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Electrically driven nematic flow in microfluidic capillary with radial temperature gradient
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An electrically driven fluid pumping principle and a mechanism of kinklike distortion of the director field n̂ in
the microsized nematic volume has been described. It is shown that the interactions, on the one hand, between
the electric field E and the gradient of the director’s field ∇n̂, and, on the other hand, between the ∇n̂ and
the temperature gradient ∇T arising in a homogeneously aligned liquid crystal microfluidic channel, confined
between two infinitely long horizontal coaxial cylinders, may excite the kinklike distortion wave spreading along
normal to both cylindrical boundaries. Calculations show that the resemblance to the kinklike distortion wave
depends on the value of radially applied electric field E and the curvature of these boundaries. Calculations also
show that there exists a range of parameter values (voltage and curvature of the inner cylinder) producing a
nonstandard pumping regime with maximum flow near the hot cylinder in the horizontal direction.
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I. INTRODUCTION

The problem of electrically driven manipulation of
biomolecules and biosensing has brought an increasing num-
ber of integrated small-scaled microdevices for chemical and
biological applications [1–4]. The confinement of a fluid
between walls separated on the micron scale can impose
significant conditions on the flow behavior of the material
[5,6]. Manipulation of complex liquids such as liquid crystals
(LCs) can be achieved either by forces applied macroscopi-
cally [7], or can be generated locally within the microfluidic
channel or liquid crystal (LC) capillary [8,9]. Electro-osmosis,
dielectrophoresis, and electrowetting have been explored for
controlling microflows [2,9,10]. Thus, understanding the flow
of liquid crystals through micron-scale channels is of in-
creasing significance. Nematic liquid crystal (NLC) channels
and capillaries of appropriate size are microdevices, whose
molecular orientations can be manipulated by the presence
of electric field E and the temperature gradient ∇T [5,6].
A challenging problem in all such systems is the precise
handling of LC or anisotropic liquid microvolume [5], which
in turn requires self-contained micropumps of small pack-
age size exhibiting either a very small displacement volume
(displacement pumps) or a continuous volume flow (dynamic
pumps). One of the liquid crystal pumping principles is based
on the coupling between the electric and director fields, to-
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gether with accounting the effect of the temperature gradient
∇T [5,6]. In this case, the uniform textures of nematic LCs are
produced by orienting a drop of bulk material in-between two
conveniently treated bounding surfaces, which define usually
a fixed orientation for the boundary molecules. When there
is no temperature gradient, the electric field E applying per-
pendicular to a uniformly (homogeneously) oriented NLC can
distort the molecular orientation â with respect to director n̂,

at a critical threshold field Eth given by [11] Eth = π
d

√
K1

ε0εa
,

where d is the thickness of the microsized LC channel, K1

is the splay elastic constant, ε0 is the absolute dielectric
permittivity of free space, εa is the dielectric anisotropy of
the NLC. This form for the critical field is based upon the
assumption that the director remains strongly anchored (in
our case, homogeneously) at the two horizontal bounding
surfaces and that the physical properties of the LC are uniform
over the entire sample for E < Eth. When the electric field is
switched on with a magnitude E greater than Eth, the director
n̂, in the “splay” geometry, reorients as a simple monodomain
[12], and exciting of the electrically driven nematic flow in
microfluidic channel containing a temperature gradient is a
question of great fundamental interest, as well as an essen-
tial piece of knowledge in soft material science [1]. In the
nematic microfluidic channel where director anchoring on
the bounding surfaces is the same, i.e., both homogeneous,
and when the gradient of the temperature field ∇T does not
exist, the horizontal flow of the nematic material is excited
only by the electric field E = E (z)k̂ directed orthogonally
to the homogeneously aligned LC sample. In turn, account-
ing the temperature gradient ∇T , generated, for instance, by
the uniform heating both from below or above, leads to the
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additional contributions to the torque and linear momentum
balance equations [6].

In this study we explore a high curvature of microsized
cylinder cavity and consider the joint effect of flexoelectric
polarization and thermomechanical flow on director reori-
entation and steady flow in the LC system. Flexoelectric
coupling and dielectric anisotropy are taken into account in
the pumping model, together with a temperature difference
�T = T2 − T1 > 0 across the nematic cavity, where the range
[T1, T2] still falls within the stability region of the nematic
phase. The new additional vector field P = e1n̂(∇ · n̂) +
e3(∇ × n̂) × n̂, where ei (i = 1, 3) denote the flexoelectric
coefficients [13], keeps the null property of the distortion of
the microsized nematic cavity, when no voltage is applied and
the director anchorings on the two bounding surfaces are the
same, i.e., both strongly homeotropic or both homogeneous,
and the microvolume remains quiescent under the influence
of the temperature gradient [6]. The voltage applied across
the homogeneously aligned liquid crystal (HALC) cavity
makes backflow possible in the microvolume, and backflow
is additionally influenced by P. A heating of the nematic
cavity (�T �= 0) causes flexoelectric and thermomechanical
couplings; their intercorrelation solves the problem of estab-
lishing a steady horizontal flow in the microsized nematic
volume.

Here, we focus, on the one hand, on the description of a
mechanism of the kinklike distortion wave of the director field
n̂ in the microsized nematic volume under the effect of voltage
U applied between two cylinders and a temperature gradient
∇T , which is set up between cooler inner and hotter outer
cylinders. It is found that, under certain conditions, in terms
of curvature of cylinders κ and the voltage U , applied between
cylinders, the torques and forces acting on the director n̂
may excite the kinklike distortion wave spreading along the
normal to both cylindrical boundaries, whose resemblance to
a kinklike distortion wave depends on the value of U and the
curvature of the inner cylinder. It has been worked out, on the
other hand, the conditions, in terms of κ and U , producing
the distortion mechanism of the n̂ in the double π form, with
the intermediate relaxation wall.

