for designing the mechanical motions of smart actuators.
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I. INTRODUCTION

Crosslinked liquid crystalline polymers (CLCPs), which
possess photochromic azobenzene moieties, have drawn in-
creasing attention owing to their reversible large deformations
in response to actinic light irradiation. The conversion of the
input photonic energy into mechanical action results from
conformational changes in photosensitive liquid crystal (LC)
mesogens and the elastomeric network [1]. Upon exposure
to UV light, the rod-shaped trans-azobenzenes are photoi-
somerized into a kinked cis-configuration, which acts as an
impurity for nematic alignment. The increased number of
reacted molecules leads to a nematic-to-isotropic LC phase
transition, accompanied by a contractive photostrain of the
constituent polymer chains. These photoresponsive polymers
(PRPs) are more suitable for small-scale robotic applications
compared to conventional soft actuators, because they do not
require on-board power and signal transmission components
[2]. In fact, azobenzene-containing liquid crystalline polymers
(LCPs) have been utilized as diverse photoresponsive actua-
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tors, such as biomimetic robots [3], motors [4], valves for fluid
control [5], and shape-programmable elastic sheet [6,7].

Recent material science and engineering research has fo-
cused on realizing the targeting behavior of PRPs for more
practical applications. To achieve this goal, elaborate de-
signs of the LC state and polymer network structure have
been developed. Above all, employment of more complex
LC phases enables various photodeformation modes, besides
simple bending of uniaxial nematic solids. Zhang et al.
[8] demonstrated bidirectional actuation of smectic CLCPs,
which retain both rotational and positional LC symmetries.
Wie et al. [9] exploited the light-induced helical motion of
twisted-nematic azopolymers for developing a photorespon-
sive rolling device. Furthermore, a preprogrammed 3D shape
has been realized by imprinting complex LC director profiles
through the surface alignment technique [7,10]. A pixelated
array of these disclination-mediated topologies yields selec-
tive and localized controls of the photomechanical behavior
[6,11]. An alternative to manipulating macroscopic photogen-
erated stress and strain is to modify the polymer architecture.
Experimental studies have revealed that the spacer length of a
PRP influences the alignment behavior of the azoderivatives
and the corresponding photomechanical response [12,13].
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Meanwhile, the increased crosslink density of the photosen-
sitive molecules amplifies the actuating force [14].

To save the time and cost required to manufacture next-
generation photoactuators, various computational studies have
been conducted. From a microscopic viewpoint, Choi et al.
[15] applied the photoreactive potential formalism to the
all-atom molecular dynamics (AA MD) simulation to mea-
sure the molecular-scale photostrain of nematic solids. In
contrast, a macroscopic response has been predicted us-
ing continuum-mechanics-based multiphysical analysis. Gol-
ubović and Lubensky [16] theoretically considered the unique
spontaneous deformation of the LC gel under the isotropic-
nematic transition. Jin et al. [17] derived order-mechanical
coupling constitutive equations to describe the behavior of
a liquid crystal elastomer (LCE) through an efficient con-
struction of free energy. Lin et al. [18] conducted numerical
finite-element (FE) simulations of light-triggered bending
deformation by using a linearized stress-strain relationship
of the PRP. Chung et al. [19] developed a 3D shell FE
formulation to observe the thermo- and photoresponsive be-
haviors considering the geometric nonlinearity invoked by
a large rotation of the nematic director. However, these
exceptional continuum-scale studies could not explicitly re-
flect microstructure-dependent properties. To bridge the gap
between the micro- and macroscopic scales, a multiscale op-
tomechanical simulation scheme was devised [20]. In this
study, the observables obtained using the AA MD simula-
tions were directly upscaled to the photomechanics of the
FE method. However, the exploitation of the conventional
AA MD as a microscopic measurement tool imposes some
limitations in the applicability. Because of the excessive com-
putational demands for describing the pair interactions for
each atom, only a simple nematic LCP structure with a fixed
micromorphology can be reproduced. That is, the previously
stated material design parameters cannot be properly han-
dled. Accordingly, we developed a coarse-grained molecular
dynamics (CG MD) model of the azopolymer network [21],
which efficiently reduces the degrees of freedom (DOFs) and
enables the construction of a larger macromolecular network.
By using the proposed mesoscale model, a complex layered
structure of the smectic CLCP, and its unique photomechani-
cal response, were investigated.

Herein, extending the previous study, we present a mul-
tiscale CG-MD–FE model for a numerical investigation of
light-actuated deformation. The CG MD simulation provides
an explicit description of the sequential photoisomerization
process and corresponding variations in the material proper-
ties. These mesoscale variables are implemented in the 3D
FE analysis to explore the macroscale deformations. Notably,
extension to the mesoscale simulation regime facilitates the
establishment of a relationship between the mesostructural
traits (LC phase, spacer length, and crosslinking density)
and overall photomechanical performance. Furthermore, the
proposed methodology is applied to realize not only sim-
ple bending deformations but also uncommon light-induced
shapes assisted by the spatially varying mesostate. Another
contribution of this work is that it accurately describes
the evolution of the elastic modulus under the photochem-
ical reaction. After the light irradiation, the cis-azobenzene
molecules destruct the arrangement and the self-assembled

structure of the PRP, which results in the photosoftening ef-
fect. Induced by the photoisomerization, a significant decrease
of up to 2.5-fold has been observed in Young’s modulus [22].
Although this mechanical degradation is not negligible, con-
ventional continuum-scale studies on PRP materials have not
considered it to derive the macroscopic deformation. Hence,
in this study, the mechanical properties extracted from the
stress-strain curves of the CG MD model are plugged into
the FE formulation to address the photosoftening effect. We
believe that our computational model will shed light on a
deep understanding of the multiscale nature of the photoac-
tivated deformation and a rational design of the advanced soft
actuator.

II. SCALE-BRIDGING STRATEGY FOR
OPTOMECHANICAL ANALYSIS

This section presents a bottom-up multiscale strategy to
efficiently describe light-activated deformations. Figure 1 is
a phenomenological illustration showing the origin of the
photobending behavior. If the UV ray is irradiated to the
PRP solid, the optical beam is absorbed and hence, the light
intensity decays with depth. Accordingly, the number of pho-
togenerated cis isomers, which is proportional to the local
light intensity, also diminishes with the film’s depth. From
the atomistic or mesoscopic viewpoint, the photoisomeriza-
tion from trans- to cis-state induces molecular shape change
of azobenzenes, which deforms the entire polymer network
and manipulates the mechanical properties. The mesoscale
photostrain and inhomogeneous stiffness profiles in terms
of cis-population are computed using the CG MD simula-
tions. These mesoscale variables are upscaled to a continuous
medium, and the light-induced bending moment and resulting
macroscopic deformations are captured via the FE analysis.
This section is organized as follows: Section II A presents the
CG MD simulation scheme to reflect the underlying photoiso-
merization process. In Sec. II B, we prepare the multiscale
parameters to describe the mesoscale response of the LCP
network. Finally, the formalism and implementation of the op-
tomechanical FE constitutive model are presented in Sec. II C.

A. CG MD simulation

In this study, a construction of the AA MD reference mod-
els is performed using the Forcite module of the Materials
Studio package (BIOVIA, Inc.). The polymer consistent force
field [23] is adopted to describe the interaction between the
organic molecules. The van der Waals energy is calculated
using the atom-based summation with a cutoff of 9.5 Å, and
the Ewald summation is used to compute the Coulombic
force. Mapping of the atomistic to CG model and deriva-
tion of the equivalent potentials are carried out via using the
Mesocite module of the Materials Studio package (BIOVIA,
Inc.). The Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS) code, which was developed by the
Sandia National Laboratory [24], is used to perform the long-
time mesoscale photoisomerization simulation.

In general, systematic mapping from several atoms to
virtual CG beads and derivation of the equivalent poten-
tial energy sets should be essentially carried out to reduce
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FIG. 1. Mesoscopic and macroscopic origins of the light-activated deformation behavior of the PRP.

the number of DOFs while preserving key aspects of the
atomistic parent model. In order to examine the effect of elas-
tomeric morphology on the photomechanical performance,
the mesoscale polymer models with different spacer lengths
and crosslink densities are constructed. The azobenzene-
containing LCPs with 3 different numbers of the methylene
units (6, 9, and 11) in the spacer group are prepared. Figure 2
shows the atomistic and coarse-grained configurations of the
LC monomers and crosslinkers with different spacer lengths.
The azobenzene unit is represented with a three-bead system,
which consists of two P beads connected to a centered N bead.
Acrylate spacer units are divided into C3, C2, and CO type
beads. The C3 type bead corresponds to 3 methylene units
or 2 methylene units and one oxygen atom which is con-
nected with the azobenzene molecule. The C2 bead represents
2 methylene units or the vinyl group in the acrylates. The

FIG. 2. Chemical structures and corresponding CG MD config-
urations of the LCPs with different spacer lengths: The numbers of
the methylene groups in the spacer chain are (a) 6, (b) 9, and (c) 11.

remaining 2 oxygens and 1 carbon atom in the ester group
are replaced with the CO bead. The CLCPs composed of the
monomers shown in Fig. 2 have been successfully synthesized
and utilized as photoresponsive actuators [4,8,25].

The crosslinking degree of the mesomolecules is modu-
lated by changing the molar ratio between the acrylate LC
monomers and the diacrylate crosslinking agents (9:1, 8:2,
and 6:4). Before the curing simulation, a partially crosslinked
polymer which consists of 20 LCPs is chosen as the unit
molecule in order to prevent the requirement of excessive
polymerization events. 96 unit molecules containing 1920 LC
mesogens are inserted into an orthorhombic simulation box
with the periodic boundary conditions. Initially, the azoben-
zene groups are oriented to the nematic direction (x axis). The
CG bulk model is equilibrated by performing the conjugated
gradient algorithm and NPT runs for 10 ns at 300 K and
0.1 MPa with a time step of 10.0 fs. The temperature and
pressure are controlled via the Langevin thermostat [26] and
the Berendsen barostat [27], respectively. Then, the polymer-
ization of the complex LCP network is conducted by applying
an in situ crosslinking scheme [28,29] to the prepared CG MD
model. In this method, artificial bonds are generated whenever
the distance between the reactive CG beads becomes shorter
than a predefined cutoff during the dynamics simulation. The
cutoff distance increases from 4.5 Å to 9.0 Å with an incre-
ment of 0.5 Å, and before shifting the cutoff, short NPT runs
at 400 K for 3 ns are applied to construct the intermediate re-
laxed structure. At the first stage of the curing simulation, two
reactive beads at both ends of the diacrylate crosslinks [see
Fig. 2(a)] are primarily linked with surrounding monoacrylate
monomers. This procedure imposes an elastomeric network
structure on the CG model. The first step is completed when
about 63% of the reactive beads of the crosslinking agents are
reacted. Next, the remaining LC monomers are polymerized
to form a long, stable, backbone structure until in total 40%
of the reactive beads in the system have reacted. Finally,
NPT runs at 400 K for 10 ns and at 300 K for 120 ns are
applied to construct the ordered LC phase of the mesoscale
model. The detailed polymerization scheme and structure of
the crosslinked mesomolecule can be found in the previous
study [21]. Table I lists the detailed information on the CLCP
models considered in this study. For convenience, all PRP net-
work models are simply named as “SabXcd”. The ab and cd
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TABLE I. Basic information on the unit cells of the CG macro-
molecules with different spacer lengths and crosslinking densities.

Number of Number of Average molecular
System LC monomers LC crosslinkers weight (kg/mol)

S6X10 1728 192 8.25
S6X20 1536 384 10.67
S6X40 1152 768 19.63

S9X10 1728 192 9.76
S9X20 1536 384 13.06
S9X40 1152 768 19.72

S11X10 1728 192 9.63
S11X20 1536 384 12.15
S11X40 1152 768 24.70

stand for the number of methylene units in the spacer and the
molar concentration of the crosslinking agent, respectively. As
shown in Table I, the molecular weight of the mesomolecule
increases with larger number of the crosslinking agents be-
cause the acrylate backbones are more densely connected.

To perform the mesoscale dynamics simulation, we derived
new potential energy sets from the parent AA MD model. The
CG potential energy can be divided into bonded energy (bond
stretching and angle bending) and nonbonded energy terms.
Meanwhile the intramolecular interaction energy is derived
to describe the polymeric conformation of the CLCP net-
work, and the intermolecular energy is elaborately optimized
to reproduce both structural and thermodynamic properties.
Figure 3 shows illustrative procedures to calculate the CG
potential energies of each interaction type. Internal DOFs
which contribute to the bonded interaction are bond length (l)
between 2 adjacent beads and bond angle (θ ) formed by 3 ad-
jacent beads. Probability distributions of each conformational
quantity [PCG(l ) and PCG(θ )] are obtained from the reference
AA MD trajectories of the LCP network model equilibrated
at 400 K. The detailed procedures to construct the reference
atomistic structures are given in the previous publication [21].
The CG bond length and angle potentials [ UCG(l ) and UCG(θ )
] are obtained by Boltzmann inversion of the distributions:

UCG(l ) = −kBT ln[PCG(l )/l2], (1)

UCG(θ ) = −kBT ln[PCG(θ )/ sin θ ]; (2)

kB is the Boltzmann constant and T is the temperature of
the reference state. Each structural distribution function is
decomposed into a sum of Gaussian functions [30]. Hence,
final functional forms of the CG bonded potentials are given
as below:

UCG(l ) = −kBT ln

[
n∑

i=1

ai exp

{
−
(

l − li
bi

)2}]
, (3)

UCG(θ ) = −kBT ln

[
n∑

i=1

ai exp

{
−
(

θ − θi

bi

)2}]
, (4)

where li and θi are the central peak positions of the i th Gaus-
sian functions, and ai and bi are the fitted coefficients. The
derived potential coefficients for the mesoscale PRP model
are listed in Table II. Different potentials are applied to the
distance between two C2 beads located at the spacer unit and
the crosslinked backbone owing to the difference in geometry.

The radial distribution function (RDF) and density are the
target properties to derive the CG noncovalent interaction
energy. Unlike the bonded energy, simultaneous refinement
of 15 different nonbonded interaction sets for 5 different bead
types by using only one reference is very challenging. Ac-
cordingly, additional all-atom reference models are prepared.
The crosslinked LCP structure is segmented into several small
fragments to compute each potential separately. The isotropic
fragment unit cells are composed of the 300 trans- (or cis-)
azobenzenes, 200 octadecanes, and 400 octyl propanoates,
respectively. The azobenzene unit cell is used to obtain P-P,
P-N, and N-N interactions. The octadecanes are split into
the C3 or C2 beads to derive the C3-C3 and C2-C2 inter-
actions. Finally, the structural and thermodynamic properties
of the octyl propanoate liquids are extracted to parametrize
the CO-CO interaction. Next, a subsequent refinement process
which consists of the iterative Boltzmann inversion (IBI) and
pressure-correction (PC) methods is adopted to reproduce the
multitarget properties. At first stage, the IBI method is applied
to capture the RDF of the parent polymer. An initial guess of
the nonbonded potential [UCG,0(r)] can be obtained by taking
a Boltzmann inverse of the target RDF [g(r)]:

UCG,0(r) = −kBT ln [g(r)], (5)

where r is the separation between the CG beads. Applying the
computed interaction energy at every iteration step, the NVT
ensemble at 400 K for 8 ns is carried out to obtain the refined
RDF. As shown in Fig. 3(c), the RDF of the 1st iteration is not
the same with the target distribution. Therefore, the potential
is gradually improved by adding a correction term, which can
be expressed as

UCG,i+1(r) = UCG,i(r) − βkBT ln

(
gi(r)

g(r)

)
, (6)

where gi(r) is the RDF of the i th iteration and β is an
adjustable constant. The repeated iterations are carried out
until a target function ( ftarget), which measures the deviation
from the target distribution, is below 1.0 × 10−4. ftarget can be
calculated as the error integral:

ftarget =
∫ rc

0
exp (−r){gi(r) − g(r)}2dr; (7)

rc is the cutoff distance to compute the RDF, and it is set to
2 nm in this study. As ftarget becomes lower than threshold,
the mesoscale model has almost the same structural property
as the parent model [Fig. 3(c)]. However, the pair interaction
solely driven by the IBI cannot reproduce the exact density.
Consequently, an attractive linear tail function is added to the
previously derived energy in order to compute the pressure-
corrected potential [U PC

CG (r)] [31]:

U PC
CG (r) = UCG(r) − γ kBT

(
1 − r

rc

)
. (8)
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FIG. 3. Calculation of the CG potentials from the target properties of the AA MD system: (a) bond stretching, (b) bond angle bending, and
(c) nonbonded interaction energies.