We assumed that the relaxation behavior of the director
field n̂ in the form of the kinklike distortion wave spreading
along the normal to both cylindrical boundaries probably can
be observed in polarized white light. Taking into account that
under certain voltage applied across the nematic cavity with
�T = Tout − Tin > 0, the director reorientation takes place in
the running narrow area of the LC sample (the width of the
kinklike distortion wave). This kinklike distortion wave can
be visualized in polarized white light as a dark strip running
along the normal to both cylindrical boundaries, with the
velocity in a few tens of μm/s. This dark running strip can
be recorded using a charge-coupled-device camera and video
cassette recorder, while the temperature difference, for the
experimentally well studied and technologically interesting
case of 4-n-pentil-4′-cyanobiphenyl (5CB) can be achieved
by pumping the cooling material (with a temperature Tin less
than with 5◦ below room temperature Tout) through the inner
cylinder.

The aim of our paper is to analyze the response of a homo-
geneously aligned liquid crystal microsized cavity confined

FIG. 1. Geometry of a homogeneously aligned liquid crystal
(LC) capillary. The z axis and the unit vector êz are taken as being
parallel to coaxial cylinders which are kept at different temperatures,
with the outer one Tr=R2 = T2 hotter than the inner one Tr=R1 = T1

(T2 > T1). The cylinder LC cavity d = R2 − R1 confined between
two infinitely long horizontal coaxial cylinders is subjected to both
radially applied temperature gradient ∇T and electric field E =
E (r)êr .

between two horizontal coaxial cylinders and subjected to
both a temperature gradient ∇T , which is set up between
cooler inner and hotter outer cylinders, and a voltage U ap-
plied between these cylinders. This problem will be treated in
the framework of the classical Ericksen-Leslie theory [14,15],
supplemented by the thermomechanical correction of shear
stress [6] and the thermoconductivity equation for the tem-
perature field [16]. This paper is organized as follows: the
relevant equations describing director motion, fluid flow, and
temperature distribution in the above named system are given
in Sec. II; numerical results for different possible relaxation
regimes are given in Sec. III; conclusions are summarized in
Sec. IV.

II. FORMULATION OF THE BASIC EQUATIONS
FOR MICROFLUIDIC CAPILLARY

We are primarily concerned with the description of the
physical mechanism responsible for the electrically driven
nematic flow in microfluidic homogeneously aligned liquid
crystal (HALC) capillary containing a temperature gradient
∇T . This gradient was fixed between two infinitely long
horizontal coaxial cylinders which are kept at different tem-
peratures, with the outer one Tr=R2 = Tout = T2 hotter than the
inner one Tr=R1 = Tin = T1 (T2 > T1). In this study we explore
a cylindrical nematic cavity with radii R1 and R2, where R1 <

R2 and d = R2 − R1 is the capillary thickness (see Fig. 1).
We shall be using the corresponding dimensionless radii a =
R1
d and a + 1, and assume the dimensionless curvature val-

ues κ = 1
a . So, one deals with the HALC system composed

of asymmetric polar molecules, such as cyanobiphenyls, at
the density ρ, and confined between two horizontal coaxial
cylinders which are kept at different temperatures χin = χ1

and χout = χ2 (χ1 < χ2), where both dimensionless temper-
atures are scaled by the nematic-isotropic transition value,
i.e., χi = Ti

TNI
(i = 1, 2), and subjected to both radially ap-

plied temperature gradient ∇χ = χ,r (r)êr and electric field
E = E (r)êr . Here, χ,r = ∂χ/∂r denotes the partial derivative
of temperature χ with respect to space coordinate r and êr is
the unit vector along the dimensionless radius r (i.e., scaled
by d). The other unit vectors of the cylindrical coordinate
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system to be used here are êz, defined by the common axis
of the two cylinders, and the tangential one êα = êz × êr .
The voltage U applied between two horizontal coaxial cylin-
ders can be scaled by the threshold value for producing the
distortion (Freederickzs voltage), i.e., U = U0Uth, with Uth

defined by Uth = π
√

K1
ε0εa

; here εa = ε‖ − ε⊥ denotes the ne-

matic dielectric anisotropy, defined by the difference between
(dimensionless) dielectric constants along and perpendicular
to the director n̂ [11].

Assuming both that the temperature gradient ∇χ and the
electric field E vary only in the r direction and the LC
molecules are confined between two coaxial cylinders with
the planar preferred orientation of the average molecular di-
rection n̂r=a ‖ êz (n̂r=a+1 ‖ êz) on the bounding surfaces, we
can suppose that the components of the director n̂ = nr êr +
nzêz, as well as the rest of the physical quantities also depend
only on the coordinate r, and the coordinate system defined
by our task entails that the director n̂ lies in the rz plane.

Taking into account the microsized volume of the LC cav-
ity, one can assume the mass density ρ to be constant over
the LC volume, and thus we can deal with an incompressible
fluid. The incompressibility condition ∇ · v = 0 assumes that
only one nonzero component of the vector v exists, viz.,
v(r, τ ) = vz(r, τ )êz = u(r, τ )êz. So, we are primarily con-
cerned here with describing the way how both the temperature
gradient and electric field across the microvolume cavity be-
tween two coaxial cylinders can produce the hydrodynamic
quasi-two-dimensional (quasi-2D) flow vz(r, τ ).

The condition for producing a distortion of the nematic
microvolume is U0 > 1, which inputs the electric field com-
ponent E (r) self-consistently with the nematic distortion ∇n̂
[17]. We will assume homogeneous strong anchoring of the
director on both bounding cylindrical surfaces, i.e.,

nr (r)r=a = nr (r)r=a+1 = 0, (1)

together with the no-slip conditions

u(r)r=a = u(r)r=a+1 = 0, (2)

where u denotes the dimensionless component of horizontal
velocity vz of the incompressible liquid crystal. Notice that the
normalization of the velocity component vz is defined by U0

and by the time scaling 1
(πU0 )2

γ1d2

K1
, so that u = ( γ1d

K1
) 1

(πU0 )2 vz,
where γ1 denotes the rotational viscosity coefficient, taken at
the temperature χ1. The boundary conditions on temperature
are reduced to

χ (r)r=a = χ1, χ (r)r=a+1 = χ2. (3)

In the nematic phase, splay and bend deformations, caused by
electric field, give rise to two independent flexoelectric coeffi-
cients (e1, e3). Their contributions to induced polarization can
be written as P = Pr êr + Pzêz, where the vector components
are given by the classical Meyer model [13]