The adjustment of the potential via the PC method is
carried out until the pressure of the CG model equals the
target pressure (0.1 MPa). We utilized the IBI- and PC-based
CG potentials to describe the mesogen-mesogen interactions
(P-P, P-N, and N-N), which are the most significant factors
to determine the LC phase, and the interactions between the
same types of beads. Less important pair interactions between
the different types are simplified by using the Lennard-Jones
(LJ) 9-6 analytic function:

U LJ
CG(r) = ε

{
2
(σ

r

)9
− 3

(σ

r

)6}
. (9)

Table III lists the LJ parameters (ε: well depth and
σ : the distance at which the potential reaches minimum
value) of the interactions between the same CG beads. The
pair interaction parameters for different types are calculated
by the Lorentz-Berthelot mixing rules of εi j = √

εiε j and
σi j = (σi + σ j )/2. The elaborately determined CG interaction
sets can predict the thermotropic phase transition behavior
as well as the structural and thermodynamic characteris-
tics of the LCP materials as shown in our previous work
[21].

Finally, the photoisomerization reaction of the azobenzene
groups is realized in the mesoscopic model. We focused on
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TABLE II. Derived interaction parameters for the CG PRP model.

Parameters for bond-stretching interactions

Type a1 b1 (Å) l1 (Å) a2 b2 (Å) l2 (Å) a3 b3 (Å) l3 (Å)

P-N 0.691 0.077 3.216
P-C3 0.286 0.082 3.797 0.095 0.164 3.698
C3-C3 0.114 0.117 3.589 0.065 0.358 3.387 0.092 0.090 3.873
C3-C2 0.239 0.203 2.602 0.142 0.190 2.971
C3-CO 0.211 0.088 3.281 0.171 0.218 3.002 0.027 0.168 2.539
C2-C2 (backbone) 0.441 0.110 2.609 0.334 0.125 2.379
C2-C2 (terminal) 0.209 0.323 2.678 0.045 0.169 3.252
C2-CO 0.937 0.104 2.416

Parameters for angle-bending interactions

Type a1 b1 (deg) θ1 (deg) a2 b2 (deg) θ2 (deg) a3 b3 (deg) θ3 (deg)

P-N-P (trans) 1.332 9.071 179.9
P-N-P (cis) 0.066 8.724 95.9
P-C3-C3 0.005 32.990 115.7 0.053 21.790 157.0
P-C3-C2 0.048 20.010 144.3
N-P-C3 0.203 5.722 162.4 1.188 10.030 174.9
C3-C3-C3 0.006 3.896 164.4 0.054 36.800 170.5 0.048 6.191 173.1
C3-C3-C2 0.040 27.824 154.5 0.108 13.692 178.7
C3-C3-CO 0.032 35.100 153.5 0.090 11.620 179.0
C3-C2-C2 0.010 21.580 109.3 0.009 14.050 136.1 0.050 21.130 165.5
C3-CO-C2 0.032 14.990 121.8 0.020 14.010 146.0
C2-C2-C2 0.014 15.191 112.5 0.105 19.410 171.4
C2-CO-C2 0.038 5.833 123.1 0.025 19.230 143.4 0.033 5.589 146.7
CO-C2-C2 0.025 5.129 76.27 0.013 4.172 95.7 0.014 24.850 98.4

Parameters for pair interactions

Type ε (kcal/mol) σ (Å)

P-P 0.476 6.55
N-N 0.088 8.35
C3-C3 0.310 5.65
C2-C2 0.275 5.15
CO-CO 0.378 4.45

2 different structural variations induced by conversion from
trans- to cis-molecules: (i) molecular shape change and (ii)
corresponding variation in the intermolecular interaction be-
tween the mesogenic units. Figures 4(a) and 4(b) show how

TABLE III. Fitted coefficients to define a coupled relation-
ship between phototriggered transition and shape change of the
crosslinked polymer.

System α η

X10 2.368
S6 X20 2.430

X40 2.638

X10 2.679 0.903
S9 X20 2.803 0.706

X40 3.010 0.561

X10 2.801 1.132
S11 X20 2.932 0.852

X40 3.138 0.513

to derive the CG photoswitching potentials in terms of the
bonded and nonbonded interactions, respectively. The geo-
metric change of the azobenzene itself is realized by switching
the bending angle potential of the molecular axis (P-N-P).
As shown in Fig. 4(a), the equilibrium angle changes from
180◦ to 96◦ under the light-induced configurational transition.
The introduction of the isomerized molecules weakens the
noncovalent interaction between the mesogens, which leads
to a phase transition from LC to isotropic phase. To repro-
duce this disordering effect, the interaction energies between
the cis-molecules [UC−C

CG (r)] and between the different iso-
mers [U T −C

CG (r)] are additionally derived by using the 100%
cis-azobenzene unit cell and mixture with 50% of the pho-
toactivated molecules, respectively. Figure 4(b) shows gradual
change in the CG energy between the aromatic rings (P-P)
under the photochemical reaction. Rodlike trans-molecules
in the unreacted PRP exhibit relatively stronger interaction,
which retains the LC structure. Meanwhile, the well-depth
energy decreases about 18% as the azobenzenes are con-
verted into the cis-state, which breaks the molecular ordering.
Likewise, the other mesogen-mesogen interactions (P-N and
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FIG. 4. Derivation of the CG photoswitching potentials to describe the changes in (a) molecular geometry and (b) the nonbonded interaction
between the trans- and cis-isomers.

N-N) are switched to simulate the mesoscale phototriggered
deformations.

B. Preparation of multiscale model parameters

As the UV-induced photoisomerization occurs, the PRP
materials undergo a phase transition from LC to isotropic
state. From the mechanical viewpoint, this mesophase be-
havior yields two significant effects: (i) deformation of the
elastomeric network and (ii) degradation of the mechanical
properties. Thus, it is necessary to capture the evolutions
of the mesoscopic photostrain and mechanical modulus in
response to the external light to predict the large-scale pho-
todeformations. Especially, as shown in Fig. 1, because the
absorbed photon energy and extent of the photochemical re-
action decay with the penetration depth, the profile of the
photomechanical properties should be parametrized in terms
of the local population of the isomerized molecules (ncis).
Accordingly, the photoactivated mesomolecules with eight
different photoisomerization ratios (ncis = 0, 4, 8, 16, 20, 30,
50, and 70 percent) are modeled using the CG MD technique.
The developed photoswitching interactions are applied to the
designated fraction of the photoreactive sites to generate cis-
azobenzenes. Then, the NPT run at 300 K is conducted for
150 ns to reproduce each deformed state.

The azobenzene-containing compounds considered in this
study exhibit smectic-A–nematic (Sm-A–N) and nematic-
isotropic (N-I) transitions under light irradiation. Because the
macromolecular deformation mode is dependent on individual
transition behaviors, the LC phase should be characterized by
calculating the symmetry parameters. In the Sm-A phase, the
mesogens are tightly assembled to form densely packed lay-
ers, which are periodically located along the nematic director.

The degree of this translational symmetry of the LC molecules
is evaluated by calculating a 1D translational order parameter
(τ ):

τ =
〈∣∣∣∣exp

(
2π i

rk · n
d

)∣∣∣∣
〉

k

, (10)

where rk is the center of the mass position vector of the k th
LC moieties, n is the nematic director, and d is the spacing
between the adjacent smectic layers. As the photoisomeriza-
tion proceeds, the layered structure is primarily broken, while
the nematic alignment remains. The uniaxial ordering of the
nematic molecules is quantified using the scalar orientational
order parameter (s):

s =
〈

3 cos2θ − 1

2

〉
, (11)

where θ is the angle between the individual molecular axis of
the LC molecules and long-range nematic director.

Deformation of the elastomeric network in response to
the phase transition can be described as a change in the
shape parameter (r) of the constituent polymer chains. The
shape parameter, which specifies the shape anisotropy of the
LCP molecule, can be simply calculated using the prepared
mesomolecule models. In particular, this characteristic prop-
erty acts as a link between the mesoscopic and macroscopic
descriptions, because it is a key parameter for the continuum-
scale governing equation of the equilibrium elastic response
[32]. Here, r is expressed as a function of radius of gyration
components of partially crosslinked polymer molecules:

r =
〈

R‖
R⊥

〉2

, (12)
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where R‖ and R⊥ are the radii of gyration components parallel
and perpendicular to the director, respectively.