Pr = δ1

[(
1 + e3

e1

)
nrnr,r + n2

r

r

]
(4)

and

Pz = δ1

[
nz∇,rnr + e3

e1
nrnz,r

]
, (5)

where δ1 = e1

U0
√

K1ε0εa
is a dimensionless parameter, ni,r =

∂ni
∂r (i = r, z) denote the partial derivative of director com-
ponents with respect to space coordinate, and ∇,r (. . .) =
(. . .),r + nr

r is a divergence.
The flexoelectric radial component [Eq. (4)] leads to the

dimensionless charge balance [17]

∇,r

[
E (r)

(
ε⊥
εa

+ n2
r

)
+ Pr

]
= 0, (6)

which has the solution

E = A − rPr

r
(

ε⊥
εa

+ n2
r

) , (7)

with A = AP
AE

, AP = 1 + ∫ a+1
a

Pr dr
r( ε⊥

ε0
+n2

r )
, AE = ∫ a+1

a
dr

r( ε⊥
ε0

+n2
r )

following from the condition of electric field normalization∫ a+1
a E (r)dr = 1. The reorientation process in the HALC

cavity, excited by both �χ = χ2 − χ1 and U0, entails time de-
pendence of the director n̂ = n̂(r, τ ), where the dimensionless
time τ = (πU0)2 K1

γ1d2 t includes the orientational relaxation

time tK1
γ1d2 . Owing to director dynamics, the static fields P(r)

and E (r) [Eqs. (4), (5), and (7)] actually take the quasistatic
forms E = E (r, τ ), P = P(r, τ ).

Upon assuming an incompressible fluid (ρ = const), the
hydrodynamic equations describing the reorientation of the
homogeneously aligned nematic system in the named setting
can be derived from the balance of electric, flexoelectric,
elastic, viscous, and thermomechanical torques, coupled with
Navier-Stokes equation for the velocity field u = u(r, τ )êz,
and the equation for heat conduction.

In the present coordinate system, the dimensionless torque
balance equation reads as (for details, see the Appendix)[

δWF

δn̂
− δψel

δn̂
+ δR

δ ˙̂n

]
× n̂ = 0, (8)

where 2WF = K1n2
r,r + K3n2

z,r is the elastic, 2ψel =
ε0(ε⊥ + εan2

r )E2(r) + 2PrE (r) is the electric torque, whereas
R = Rvis + Rtm + Rth is the full Rayleigh dissipation
function composed by viscous, thermomechanical, and
thermal contributions, respectively. All torques have the
tangential component only, and have been normalized by the
value (πU0)2 K1

d2 . The torque components can thus be written
as

Tel = E2(r, τ )nrnz, (9)

TP = E (r, τ )Pz(r, τ ), (10)

Telast = 1

(πU0)2

[
K,r + 1

r
K − (1 − K31)n2

z,r − 1

r2
nrnz

]
,

(11)

for electric, flexoelectric, and elastic torques, respectively.
Here, K = nznr,r − K31nrnz,r , K31 = K3/K1, K3 is the bend
elastic constant, and the viscous and thermomechanical
torques are defined by the dissipative process in the HALC
and follow from the dimensionless dissipative function
R = Rvis + δ2

(πU0 )2 Rtm + δ3
(πU0 )4 Rth. Here, δ2 = ξTNI

K1
and δ3 =

λ⊥TNIγ1d2

K2
1

are additional parameters of the LC system, λ⊥ is the
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heat conductivity coefficient perpendicular to the director, and
γ1 denotes the rotational viscosity coefficient, respectively.

In order to evaluate the order of parameters δi (i = 1, 2, 3),
one can take d ∼ 50 μm in the HALC capillary, whereas the
value of density ρ was chosen to be equal to 103 kg/m3. The
value of the heat conductivity λ⊥ was chosen to be equal
to 0.24 W/mK [18], both the Frank elastic coefficients K1

and K3 were chosen as ∼10 pN and ∼13.8 pN [19], respec-
tively, both the RVCs γ1 and γ2 were chosen as ∼0.071 Pa s
and ∼−0.079 Pa s [20], respectively, the value of the specific
heat Cp is equal to 103 J/kg K [21], and finally the values
of the flexoelectric coefficients e1 and e3 were chosen to be
equal to −11.6 and 4.3 pC/m [22], respectively. Then, δ2

and δ3 can be estimated as ∼30.7 and ∼1.3 × 1014, whereas
δ1 ∼ −0.065, at U0 = 6, and δ1 ∼ −0.026, at U0 = 14, re-
spectively. The reorientational dissipation process is described
by the viscous dissipation function Rvis (the Ericksen-Leslie
dissipation function [14,15,23]), where the thermomechanical
part Rtm acts as additional term, whereas the thermal part
of the dissipation function Rth controls the heat conduction
process, where the input of Rtm is negligible. The R function
is most sensitive to the increasing of the voltage U0. If one
takes, for instance, U0 > 20, then the Rtm term, due to the
factor δ2

(πU0 )2 , does not play any role in the dissipation process
for the HALC under study. In the further calculations the
values U0 are constrained to be U0 � 20, and cause the radial
gradient u,r of horizontal velocity, rotation rate of director ˙̂n,
and temperature gradient χ,r interactions supplemented by the
flexoelectric polarization. The viscous and thermomechanical
torque components can thus be written as

Tvis = nrṅz − nzṅr − 1
2 u,r

[
1 − γ21

(
n2

z − n2
r

)]
(12)

and

Ttm = 1

2

δ2

(πU0)2
χ,r

[
nznr,r

(
3 + n2

r

) − nrnz,r
(
1 + n2

r

)]
,

(13)

respectively. Here, γ21 = γ2/γ1, and ṅi = ∂ni
∂τ

(i = r, z) is the
partial derivative with respect to time.