The light-induced collapse of the molecular alignment
causes a large reduction in the elastic modulus, as well as
deformations of the macromolecules. To evaluate this photo-
softening effect, the mechanical behavior of the PRP network
is analyzed using the CG MD model. Uniaxial tensile loading
is applied along the oriented direction (x) under the NPT
ensemble at 300 K. The nominal strain rate is 107/s, and
the applied strain gradually increases up to 0.15. The virial
formula [33] is utilized to compute the stress at each deformed
state, and the stress-strain curves of the CLCPs with different
photoisomerization ratios (ncis) are obtained. Mesoscale sim-
ulation data points are fitted to the analytic functional forms
to extract the effective elastic moduli.

The stress-strain relationship of the nematic LCP is gen-
erally defined by the neoclassical theory, which combines
the classical rubber elasticity and the molecular anisotropy
induced by the LC order [16,32]. The neoclassical free energy
density of nematic elastomers (FN ) can be expressed as

FN = 1
2μTr(l0λ

T l−1λ), (13)

where μ is the shear modulus of the crosslinked polymer
network and λ is the deformation gradient tensor. Here, the
subscript “0” denotes the quantities of the undeformed con-
figuration. l0 and l are the effective step length tensors, which
record the polymeric shapes and directors of the initial and
current states, respectively. They can be expressed as

l0 = I + (r0 − 1)n0 ⊗ n0, l = I + (r − 1)n ⊗ n, (14)

where n is the long-range director vector of the LC mesogens.
The variable r can be calculated using Eq. (12). As the ex-
tension λxx = λ is applied parallel to the nematic direction,
the relaxations along the perpendicular directions should be
λyy = λzz = 1/

√
λ to minimize the elastic energy. Assuming

a small imposed strain, the director and nematic order do not
change crucially, which leads to l0 � l . Then, the free energy
expressed in Eq. (13) can be simplified as

FN = 1

2
μ

(
λ2 + 2

λ

)
. (15)

The nominal stress is computed by differentiating FN with
respect to λ:

σN = ∂FN

∂λ
= 1

2
μ

(
λ − 1

λ

)
. (16)

In the case of Sm-A elastomers, a geometric constraint
term, which is relevant to rigidly embedded layers, is added
to derive the smectic free energy (FS):

FS = 1

2
μTr

(
l0λ

T l−1λ
) + 1

2
B

(
d

d0
− 1

)2

, (17)

where B is the layer modulus and d is the spacing between
adjacent layers. The director of the deformed smectic solid
and layer spacing change (d/d0) can be computed assuming
an affine deformation of the layers with the imposed strain
[34]:

n = λ−T · n0

|λ−T · n0|
,

d

d0
= 1

|λ−T · n0|
. (18)

FIG. 5. (a) Stress-strain response and the configurations of the
smectic azo-LCP models (b) before and (c) after the breakdown of
the layers.

Unlike the nematic polymer, the Sm-A system exhibits an
unusual nonlinear elastic response provoked by drastic mi-
crostructural variation. It has been revealed that as the uniaxial
loading is applied parallel to the layer normal, the associ-
ated mechanical behavior can be divided into two regimes
[35,36]. For small strains, the uniformly layered structure
results in a relatively large elastic stiffness because the smectic
layer modulus B is significantly larger than μ of the elas-
tomeric network. However, if the applied deformation exceeds
a threshold strain (λth), the mechanical modulus decreases
remarkably. This unique mechanical behavior can be clearly
observed using the CG MD simulation. Figure 5 shows the
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generic stress-strain curve and structural characteristics of
the Sm-A polymer in different deformed states. As shown
in Fig. 5(a), the slope of the stress-strain curve decreases
remarkably as the strain exceeds a specific value. In the small
strain regime (λ < λth), the firmly assembled layers provide
great mechanical resistance [Fig. 5(b)]. Meanwhile, as shown
in Fig. 5(c), the smectic structure breaks down accompanied
by the local rotation of the layer planes, which reduces the
elastic stiffness at λ > λth.

The mechanical response of the smectic solids can be de-
scribed using analytic functions considering the layer rotation
at a singular edge. As the extension λxx = λ along the layer
normal direction is applied, the associated deformation tensor
is expressed as follows:

λ =
⎡
⎣ λ 0 0

0 λyy 0

λzx 0 λzz

⎤
⎦. (19)

The shear λzx starts to occur as the elongation reaches the
critical strain, and induces rotation of the layers. Then, the
elastic free energy can be rearranged by inserting Eqs. (14),
(18), and (19) into Eq. (17):

FS = 1

2
μ

[
λ2

zz + 1

λ2
zzλ

2
+ λ2

zx +
(
λ2

zz + rλ2
zx

)
λ2

λ2
zz + λ2

zx

]

+ 1

2
B

(
λλzz√

λ2
zz + λ2

zx

− 1

)2

. (20)

The transverse contraction λyy is eliminated using the in-
compressibility condition [det(λ) = 1]. Before the smectic
layer starts to rotate, the shear deformation does not appear
(λzx = 0). However, after the mechanical instability point, λzx

is generated with singular rotation. λzz and λzx can be obtained
as functions of λ and λth by minimizing the energy with some
simplifications [34]:

λzz =
√

λth

λ
, λzx = ±

√
1

λth
− λth

λ2
. (21)

Finally, the analytic solutions of elastic energy and corre-
sponding stress-strain relationship, which are split into two
parts with respect to the deformation regime, are given as
Eqs. (22) and (23), respectively:

FS =

⎧⎪⎨
⎪⎩

1
2μ

(
λ2 + 2

λ

) + 1
2 B(λ − 1)2, (λ < λth ),

1
2μ

[
λ2

th + 2
λth

+ r
(
λ2 − λ2

th

)] + 1
2 B(λth − 1)2,

(λ > λth ),

(22)

σS =
{
μ
(
λ − 1

λ2

) + B(λ − 1), (λ < λth ),

μrλ, (λ > λth ).
(23)

The stress-strain curves of the CG unit cells with different
ncis values are fitted to Eq. (16) to extract the shear modulus
(μ) of the nematic solids. For the Sm-A polymer, two un-
known variables (μ and B) are simply calculated by fitting the
data points in two different deformation regimes to Eq. (23).

C. Nonlinear FE implementation

The macroscopic behavior of the PRP is derived by adopt-
ing the continuum-scale quasisoft elasticity model [18], which
reflects a strong coupling between the mechanical defor-
mation and the nematic order of the LCs. Starting from
neoclassical elasticity, Eq. (13) for nematic free energy can
be rearranged as

FN = 1
2μTr(g−1λg0λ

T ) = 1
2μTr(g−1C), C = λg0λ

T ,

(24)

where C is the effective Cauchy-Green tensor, and g0 and g are
the metric tensors of the initial and current states, respectively.
They are calculated by making the step length tensor have a
unit determinant:

g0 = l0/ det (l0)1/3, g = l/ det (l )1/3. (25)

It was found that the current polymeric conformation ten-
sor (g) becomes coaxial with C because the nematic director
is adjusted by the applied deformations [17]. Accordingly, the
eigenvectors of the C matrix coincide with those of g. Consid-
ering this coaxiality, the Cauchy stress of the incompressible
nematic polymers has the following expression:

σN = −pI + μg−1C = −pI + μ

3∑
i=1

g−1
i Ciei ⊗ ei. (26)

Here, p is the hydrostatic pressure, ei indicates the eigen-
vectors, and gi and Ci are the corresponding eigenvalues.
Uniaxial metric tensors can be expressed in terms of the
polymeric shape parameter by inserting Eq. (14) into Eq. (25):

g0 = r−1/3
0 I + (

r2/3
0 − r−1/3

0

)
n0 ⊗ n0,

g = r−1/3I + (r2/3 − r−1/3)n ⊗ n. (27)

The final expression for the stress-stretch relation is de-
rived by inserting Eq. (27) into Eq. (26):

σN = −pI + μr1/3

[
C −

(
1 − 1

r

)
Cmn ⊗ n

]
, (28)

where the current director n coincides with the eigenvector of
C with the largest eigenvalue Cm (i.e., Cn = Cmn).