The dimensionless Navier-Stokes equation (in cylindrical
coordinates) takes the form [24]

δ4(πU0)2u̇ = ∇,r
[
σ vis

rz + σ tm
rz

]
, (14)

∇,rσ
elast
rr − σ elast

αα

r
+ ψel

,r = 0, (15)

where δ4 = ρK1

γ 2
1

is an additional parameter of the sys-

tem. Here, σ elast
rr = − 1

(πU0 )2 [Q(r) + (nr,r + nr
r )nr,r + K3

K1
n2

z,r]

and σ elast
αα = − 1

(πU0 )2 [Q(r) + (nr,r + nr
r ) nr

r ] are the two nor-
mal ST components, Q(r) is the dimensionless hydrodynamic
pressure, and 2ψel = ε0(ε⊥ + εan2

r )E2(r) + 2PrE (r) is the
electric energy density. The shear stress component has the
viscous and thermomechanical terms σ vis

rz = δRvis
δu,r

and σ tm
rz =

δRtm
δu,r

. The Ericksen-Leslie form for the viscous part of dissipa-
tion function [14,15,23,24] gives the shear stress component
for the geometry under consideration

σ vis
rz = 1

2 (nzṅr − nrṅz ) + γ21
(
n2

z − n2
r

) + hu,r, (16)

and the thermomechanical part of shear stress [6]

σ tm
rz = 1

4

δ1

(πU0)2
χ,r

[
nrnz

(
1 + 2n2

r

) + 6nznr,r − n3
r nz,r

]
,

(17)

where h = [α4 + 1
2 (γ1 + α5 + α6) + α1n2

r n2
z + γ2(n2

z − n2
r )]/

γ1 = H/γ1 is the dimensionless hydrodynamic function, and
αi (i = 1–6) denote the Leslie viscous coefficients, respec-
tively. When a small mean temperature gradient (in our case
∼1 K/μm) is set up across the system, we expect the temper-
ature field χ (r, τ ) to satisfy the dimensionless heat conduction
equation [16]

δ5χ̇ =
(

1

πU0

)2 1

r

[
rχ,r

(
λn2

r + n2
z

)]
,r, (18)

where λ = λ‖
λ⊥

is the ratio of heat conductivity coefficients

along and perpendicular to the director, δ5 = ρCpK1

λ⊥γ1
is an-

other parameter of the system, and Cp denotes the heat
capacity. Notice that our approach is only valid for the ne-
matic phase; notice also that various material parameters have
been mentioned so far, and that numerical values have to be
used for them: we have thus chosen the experimentally well
studied and technologically interesting case of 4-n-pentyl-4′-
cyanobiphenyl (5CB); at temperature corresponding to the
nematic phase, the parameter values involved in Eqs. (8),
(14), and (18) are δ1 ∼ −0.07, at U0 = 6, and δ1 ∼ −0.026,
at U0 = 14, respectively, δ2 ∼ 30.7, δ3 ∼ 1.3 × 1014, δ4 ∼
2 × 10−6, δ5 ∼ 6.0 × 10−4. Using the fact that δ4, δ5 are 
1,
both the Navier-Stokes [Eq. (14)] and the heat conduction
[Eq. (18)] equations can be simplified and reduced to

σ vis
rz + σ tm

rz = C
r
, (19)

χ (r, τ ) = χ2 − χ1

I

∫ r

a

dr

r
(
λn2

r + n2
z

) + χ1, (20)

where the function C(τ ) do not depend on r and will be fixed
by the boundary condition (2), and I (τ ) = ∫ a+1

a
dr

r(λn2
r +n2

z ) .
The smallest initial perturbation of the director component
nr (r, τ0) gives the initial values A(τ0), I (τ0), defined by the
electric normalization condition and the boundary conditions
(3). Equation (15) can be used here for defining the pressure
Q(r), and has the solution

Q(r, τ ) = ψel + σ elast
rr +

∫ r

0

σ elast
rr − σ elast

αα

r
dr + Q0, (21)

where Q0 is an arbitrary constant. As for numerical solu-
tion of the above equations (8), (19), and (20), the torque
values Tel(r, τ0), TP(r, τ0), Telast (r, τ0), and Ttm(r, τ0) can be
calculated by the corresponding cases in Eqs. (9), (10), (11),
and (13); the director rotation rate is eliminated from the
system of equations by means of Eqs. (8), (14), and the value
C(τ0) can be found using the boundary conditions (1) and
(2). The initial velocity gradient ur (r, τ0) from Eqs. (19) and
(20) yields the director component distribution nr (r, τ0 + �τ )
from Eq. (8), and the procedure is iterated up to the stationary
state of neq

r (r), which imposes the stationary distributions of
velocity ueq(r) and temperature χ eq(r). The thermodynamic
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FIG. 2. Plot of the evolution of the director’s field component nr (r, τi ), for different times τi = 0.01i (i = 1, . . . , 7) [τ7 = τR (tR ∼ 50 ms)],
to its equilibrium distribution neq

r (r, τ7) ≡ neq
r (r) across the microsized HALC cavity a � r � a + 1, under the effect of the electric field U0 = 6

and the temperature difference �χ = 0.0162, both for the cases P = 0 (a) and P �= 0 (b), respectively. Here, κ = 5.

condition Ṙfull < 0, Rfull = ∫ a+1
a R dr [25] yields a check on

convergence.

III. NUMERICAL RESULTS

The system of nonlinear partial differential equations (8),
(19) and (20), together with the boundary conditions (1) to
(3) and the initial condition nr = 0.001 (a < r < a + 1), has
been solved by the numerical relaxation method [26]. Each
calculation has been repeated both for the case involving no
flexoelectrical polarization, defined by setting P = 0 [see the
curves shown on the left-hand side in Figs. 2(a) to 3(a)] and for
the case with accounting the flexoelectrical polarization P �= 0
[see the curves shown on the right-hand side in Figs. 2(b)
to 3(b)] throughout the relevant equations. Calculations for
both models use the relaxation criterion ε = |(nr (r, τm+1) −
nr (r, τm))/nr (r, τm)| with ε = 10−4, and the numerical pro-
cedure was then carried out until a prescribed accuracy was
achieved. Here, m denotes the iteration number. The set of
external parameters were chosen as κ ∈ (1, 10], U0 ∈ (1, 20]
and the temperature difference for the cold-hot heating sys-
tem was fixed by χ1 = 0.97 and χ2 = 0.9862, respectively.
The ratios of other main physical parameters were fixed to
ε⊥
εa

= 0.8, e3
e1

= −0.37, and λ = 2.
Figures 2 and 3 show the evolution of the director’s field

component nr (r, τ ) to its equilibrium distribution neq
r (r, τR) ≡

neq
r (r) across the microsized HALC cavity a � r � a + 1,

calculated for two voltages U0 = 6 (see Fig. 2) and 14 (see
Fig. 3), and fixed curvature κ = 5 (a = 0.2).