A direct implementation of the above nonlinear constitu-
tive relation [Eq. (28)] into the classical FE formulation is
very complicated. It is because of the soft elasticity of the
LCEs under large stretching behavior: the long-range director
of the mesogens rotates without energy cost. This unusual
behavior brings about nonconvex free energy and generation
of the singular stiffness matrix due to the vanishing of certain
shear modulus. Thus, the modified semisoft elastic energy
and additional solving technique have been utilized to im-
plicitly treat the complex nonconvexity [17,37]. However, in
this study, the constitutive model is linearized to simplify the
photomechanical behavior of the PRP and to work directly
on the stress-strain relation obtained after the minimization of
the free energy. It is reasonable because the practical bending
of the PRP is induced not by the large in-plane stretching
but by the inhomogeneous in-plane contraction along the
thickness. Other previous studies have adopted the linearized
quasisoft governing equation of the neatmic LCEs and satis-
factorily reproduced the light-induced bending behavior using
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the FE formulations [18,19]. The linearization approach starts
from introducing the displacement gradient H = λ − I to the
Cauchy-Green tensor:

C = (H + I)g0(H + I)T = g0 + Hg0 + g0HT = g0 + 2εg.

(29)

The high-order term Hg0HT is neglected, and the ef-
fective infinitesimal strain εg = (Hg0 + g0HT )/2 contains
symmetric Cauchy strain (ε) and skew-symmetric rotation (ω)
parts:

εg = 1
2 (εg0 + g0ε) + 1

2 (ωg0 − g0ω). (30)

The current nematic director is defined as an initial director
plus deformation-induced rotation (δn):

n = n0 + δn. (31)

By substituting Eqs. (29) and (31) into Cn = Cmn and
neglecting the high-order term, we can obtain

Cm = r2/3
0 + 2n0 · εg · n0, (32)

δn = 2r1/3
0

r0 − 1
[εg · n0 − (n0 · εg · n0)n0]. (33)

The linearized stress-strain relation can be obtained by
inserting Eqs. (29)–(33) into Eq. (28):

σN = −pI + 2μ

(
r

r0

)1/3
{

ε − [
1 − r0+1

2(r0−1)
r0−r

r

]
[n0(ε · n0) + (ε · n0)n0]

+ 2r0
r

r−1
r0−1 (n0 · ε · n0)n0n0 + r0−r

2r [n0n0 + n0(ω · n0) + (ω · n0)n0]

}
. (34)

Note that the stress induces rotation of mesogenic alignment as well as an infinitesimal strain, which reflects the light-induced
microstructural variation of the LCP network. Because the thickness of the practically used PRP strip is sufficiently small
compared to its length [4,38], the plane stress condition is applied. Additional constraints are that (i) both initial and current
nematic directors are located in-plane (n0

3 = n3 = 0) and (ii) the volume is conserved after light-induced deformation [tr(ε) = 0].
Under these conditions, the tensorial form of the mechanical equilibrium (the Greek indices are 1 or 2) is prepared as follows:

σ N
αβ = 2μ

(
r

r0

) 1
3

[−δαβ (ε11 + ε22) + εαβ − {
1 − r0+1

2(r0−1)
r0−r

r

}{
εβγ n0

αn0
γ + εαγ n0

βn0
γ

}
+ 2r0

r
r−1
r0−1

(
εηψn0

ηn0
ψ

)
n0

αn0
β + r0−r

2r

{
n0

αn0
β + ωβγ n0

αn0
γ + ωαγ n0

βn0
γ

}
]

= σ 0
αβ

(
εαβ, ωαγ , n0

α, r, r0
) + σ

ph
αβ

(
n0

α, r, r0
)
. (35)

As shown in Eq. (35), the internal elastic stress (σ 0
αβ) and photostress (σ ph

αβ) are dependent on the light-induced property
changes. Similarly, the mechanical-order coupling relation of the Sm-A polymer can be developed by considering the layer
dilation energy, layer spacing change, and affine deformation of the layer normal [Eqs. (17) and (18)]:

σ S
αβ = μ

(
r

r0

)1/3

⎡
⎢⎢⎣

2δαβ (ε11 + ε22) + 2εαβ + {2r0 − r0
r − 1}{εβγ n0

αn0
γ + εαγ n0

βn0
γ

}
+ {

4
( r0

r − r0
) + B

μ

(
r
r0

)−1/3}(
εηψn0

ηn0
ψ

)
n0

αn0
β

+ r0−r
r

{
n0

αn0
β + ωβγ n0

αn0
γ + ωαγ n0

βn0
γ

}
⎤
⎥⎥⎦. (36)

A detailed derivation procedure can be found in a previous
numerical study [39].

Despite the use of the linearized governing equation, the
light-induced conversion of the 2D thin strip into 3D complex
shapes in reality requires a description of the large displace-
ment of the structure. Accordingly, the element-independent
corotational (EICR) formulation [40] is adopted to account
for the geometric nonlinearity. The EICR formulation sep-
arates the rigid-body motion and deformation purely based
on the kinematics, which is a distinguished feature compared
to other solving techniques. Because the extraction of pure
deformation is conducted independently of the element-wise
calculations, this method enables the extension of the lin-
ear element to be used in the geometric nonlinear context.
Figure 6 shows three independent configurations required
for describing the EICR kinematics: (i) undeformed (�0),
(ii) deformed (�D), and (iii) corotated (�R) configurations.
The corotated frame is a theoretical concept of the intermedi-
ate state between the initial and deformed frames, and can be
obtained through rigid-body translation and rotation of the un-
deformed body. The element-wise pure deformation (ūd ) and

rotation (θ̄d ) can be filtered out from the global displacement
by comparing the corotated system with the finally deformed
state. The overbar and subscript d indicate the properties
related to the local coordinate and pure deforming portions,
respectively. Equation (37) describes the filtration process of
EICR formulation:

δd̄d =
{
δūd

δθ̄d

}
= H̄P̄T

{
δu
δφ

}
= �

{
δu
δφ

}
. (37)

First, the matrix T is employed to transform the global
nodal displacement (δu) and spin (δφ) into the quantities of
the local corotational coordinate. Then, the projection matrix
P̄ is utilized to filter out the rigid-body motions. Finally, the
element-wise pure deformation (δd̄d ) can be computed using
H̄, which eliminates the gap between two pseudovectors θ

and φ. A conventional Newton-Raphson algorithm with an
adaptive step-size technique [41] is used to obtain a nonlin-
ear solution. At this stage, the locally consistent tangential
stiffness matrix and the residual force can be computed using

012703-10



COMBINED COARSE-GRAINED MOLECULAR DYNAMICS … PHYSICAL REVIEW E 103, 012703 (2021)

FIG. 6. Illustrative description of the kinematics-based filtration
of the EICR formulation.

the first-order derivatives of the auxiliary matrices in Eq. (37)
[19].

A triangular three-node linear shell element is employed
to perform the FE analysis. Each node has six DOFs [nodal
displacements (u1, u2, u3) and rotations (θ1, θ2, θ3)]. The
intrinsic material properties of the LCP network (initial di-
rector, shape parameter, and elastic moduli) are individually
defined at each element. Based on the variational principle, a
set of equilibrium equations is obtained from the linear shell
element formulation as follows:

δW =
∫

�

δ(ε0 − zk̂)(σ0 − σph)dV

= δd̄d · K̄e · d̄d − δdd · �̄
ph

, (38)

where �̄
ph comprises light-induced stress and moment resul-

tants (N̂ph and M̂ph), and the consistent stiffness matrix K̄e is
calculated as a sum of matrices for each contribution:

�̄
ph = {N̂ph, M̂ph}T , K̄e = [K̄m + K̄b + 2K̄mb],

K̄m =
∫

BεT ÂBεdA, K̄b =
∫

BκT D̂BκdA,

K̄mb =
∫

BεT B̂BκdA. (39)

The superscripts m, b, and mb denote the stiffness ma-
trices for membrane, bending, and coupled behaviors of the
shell element, respectively. B is the strain matrix, where ε

and κ denote the strain-displacement and strain-curvature
relations, respectively. The optimal triangular [42] and the
discrete Kirchhoff triangular [43] shell elements are exploited
to handle the membrane and bending behaviors, respectively.
Because the FE simulation must reflect the nonuniform local
deformation and modulus profiles, the stiffness and photore-
sultant matrices are computed using a numerical integration
with 250 thickness integration points, which is based on Simp-
son’s rule.

The spatial profiles of the light intensity and the corre-
sponding conversion ratio of the photoactive molecules are
obtained to perform the multiphysical analysis. First, the
decaying effective light intensity (Ieff ) along the material

thickness is modeled using the Lambert-W function (WL) [44]:

Ieff = WL
[
exp

(
I0
eff − z/d

)]
, (40)

where I0
eff is the maximal intensity of the incident light at the

surface, z is the penetration coordinate, and d is the character-
istic saturation depth of light. The effective light intensity can
be alternatively defined as Ieff = τcis�I , where I is the light
intensity, � is the absorption ratio, and τ−1

cis is the cis-state
lifetime. Then, a temporal evolution of the photoisomerization
ratio (ncis) profile is obtained by solving the photodynamics
differential equation. Considering both UV-induced trans-to-
cis conversion and thermal back-reaction, the steady-state
cis-population (n∞

cis) can be given as follows [44]:

n∞
cis = τcis�I

1 + τcis�I
= Ieff

1 + Ieff
. (41)

As shown in Fig. 1 and Eq. (41), the presented multi-
scale simulation defines the local ncis profile in terms of
the input light intensity. Moreover, the mesoscale intrinsic
properties in terms of the external light condition are ex-
tracted using the CG MD simulation. The phase-dependent
conformational variation in response to the light stimuli is
captured using the shape parameter [r(ncis)]. Moreover, the
elastic moduli [μ(ncis) and B(ncis)] vary with respect to the
out-of-plane position of the PRP strip, analogously to the
functionally graded material, to explicitly express the pho-
tosoftening effect. These profiles are imported into the FE
equilibrium equation [Eqs. (35) and (36)] to compute the
consistent stiffness matrix, external photostress, and corre-
sponding macroscopic photodeformation fields.

III. RESULTS AND DISCUSSION

A. Morphology-dependent photomechanical properties

Figure 7 shows the influence of spacer length on the initial
LC structure of the PRP network. As shown in Fig. 7(a), the
mesogens of the S6X40 system only possess the rotational
symmetry (s = 0.51), which implies the development of a
uniaxial nematic phase. Meanwhile, the equilibrated S9X40
has both orientational and translational orders (s = 0.64 and
τ = 0.18), and the LCs are more aligned compared to the
S6 polymer [Fig. 7(b)]. The LCP which has the longest con-
stituent polymer chains shows a deep Sm-A phase, as seen in
Fig. 7(c), with the largest order parameters (s = 0.86 and τ =
0.64). That is, a longer sparer length helps the whole system
to exhibit a more complicated LC structure and an improved
arrangement. The observed phenomenon agrees well with the
result of the experimental studies [4,8,25]. As the length of
the flexible polymer chain increases, the constraint on the
orientational and translational symmetries of the azobenzene
molecules is weakened. Furthermore, a more uncoiled poly-
meric conformation of the methylene units contributes to the
arrangement of rigid mesogen groups.

Next, the morphology-dependent mesophase behavior is
investigated. Figure 8(a) shows the sequential Sm-A–N–I
phase transition induced by gradually increasing the number
of isomerized groups. In the case of spacer 11 polymers, the
self-assembled smectic layer is primarily broken with a low
ncis value of about 20%–30%. At this stage, the azobenzenes
are still aligned to the long-range direction, which means that
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FIG. 7. Mesoscale configurations of the PRP networks which
hold the different spacer lengths: (a) S6X40, (b) S9X40, and
(c) S11X40 polymers.

the CLCP network is transformed into a nematic structure.
Then, with increasing the ncis up to 50%–70%, the system
becomes the isotropic state without any symmetric order. Fig-
ures 8(b), 8(c), and 8(d) show the photon-assisted variations
of the LC order parameters. These evolutions of the struc-
tural parameters reveal that the crosslinking density as well
as the spacer length of the LCP affects the phase behavior.
Regardless of the spacer length, s and τ increase with the
increment of the concentration of the diacrylate crosslinking
agents. This trend is consistent with that of the experimentally
measured birefringence and polarized absorption spectra [45].
The crosslinking points between the polymeric backbones
tightly fix the anisotropic shape and alignment of the network.
The initial polymeric architecture also decides the phase tran-
sition pathway. Meanwhile the spacer 6 LCPs exhibit only
N-I transition; the polymers with longer spacers show the
light-activated transition among three different phases (Sm-A–
N–I). As shown in Figs. 8(c) and 8(d), the translational order
parameter of the S9 system decreases to less than 0.1 at ncis =
15%–20%, whereas more cis-molecules (ncis = 30%–50%)
are required to break the layered structure of S11 polymers.
These results indicate that the phase transition points under

the same light condition can be controlled by manipulating
the length of the polymer chain. Another notable point is that,
as the crosslinking density increases, the PRP sustains higher-
order parameters during and even after the photochemical
reaction process.

Variations in the mesophase behavior with respect to the
microscopic morphology parameters influence the temporal
evolution of the macromolecular deformation. Figure 9 shows
the shape parameters of diverse azopolymers as a function of
ncis. As seen in Fig. 9(a), the shape anisotropy of the nematic
S6 polymer decreases under the photoresponsive N-I transi-
tion. On the other hand, the sequential transformation of Sm-A
polymers, especially for the S11 system, causes a shift in the
deformation modes. During the Sm-A–N transition within a
low cis-population range (ncis = 5%–15%), the dimension of
the polymer parallel to the oriented direction rather increases
[Fig. 9(c)]. Then, after the breakdown of the smectic layers, a
uniaxial shrinkage occurs under the N-I transition. Namely,
the decrease in the translational order increases the shape
anisotropy, while the uniaxial shrinkage is dominantly gen-
erated by the removal of orientational symmetry. The unique
photomechanical deformation of Sm-A PRPs has already been
reported [8,35].

A relationship among s, τ , and r is established to link
the LC state with the accompanying conformational change
in the polymer network during photoisomerization. It has
been known that the shape parameter of the elastomer has
a linear relationship with the orientational order parameter
of the mesogenic units (r = 1 + αs). In the previous study,
we revealed that the uniaxial elongation during the Sm-A–N
phase transition is attributed to the dispersed backbone chains.
The shape parameter change in response to the variation in τ

can be described using an exponential term [21]. Therefore,
the final expression of r is given as follows:

r(ncis) = 1 + αs(ncis) − [exp {ητ (ncis)} − 1]. (42)

When τ = 0, the smectic order is removed and the equa-
tion becomes identical to the original linear relationship.
The macromolecular shape and LC structural parameters are
utilized to derive the relationships in Eq. (42) for each PRP
model. The resulting fitted curves (dotted lines) in Fig. 9
show good agreement with the data points (filled squares)
obtained using the CG MD simulation. Table III lists the fitted
coefficients, α and η, of the CLCP models. It shows that α in-
creases with the spacer length. This result implies that a longer
flexible chain not only improves the initial molecular align-
ment but also enables a larger photomechanical contraction
under the same variation of s. The heavily crosslinked network
structure also enhances the responsiveness of the PRPs. As
the molar concentration of the crosslinker increases from 10
mol % to 40 mol %, α increases by about 11.4%–12.4%. In
contrast to the tendency of variation in α, η decreases with in-
creasing crosslinking ratio, which means that less elongation
occurs during the collapse of the translational order. Zhang
et al. [8] also reported that the densely crosslinked smectic
polymer does not exhibit a distinct stretching behavior along
the layer normal direction.