The distributions nr (r, τ ) are plotted versus r − a for dif-
ferent τ , where τi = 0.01i (i = 1, . . . , 7), for the case U0 = 6
[Figs. 2(a) and 2(b)], whereas τi = 0.0005i (i = 1, . . . , 10)
[Figs. 3(a) and 3(b)], for the case U0 = 14, respectively.
The equilibrium states have been established in the HALC
cavity at times τR = τ7 (tR ∼ 50 ms) for U0 = 6, and τR =
τ10 (tR ∼ 50 μs) for U0 = 14, respectively. Figures 2(b) and
3(b) show the most pronounced effect of flexoelectricity
on the orientational dynamics. The torques TP, Ttm pro-
duce a kinklike reorientation of the director [curves from
4 to 6 in Fig. 2(b)]. This process shows an initial stage,
where the electric torque near the inner cylinder r = a, over
the period τ < τ1, perturbs the director distortion. At that
time the sum of the torques [Eqs. (10) and (13)] TP +
Ttm acts in opposite verse near the outer cylinder r = a +
1. The values of the radial director component have be-
come negative and the kinklike reorientation is building up
[Fig. 2(b) solid curves 2 and 3], during the time interval
τ1 < τ < τ3, under the increasing flexoelectric torque. The
field E (r, τ ) is strong and the sum of torques TP + Ttm

continues the process of kink motion towards the inner cylin-
der [Fig. 2(b), curves 4, 5, and 6]. Due to the nematic
symmetry, the stationary distributions of neq

r (r) [curve 7 in

FIG. 3. Plot of the evolution of the director’s field component nr (r, τi ), for different times τi = 0.0005i (i = 1, . . . , 10) (τ10 = τR ) (tR ∼
50 μs), to its equilibrium distribution neq

r (r, τ10) ≡ neq
r (r) across the microsized HALC cavity a � r � a + 1, under the effect of the electric

field U0 = 14 and the temperature difference �χ = 0.0162. Here, κ = 5.
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FIG. 4. Same as described in the caption of Fig. 2, but a plot of the evolution of the electric field U0E (r, τi ) to its equilibrium distribution
U0E eq(r, τ7) ≡ U0E eq(r) across the microsized HALC cavity a � r � a + 1, both for the cases P = 0 (a) and P �= 0 (b), respectively. Here,
U0 = 6.

Fig. 2(a)] and neq
r (r) [curve 7 in Fig. 2(b)] are equivalent, the

relaxation times of two models are close to each other, but
their relaxation ways to the stationary states are different.

Results for the model of P = 0 show that the torque Ttm

tends to perturb the director component nr , but it is not strong
enough to produce the kinklike distortion of the director pro-
file [Fig. 2(a), curves 3 to 6]. This slow reconstruction of the
orientation profile by the viscous torque is similar to the slow
orientational dynamics reported in [27]. The kink evolution,
shown in Fig. 2(b) (curves 4, 5, and 6), correlates with the
electric field function E (r, τ ) [Fig. 4(b)]. The local maximum
points of E (r, τ ) correspond to the inflection points in the di-
rector profiles and evolve during the time τ . Figures 3(a) and
3(b) show the director orientation scenario: the effect of TP

and Ttm on the reorientation process is increased by the large
external voltage U0 = 14. This value of voltage causes a larger
deformation near the inner cylinder than the other case U0 = 6
[curves 1 to 5 in Fig. 3(b)]. The torque balance keeps the main
role of Telast and Tel over the time interval τ < τ5, near the
inner cylinder. After the time period τ5, a quick growth of the
negative profile occurs in the relaxation way [curves 6 to 8,
Fig. 3(b)] and the negative part of the reorientation profile of
director takes pi form [curve 10, in Fig. 3(b)]. A similar be-
havior is shown by the director reorientation due to the model
of P = 0 [Fig. 3(a)]. The new voltage is 2.5 times bigger than

the previous one; all processes are significantly speeded up,
and the inflection points of the electric field [Figs. 5(a) and
5(b)] have not evolved. Director orientation in the nematic
cavity, as plotted in Figs. 2(a) and 2(b), exhibits the inner
planar orientation nr (r) = 0, for r = rw. The space position
of planar director [Figs. 3(a) and 3(b)] can be classified as
steady wall position versus the situation shown in Figs. 2(a)
and 2(b), showing a moving wall, which in turn disappears at
the τR [Figs. 2(a) and 2(b)]. We will return to the discussion
of moving walls a little later, but in the meantime we will
consider the evolution of both the velocity u(r, τ ) and the
temperature χ (r, τ ) fields.

We first investigate the electrically driven nematic flow in
microfluidic homogeneously aligned liquid crystal capillary
containing a temperature gradient ∇χ . The curves shown
on the left-hand side in Fig. 6(a) correspond to the evolu-
tion of the dimensionless velocity u(r, τi ), for different times
τi = 0.01i (i = 1, . . . , 7) [τ7 ≡ τR (tR ∼ 50 ms)], to its equi-
librium distribution across the HALC cavity a < r < a + 1,
both under the effect of the electric field U0 = 6 and the heat
flux directed from the inner cooler χin = 0.97 to the hotter
outer χout = 0.9862 restricted surfaces, without accounting
the flexoelectric polarization (P = 0) (case I), whereas the
curves shown on the right-hand side in Fig. 6(b) correspond to
the evolution of the dimensionless velocity u(r, τi ) to its equi-

FIG. 5. Same as described in the caption Fig. 3, but a plot of the evolution of the electric field U0E (r, τi ) to its equilibrium distribution
U0E eq(r, τ10 ) ≡ U0E eq(r) across the microsized HALC cavity a � r � a + 1, both for the cases P = 0 (a) and P �= 0 (b), respectively. Here,
U0 = 14 and κ = 1.
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FIG. 6. Plot of the evolution of the velocity field u(r, τi ) for different times τi = 0.01i (i = 1, . . . , 7) [τ7 = τR (tR ∼ 50 ms)], to its
equilibrium distribution ueq(r, τ7) ≡ ueq(r) across the microsized HALC cavity a � r � a + 1, both for the cases P = 0 (a) and P �= 0 (b),
respectively. Here, U0 = 6 and κ = 5.