The photosoftening effect on the mechanical behavior of
the PRP is also investigated. Figure 10(a) shows the generic
stress-strain curves of the LCPs containing different amounts
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FIG. 8. (a) Light-induced phase transition of the CG MD model and the associated changes in the order parameters of (b) S6, (c) S9, and
(d) S11 polymers.

of the isomerized molecules. The elastic modulus of the
presented CG models ranges about 100–500 MPa, which is
within the similar order of the reported mechanical properties
of the glassy azo-LCP [46,47]. As ncis increases up to 70%, the
elastic modulus of the polymer network remarkably decreases
by up to 55%. Another interesting feature is that the modifica-
tion of the polymer structure and the corresponding changes in
the LC phase can remarkably affect the mechanical responses.
The nematic polymers with six methylene spacer units only
have the shear modulus component, which reduces as the
photochemical reaction proceeds [Fig. 10(b)]. As expected,

a more densely crosslinked LCP exhibits a larger value of μ.
According to the classical rubber elasticity, μ is proportional
to ns, which is the average number density of polymer strands
between two successive crosslinks. The smectic S9 and S11
CLCPs exhibit a much larger modulus for the layer dilation
than the shear modulus of the elastomeric network itself, as
shown in Figs. 10(c) and 10(d). In terms of molecular geome-
try, because the mesogen rods packed in the layer are closely
located parallel to each other, the maximized π−π stacking
interaction yields the large mechanical resistance. The light-
induced decrease in B is more impressive compared to that
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FIG. 9. Shape parameters of the PRP network models as a func-
tion of the photoisomerization ratio of the azobenzene molecules.

in μ. Indeed, the ratio of layer modulus to shear modulus
(B/μ) reduces from 10 to 3 under the Sm-A–N transition. B
still remains even after the phase transition is completed. If
we allow B to drop to zero at a specific point, the computed
μ rather increases under the molecular disordering, which
is not desirable. The nonvanishing value of B is attributed
to the curing and photoisomerization reactions at low tem-
perature (300 K). Because the monomers are polymerized in
the deep Sm-A phase, the crosslinked network memorizes its
original structure at formation even under the photomechan-
ical deformation. In addition, sufficient molecular mobility

to completely eliminate the positional order is not achieved
due to the low external thermal energy. Figures 10(c) and
10(d) also show the dependence of the mechanical proper-
ties of smectic solids on the whole network morphology. As
the number of spacer methylene units is changed from 9
to 11, B increases up to approximately 57%. Moreover, the
improvement in the elastic moduli induced by increasing the
crosslinking ratio is more pronounced for the S11 system.
As shown in Fig. 8, a longer flexible spacer facilitates the
enhancement of the LC symmetry of the polymer by modi-
fying the degree of polymerization. That is, an increase in the
crosslink density improves the mechanical properties of the
PRP through a synergetic effect of rigidly connected polymer
chains and a strong fixation of highly ordered LC units.

B. Photobending deformations

The CG-MD–FE coupling method is employed to simu-
late the macroscopic photobending behavior of the PRP film.
Figure 11 shows the one-side clamped FE model, where Lx =
20 mm and Ly = 2 mm are the length and width of the PRP
specimen, respectively. The length-to-thickness ratio (L/h =
40) is large enough for applying the plane stress assumption.
The penetration depth-to-thickness ratio (d/h) is set to 0.4,
and it is revealed that the gap between the linear and nonlinear
solutions is distinct under this condition. The midplane of the
strip is discretized by 20 × 4 rectangular lattices, and each lat-
tice contains four overlaid triangular shell elements. As seen
in Fig. 11, the uniform nematic directors [n0 = (1, 0, 0)T ] are
individually defined at each element. The unpolarized UV ray
is irradiated from the top of the PRP film along the z direction.

Figure 12 shows the evolutions of the bending curvature
of the PRP films, which are composed of different macro-
molecular structures. The deflection curve in the xz plane is
fitted by the third-order polynomial function, and the cur-
vature of the bent strip is computed at the clamped point
of the midplane. As seen in Fig. 12(a), in general, the ne-
matic films bend toward the light source due to the spatial
gradient of the light-induced contractile strain. The nonlinear
bending behavior becomes profound when light penetrates
deeply into the polymer domain. If Ieff reaches a specific point,
the curvature rather starts to decrease because the in-plane
shrinkage becomes more dominant. Figure 12 also shows two
notable effects of the highly polymerized LCP structure on
the macrodeformations: (i) increase in the maximum bending
curvature and (ii) delayed bending speed to achieve the max-
imum point. These observed phenomena were also reported
by Yu et al. [45]. As stated in Sec. III A, the linking between
the polymer backbones makes the LC moieties more aligned
to the uniaxial director, which enables a larger polymeric
shape change during the photoreaction. Figures 13(a), 13(b),
and 13(c) show variation in the spatial gradient of the ratio
between the current and initial shape parameters (r/r0) in
response to the gradual photoisomerization reaction. Under
the same external light condition, the r of a more compactly
crosslinked PRP is more drastically changed. This result is
consistent with the mesostructural changes observed using
the CG MD analysis. As listed in Table III, the mesogenic
order-shape coupling parameter (α) increases with the incre-
ment of crosslink density, which means that the LCP responds
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FIG. 10. Light-induced changes in (a) the stress-strain curves and (b)–(d) the elastic moduli of the PRPs.

more sensitively to the light-induced molecular disordering. A
wide variation range of r for a highly crosslinked material, as
shown in Fig. 9, contributes to a larger macroscopic photo-
bending curvature. Meanwhile, the bending speed to achieve
the maximum curvature is determined by the saturation point
of the deformation gradient. Figure 8 shows that the LC order
parameters of the loosely crosslinked network vanishes with
smaller cis-fraction, which is equivalent to the lower light

FIG. 11. Initial configuration of the flat FE model to describe
the bending deformation of the PRP in response to the UV light
illumination.

intensity. After the PRP becomes isotropic, no more remark-
able photodeformation occurs. As shown in Fig. 13(a), the
deformation gradient of the S11X10 system rapidly converges
at Ieff = 1.0, where the curvature does not increase anymore.
On the other hand, the variation in the shape parameter of
S11X40 is still considerable at Ieff = 2.0 [Fig. 13(c)] and
hence, it requires more light absorption to reach the maximum
curvature.

The photoactivated deformation path is also dependent
on the molecular length of the LC compounds. When we
modify the spacer groups from S6 to S9, the overall cur-
vature decreases regardless of the crosslinking density as
shown in Figs. 12(a) and 12(b). The reduction in the pho-
tostrain is caused by the reinforced mechanical resistance
with the aid of the compactly layered structure of the smec-
tic S9 polymer. Figures 13(d), 13(e), and 13(f) show the
elastic stiffness matrix component along the axial direction
of the PRP film. A dominant stiffness degradation at the
light-exposed surface demonstrates that the presented mul-
tiscale simulation scheme efficiently reflects the decaying
light intensity with penetration depth and photosoftening ef-
fect on the mechanical properties of the LCP. Figures 13(d)
and 13(e) clearly show that the modulus of the smectic S9
polymer is up to 80% larger than that of the S6 nematic
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FIG. 12. Light-induced bending curvature of the FE LCP models
with (a) 6, (b) 9, and (c) 11 methylene units in the spacer chains.

polymer. This enhanced mechanical property is attributed to
the addition of the layer modulus (B), which is 3–10 times
larger than μ of the elastomer, in constructing the internal
stiffness matrix. Therefore, the photobending behavior of the
LCP with nine methylene spacer units is more restricted.

On the other hand, under the same illumination level, the
S11 polymers which have the largest layer modulus rather
exhibit a larger curvature compared to S9 [Figs. 12(b) and
12(c)]. This is because the light-induced shape parameter
change is large enough to overcome the effect of the enhanced
modulus. Accordingly, we can indicate that the applicable
range of the macroscopic photodeformation is determined
by a trade-off effect between microscopic photostrain and
the inherent mechanical resistance of the photoresponsive
material.

Another notable feature is that the S11 polymers in the
deep Sm-A phase show the switching of the photoactuated
bending direction without moving the position of the light
source. As shown in the inset of Fig. 12(c), a negative bend-
ing curvature is observed when Ieff ranges from 0 to 0.1.
Under the weak light intensity, as commented in Sec. III A,
the breakdown of the smectic layered structure rather leads
to the elongation of the molecules along the oriented direc-
tion. Hence, the S11 PRP film initially bends opposite to
the light source during the Sm-A–N transition due to the
surface-dominant expansion mode. Next, as the light intensity
is strong enough to cause the N-I transition, the bending
direction is switched toward the luminous source due to the
shrinkage behavior. However, as seen in Fig. 12(b), we cannot
observe any distinct conversion of the bending motion for
the spacer 9 system. This is because of the formation of an
unstable smectic phase, which possesses a relatively small
translational symmetry (τ = 0.2). In this case, the tensile de-
formation is negligible compared to the disordering-induced
contraction. We conclude this section by indicating that the
maximum deformation, responsiveness, and deformation path
of the PRP can be precisely adjusted by designing the syn-
thesis condition and microscopic architecture of the polymer
network.