librium distribution across the HALC cavity with accounting
the flexoelectric polarization (P �= 0) (case II), respectively.
It is shown, based on our calculations, that accounting the
flexoelectric effect leads to a change, compared to the case
I, in the direction of the steady hydrodynamic flow ueq(r).
Indeed, in the case I, the steady flow is directed in the positive
sense as veq(r) = ueq(r)êz, whereas in the case II, the steady
hydrodynamic flow mostly is directed in the negative sense
as veq(r) = −ueq(r)êz, excluding a small area near the hotter
outer restricted surface, where the flow is directed in the pos-
itive sense. Figures 7(a) and 7(b) show both the velocity field
u(r, τi ) [see Fig. 7(a)] and the dimensionless hydrodynamic
pressure Q(r, τi ) [see Fig. 7(b)] evolution, for different times
τ1 = 0.001 (∼0.7 ms), τ2 = 0.025 (∼17.5 ms), τ3 = 0.04 (∼
28 ms), τ4 = 0.05 (∼35 ms), τ5 = 0.06 (∼42 ms), and [τ6 =
τR = 0.15 (tR ∼ 0.1 s)], to their equilibrium distributions
ueq(r, τ6) ≡ ueq(r) and Qeq(r, τR) ≡ Qeq(r) across the micro-
sized HALC cavity a � r � a + 1, for the case P �= 0, and
under the effect of the electric field U0 = 3.5 and the temper-
ature difference �χ = 0.0162. Our calculations show that
in the early stage of the evolution process up to 17.5 ms
[see curves 1 and 2, Fig. 7(a)], the excited velocity field

u(r, τi ) (τi = 1, 2) is still weak and the hydrodynamic flow
is directed in the positive sense, excluding a small area near
the cooler inner restricted surface. Further, with the growth
of time, the excited velocity field u(r, τ3) becomes large,
especially in the vicinity of the outer cylinder, and, finally,
the relaxation process is characterized by getting to the equi-
librium distribution ueq(r, τ6) ≡ ueq(r) across the LC cavity,
after time [τ6 = τR = 0.15 (tR ∼ 0.1 s)]. This distribution is
characterized by the maximum value of the velocity |ueq

max| ∼
2.42 (∼ 34 μm/s) near the inner cylinder. Notice also that re-
laxation of the dimensionless hydrodynamic pressure Q(r, τi )
to its equilibrium distribution across the HALC cavity ex-
hibits a complex behavior. According to our calculations, the
magnitude of Q(r, τi ) exhibits minima close to both bound-
aries and a maximum near the inner cylinder, whose value is
3.18 (∼0.32 pN/μm) [see Fig. 7(b), curve 6].

Figures 8(a) and 8(b) address the effect of the radially
applied electric field E, for a number of values of U0

ranging from 1.0 (curve 1) to 3.0 (curve 5), on the resulting
equilibrium distributions of the velocity field ueq(r) across
the microsized HALC cavity a � r � a + 1, for two cavity
sizes κ = 1 (a) and κ = 0.1 (b), respectively. According

FIG. 7. Results of calculations of the space and time evolution for the dimensionless velocity field u(r, τi ) (a) and the dimensionless
hydrodynamic pressure Q(r, τi ) (b), for different times τ1 = 0.001 (∼0.7 ms), τ2 = 0.025 (∼17.5 ms), τ3 = 0.04 (∼28 ms), τ4 = 0.05 (∼
35 ms), τ5 = 0.06 (∼42 ms), and [τ6 = τR = 0.15 (tR ∼ 0.1 s)], to their equilibrium distributions ueq(r, τ6) ≡ ueq(r) and Qeq(r, τR ) ≡ Qeq(r)
across the microsized HALC cavity a � r � a + 1, under the effect of the electric field U0 = 3.5 and the temperature difference �χ = 0.0162.
Here, P �= 0 and κ = 1.
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FIG. 8. Radial equilibrium distribution of the dimensionless velocity field ueq(r) across the microsized HALC cavity a � r � a + 1, for
different values of the radially applied electric field: U0 = 1.0 (curve 1), U0 = 1.1 (curve 2), U0 = 1.5 (curve 3), U0 = 2.0 (curve 4), and
U0 = 3.0 (curve 5), respectively, for the case P �= 0. Here, κ = 1 (a) and κ = 0.1 (b), respectively.

to our calculations, when the temperature gradient is also
present, E produces a pronounced effect on the radial
equilibrium distribution of the dimensionless velocity field
ueq(r) across the microsized HALC cavity a � r � a + 1,
whereas increasing the LC cavity size from κ = 0.1 to
1.0 produces a small increase in ueq(r) from ueq

max(U0 =
3.0) ∼ 2.0 (∼28.3 μm/s) [see curve 5, Fig. 8(b)] to
ueq

max(U0 = 3.0) ∼ 2.6 (∼ 36.5 μm/s) [see curve 5, Fig. 8(a)],
respectively.

Figure 9(a) shows the effect of U0 on the maximum mag-
nitude umax(U0) ≡ ueq

max(U0) for different cavity sizes κ = 1.0
and 0.1. Our calculations have shown that the dependence
of the maximum value of the absolute equilibrium velocity
|umax(U0)| on the value of electric field U0 is characterized by
the monotonic increase of |umax(U0)| up to maximum value
2.6 (∼35 μm/s) at U0 = 3.0, in the case κ = 1, and up to
maximum value 2.0 (∼28 μm/s) at U0 = 3.0, in the case κ =
0.1, respectively, whereas further increase of the value of U0

leads to decrease in |umax(U0)|. Such behavior of |umax(U0)|
vs U0 can be explained by the rapid growth of the coefficient
δ4(πU0)2, in the left-hand part of Eq. (14), with the growth
of U0. In this case, the contribution of electric forces prevails
over the contributions of viscous, elastic, and thermomechan-
ical forces, and when U0  1, the evolution of the velocity

field u(r, τ ) in the microsized HALC cavity is described by the
reduced dimensionless Navier-Stokes equation [see Eq. (14)],
which can be rewritten as [6]

lim
U0→∞

δ4(πU0)2u̇(r, τ ) → ∞. (22)

In the case when U0 → ∞, and with accounting the
no-slip boundary condition [see Eq. (2)], one has that
limU0→∞ u(r, τ ) → 0, and any horizontal steady flow of the
LC phase stops in the microsized HALC capillary, since under
the influence of strong external electric field E the dipoles of
molecules forming the LC phase are oriented along this field.
This once again shows that the macroscopic description of
the nature of the hydrodynamic flow of an anisotropic liquid
subtly senses the microscopic structure of the LC material.

The effect of curvature κ and the flexoelectric coupling
on the maximum values of steady flow velocities |umax(κ )|,
calculated for the case U0 = 6, is shown in Fig. 9(b). The
difference between corresponding values |umax(κ )| is in the
range of 25%, and the flow verse is opposite for the case
P �= 0 relatively the case P = 0. The second observation of
the influence of the flexoelectric coupling on the steady flow
is that the maximum of the velocity profile is fixed near the hot
cylinder. The dimensional flow velocity |umax| ∼ 10–20 μm/s

FIG. 9. (a) Dependence of umax(U0 ) ≡ ueq
max(U0 ) vs U0 for two sizes of the HALC cavity: κ = 1 (curve 1) and κ = 0.1 (curve 2),

respectively, and for the case P �= 0, whereas the curve 3 shows the effect of U0 on the maximum steady flow velocity, which is borrowed from
Ref. [6] [see Fig. 8(b)]. (b) Effect of curvature κ and the flexoelectric coupling on the maximum values of steady flow velocities |umax(κ )|.
Results were obtained for U0 = 6, � = 0.0162, and for the models of P = 0 (curve 1) and P �= 0 (curve 2), respectively.
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FIG. 10. Same as described in the caption of Fig. 2, but a plot of the evolution of the temperature field χ (r, τi ) = T (r, τi )/TNI, for different
times τi = 0.01i (i = 1, . . . , 7) [τ7 = τR (tR ∼ 50 ms)], to its equilibrium distribution χ eq(r, τ7) ≡ χ eq(r) across the microsized HALC cavity
a � r � a + 1, both for the cases P = 0 (a) and P �= 0 (b), respectively. Here, U0 = 6.

in Fig. 9(b) is of the same order as found in the experimental
observation of mechanical pumping reported in Ref. [29].

The evolution of the dimensionless temperature field
χ (r, τ ) = T (r, τ )/TNI to its equilibrium distribution χ (r, τR)
across the microsized HALC cavity, both in the cases I and
II, at different times τi = 0.01i (i = 1, . . . , 7) (τ7 = τR) (tR ∼
50 ms), are shown in Figs. 10(a) and 10(b), respectively. In
both cases I and II, we have a weak nonlinear distribution
of the temperature field χ eq(r) across the microsized HALC
cavity.

As noted above, in some cases, for the model of P �= 0 and
U0 = 6, the relaxation regime for the orientational dynamics
of the director’s field component nr (r, τ ) to its equilibrium
distribution neq

r (r) allows the formation of the kinklike wave,
which is spreading across the microsized HALC cavity a �
r � r + a [see curves from 4 to 7, Fig. 2(b)]. If so, it probably
can be observed in polarized white light. Taking into account
that the director reorientation takes place in the narrow area
of the nematic 5CB sample (the width of the kinklike wave)
under influence of the voltage U0 = 6, applied between two
horizontal coaxial cylinders, the kinklike wave can be visu-
alized in polarized white light as a dark strip running across
the microsized HALC cavity. Having obtained the steady wall
position rw(τ ), where the director component nr (r) is equal to
0, one can calculate the velocity uw(τ ) = rw/τ of wall prop-

agation across the microsized LC cavity. Figure 11 shows the
influence of curvature κ on the steady wall position rw(τ ) and
velocity uw(τ ) vs τ across the HALC cavity a � r � a + 1,
for the case P �= 0 and under the effect of U0 = 6 and �χ =
0.0162. The decreasing of curvature κ shifts the time depen-
dence of rw(τ ) and u(τ, rw ), and maintains similarity in the
main kinetic features of these quantities. Figure 11(a) shows
the uniform motion of the wall out of initiation time period.
From the data in Fig. 11(a), the velocity of wall propagation
along the radial coordinate, from outer to inner cylinder, can
be estimated as uw = 10, which is of about three times of
the maximum horizontal speed |umax(U0 = 6, κ = 5)| ∼ 2.7.
Figure 11(b) shows the oscillating horizontal steady wall mo-
tion. The oscillation symmetry is broken near the inner cell
boundary, and this fact can be explained by the process of kink
dilution.

Notes that the relaxation behavior of the director field n̂
in the form of the kinklike distortion wave spreading along
the normal to both cylindrical boundaries probably can be
observed in polarized white light. Taking into account that
the director reorientation takes place in the narrow area of
the LC sample (the width of the kinklike distortion wave), as
shown in Fig. 2(b), under applied voltage U0, for instance,
U0 = 6 in the 5CB cavity size in a � r � a + 1, where a =
R1/(R1 + R2) = 0.2, the kinklike distortion wave can be vi-

FIG. 11. Plot of the evolution of the wall horizontal pozition rw (τ ) (a) and velocity uw (τ ) (b) vs τ across the HALC cavity a � r � a + 1,
for the case P �= 0 and under the effect of U0 = 6 and �χ = 0.0162. Results were obtained for κ = 8 (curves 1), 4 (curves 2), and 2 (curves
3), respectively.
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sualized in polarized white light as a dark strip running along
the normal to both cylindrical boundaries, with the velocity
v ∼ 10–20 μm/s.