C. Disclination-mediated 3D deformations

In addition to simple bending of the PRPs with a uniform
director field, exotic 3D photomechanical deformations en-
abled by the imprinted LC defects are simulated. First, we
identify the optical texture of the PRP films incorporated with
spatial variation of the LC director. A thin circular plate with
a radius of 20 mm and a thickness of 0.5 mm is prepared. The
domain is discretized into irregular shell elements by using
Delaunay triangulation. A complex director profile is pre-
scribed based on the disclination defects, which can be formed
naturally in the Schlieren texture. The nematic disclination
can be characterized as singularities of continuously varying
director fields with defect strength m, which is relevant to the
order of rotational symmetry around the central topological
defect. The planar director components with this imprinted
pattern can be expressed as

(nx, ny)T = [cos (mθ + c), sin (mθ + c)]T , (43)

where θ = tan−1(y/x) and c = π/2 is an angle constant. Var-
ious optical topologies with m = ±1, −1/2, and −5/2 are
generated. Next, a unique defect-mediated pattern, which is
only observed in the smectic structure, is constructed. The
disclination core in the smectic phase breaks the positional
symmetry of the continuous lines of the self-assembled layers.
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FIG. 13. Spatial profiles of (a)–(c) r/r0 of the PRP films with different crosslinking ratios and (d)–(f) elastic stiffness component of the
polymers with different spacer groups.

Here, the layer structures in the vicinity of ±1/2 disclination
cores combined with elementary dislocations are modeled.
Energetically stable configurations can be obtained by mini-
mizing the distortion free energy of the smectics [48–50]. In
treating the submicron-scale layered pattern of the smectic de-
fects, the mesh size should be comparable to the layer spacing
(about 3–4 nm). Therefore, a smaller sample with a radius of
60 nm and a thickness of 1.5 nm is additionally prepared. The
interval between the allocated meshes is set to approximately
3 nm.

Figures 14 and 15 show the deformed configurations of
the PRPs with a disclination-mediated nonuniform molecular
alignment. Clamped and simply supported boundary condi-
tions are applied to the edge of the circular specimen, and
the resulting optical textures are subtly different. The nematic
S6 LCP network imprinted with the m = 1 azimuthal defect
deforms to the cone-shaped configuration under the light-
induced phase transition from nematic to isotropic state. More
complex morphologies can be manufactured by modifying the
defect strength of the disclination topology. These simulated
configurations with different prescribed patterns are fairly
consistent with the complex surfaces obtained experimentally
[7]. Note that, as seen in Figs. 14 and 15, the 2D plane of the
smectic CLCP is sequentially transformed into two different
configurations under light illumination. Initially at Ieff = 0–1,
the polymers with 11 spacer units undergo the Sm-A–N transi-
tion and reach the first equilibrium state, whose configuration
cannot be realized in the photoresponse of the nematic solids.
Thereafter, as the light intensity increases sufficiently to con-
vert the deformation modes, the patterned specimen jumps to
another distinct state and its final topography is similar to that
developed during the N-I transition. The results indicate that
the PRP domain, which possesses both inherent characteris-

tics of the smectic solids and engineered inhomogeneity in
the molecular director, can be utilized as a self-deformable
structure with multiple programmed shapes.

Next, the light-induced macroscopic topographies of the
LCPs incorporated with the smectic layer defects are ex-
amined. Figure 16 shows the smectic layer configuration,
normal director distribution, and stepwise photodeformations
of the S11 PRPs with ±1/2 disclination charges. The red
dotted lines indicate the position where the magnitude of
layer ordering is maximized. The LC directors are assigned
perpendicular to the tangential lines of the 2D smectic lay-
ers. As shown in Fig. 16(a), a representative pattern with
m = 1/2 has a single dislocation at the center and arc-shaped
layers at the left half of the plane. This texture is generated
to have a uniform spacing and make the curvature of the
layers disappear under the mathematical minimization of the
distortion free energy. Meanwhile, the microstate distribu-
tion with m = −1/2, as presented in Fig. 16(b), resembles
that observed in the nematic topology with the same defect
strength. These numerical examples prove that the engineer-
ing of the smectic order can also be an alternative way to
realize the complex shapes that are different from those of
the nematic polymers. Despite a lack of utilization of the
disclinations in smectics as the photoresponsive surfaces,
these novel structures can be converted into more exotic
shapes compared to the PRPs imprinted with conventional
patterns.

IV. CONCLUSIONS

In this work, a multiscale photomechanical simulation
framework is proposed to efficiently integrate the mesoscopic
and continuum-mechanics models. The CG MD technique is
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FIG. 14. Optical textures of the photoresponsive surfaces with various polymeric structures and preprogrammed director distributions.
Edge boundary condition: clamped.

utilized to reduce the DOFs and predict the global response
of the macromolecules. The IBI-based CG interaction sets
precisely reproduce the conformational characteristics and
mesophase behavior of the azobenzene-containing LCP net-
work. Specifically, the mesoscale photoswitching potentials

are developed to reproduce variations in the microstruc-
ture under UV light illumination. Then, the mesoscale
photoisomerization simulation is conducted to observe two
distinct multiphysical phenomena: (i) polymeric shape change
under the light-induced phase transition (Sm-A–N–I) and
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FIG. 15. Optical textures of the photoresponsive surfaces with various polymeric structures and preprogrammed director distributions.
Edge boundary condition: simply supported.

(ii) degraded mechanical property, which arises from molec-
ular disordering. A relationship between the order parameters
of the mesogenic units and the shape parameter of the entire
polymer network is defined to quantify the molecular-scale
photodeformations. In addition, the shear and smectic layer
moduli of the PRPs with different photoisomerization ratios

are computed from their stress-strain curves. The mesoscale
mechanical parameters are inserted into the continuum FE
model as a form of the inhomogeneous photostrain and
elastic modulus profiles in terms of the external light in-
tensity. Finally, a large-scale photomechanical behavior of
PRP is realized using a 3D tensorial form of the light-
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FIG. 16. Light-induced macroscopic deformations of the PRP specimens incorporated with smectic topological defects.

mechanical coupled constitutive relation, which is based
on the neoclassical elasticity theory. Especially, the geo-
metric nonlinearity, which stems from the large rigid-body
rotation during the photobending deformation, is imple-
mented into the FE simulation by exploiting the EICR
method.

Integration of the CG MD analysis with the continuum
model enables us to treat the mesoscopic design parameters
of the LCP network, which cannot be captured using the con-
ventional AA MD simulation. We reveal that the modulations
of the complex LC phase, the spacer length, and crosslinking
density influence the initial structure of the PRP and its cor-
responding photomechanical deformation path. In particular,
while the decrease in the nematic order parameter reduces the
conformational shape anisotropy, the collapse of the trans-
lational order generates an elongation behavior of the PRP
network. The stress-strain response of the CG model shows
a severe decrease of up to 55% in the elastic moduli under
light illumination, which proves that the photosoftening effect
on the local mechanical properties of the PRP is not negligible
in examining continuum-scale deformations. Furthermore, an
exotic 3D deformation with the aid of the blueprinted patterns
as well as the simple photobending is achieved by employ-
ing the hybrid CG-MD–FE method. The photomechanical
behavior of the one-side clamped films demonstrates that the
applicable range of the photobending curvature and speed
of the deformation are decided by the responsiveness of the

shape parameter and intrinsic mechanical resistance of the
PRPs. This study also reveals that, unlike the behavior of
nematic LCPs, the smectic solids with the disclinations of
the positional symmetry can be sequentially deformed into
two different configurations, which can be controlled by the
external light condition.

The presented multiscale simulation provides a more
reasonable solution compared to the previously developed
continuum-scale analysis owing to the efficient descriptions of
the mesoscale phenomena. Especially, a relation between the
microscopic LCP morphology parameters and macroscopic
photomechanical performance is systematically established
for the first time. The results can be utilized to perform a
simulation-based design and analysis to improve the light-
to-mechanical energy conversion efficiency. Moreover, the
nontrivial motions of PRPs, such as the switching of the
bending direction and stepwise deformations into the multi-
ple programmed shapes, can be realized using the presented
numerical method. We, therefore, hope that the presented sim-
ulation framework contributes to the design of spatiotemporal
photodeformations and development of advanced photore-
sponsive materials and soft robots.
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