IV. CONCLUSION

An electrically driven fluid pumping principle and a mech-
anism of kinklike distortion of the director field n̂ in a
microfluidic homogeneously aligned liquid crystal (HALC)
channel, confined between two infinitely long horizontal
coaxial cylinders subjected to both a temperature gradient
∇T and radially applied electric field E, has been proposed.
Both the fluid pumping principle and the kinklike distortion
mechanism are based on the coupling between the electric
E and director n̂ fields, together with accounting both the
effect of the temperature gradient ∇T and the flexoelectric
polarization P. In the nematic microfluidic channel where
director anchoring on the bounding surfaces is the same, i.e.,
both homogeneous, and when the gradient of the temperature
field ∇T does not exist, the horizontal flow of the nematic
material is excited only by the radially applied electric field
E(r) = E (r)êr . In turn, accounting both the temperature gra-
dient ∇T and the flexoelectric polarization P leads to the
additional contributions both to the torque and linear momen-
tum balance equations. Calculations, based upon the nonlinear
extension of the classical Ericksen-Leslie theory, with ac-
counting the entropy balance equation, show that due to
the coupling among the ∇T , ∇n̂, P, and E in the HALC
microfluidic channel the kinklike distortion wave spreading
along normal to both cylindrical boundaries may be excited.
Calculations show that the resemblance to the kinklike dis-
tortion wave depends on the value of radially applied electric
field E and the curvature of these boundaries. Our calculations
also show that, under the effect of the named flexoelectric
perturbations and at high curvature of the inner cylinder, the
HALC microvolume settles down to a nonstandard relaxation
mechanism and a nonstandard flow regime ueq(r)êz in the
horizontal direction. We worked out the conditions (in terms
of curvature κ and voltage U0) producing a relaxation mech-
anism of the double π form, with an intermediate relaxation
wall (steady wall motion has been extensively studied in spin-
tronics, see Refs. [29,30]). In the range of radii R2/R1 > 2
and voltage U ∼ 5.3–8.5 V, the maximum of the stationary
flow velocity ueq

max is found near the hot outer cylinder. Higher
voltages block up the relaxation mechanism, and the maxi-
mum flow decreases. In the case when the voltage U0 → ∞,
one has that limU0→∞ u(r, τ ) → 0, and any horizontal steady
flow v(r, t ) = vz(r, t )êz = u(r, t )êz of the LC phase stops in
the microsized HALC capillary, since under the influence
of strong external electric field E the dipoles of molecules
forming the LC phase are oriented along this field. This once
again shows that the macroscopic description of the nature
of the hydrodynamic flow of an anisotropic liquid subtly
senses the microscopic structure of the LC material. Further
comparison between the two treatments shows that allowing
for flexoelectric coupling increases the maximum of the sta-
tionary flow velocity ueq

max by some 25%. So, our calculations
show that the most pronounced effect of flexoelectricity in the
microvolume HALC cavity between two coaxial cylinders is
observed on the orientational dynamics and weak effect on the

flow velocity. Calculated flow velocity is of the same order as
found in the experimental observation of mechanical pumping
reported in [28].

Our calculations also show, on the one hand, that, under
certain conditions, in terms of curvature of cylinders κ and
the voltage U , applied between cylinders, the torques and
forces acting on the director n̂ may excite the kinklike dis-
tortion wave spreading along the normal to both cylindrical
boundaries, whose resemblance to a kinklike distortion wave
depends on the value of U and the curvature of the inner cylin-
der. It has been worked out, on the other hand, the conditions,
in terms of κ and U , producing the distortion mechanism of
the n̂ in the double π form, with the intermediate relaxation
wall.

Note that the relaxation behavior of the director field n̂
is observed in the form of the kinklike wave nr (r, t ) which
is spreading across the HALC cavity, it probably can be
observed in polarized white light. Taking into account that
the director reorientation takes place in the narrow area of
the nematic 5CB sample (the width of the kinklike wave)
under influence of the voltage U0 = 6, applied between two
horizontal coaxial cylinders, the kinklike wave can be visu-
alized in polarized white light as a dark strip running across
the microsized HALC cavity. This once again shows that the
macroscopic description of the nature of the hydrodynamic
flow of an anisotropic liquid subtly senses the microscopic
structure of the LC material.

We believe that the present investigation can shed some
light on the problem of precise handling of microvolume LC
drops, which requires self-contained micropumps.
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APPENDIX: HYDRODYNAMIC EQUATIONS WITH
ACCOUNTING FOR THE ELECTRIC FIELD

AND THE TEMPERATURE GRADIENT

For two component director n̂ = nr êr + nzêz in a
cylindrical coordinate, both the elastic and electric
energy densities are given by dimension forms 2WF =
K1n2

r,r + K3n2
z,r and 2ψel = ε0(ε⊥ + εan2

r )E2(r) + 2PrE (r),
respectively, whereas the viscous, thermomechanical, and
thermal parts of the full dissipation function of nematic
are given by dimension forms: 2Rvis = γ1(n2

r + n2
z ) +

vz,r (ṅrnz−ṅznr )[γ1+γ2(n2
z −n2

r )]+Hv2
z,r , Rtm=ξT,r[( 1

2+n2
z )

(ṅrnr,r + ṅznz,r ) + 1
2r nrnz(ṅznr − ṅrnz )] + vz,rξT,r[nr,r (nz +

1
4 nzn2

r ) − 3
4r nznr], and Rth = T 2

,r

2T (λ‖n2
r + λ⊥n2

z ), respectively.
Here, 2H = α4 + 1

2 (α5 + α6 + γ1) + α1n2
r n2

z + γ2n2
z − n2

r
is the hydrodynamic function, v = vzêz, vz,r is the unique
nonzero component of the tensor ∇v̂, ṅx = nx,t = ∂nx/∂t
(x = r, z), and nr,r , nr/r and nz,r are the components of the
distortion ∇n̂.

The linear moment balance equation has the form

ρv̇ = ∇ · σ + ∇ψel, (A1)
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where ρ is the density of nematic phase, σ = δR
δ∇v is

the stress tensor. The nonzero elastic stress components
are defined by the elastic energy density as σ elast

rr =
−[Q + nr,r (∂WF /∂nr,r ) + nz,r (∂WF /∂nz,r )] and σ elast

αα =
−{Q + (nr/r)[∂WF /∂ (nr/r)]}. The nonelastic component
is the shear stress σrz = ∂R/∂vz,r . Equation (A1) has the
dimensionless form as Eqs. (14) and (15). Equation (14) is
approximated by Eq. (19) due to δ4 
 1, and Eq. (21) for
pressure Q is the first integral of Eq. (15).

The heat conduction equation has the form

ρCpṪ = −∇,rqr, (A2)

where Cp is the heat capacity, qr = −T (δR/δT,r )
denotes the heat flux component. The expression
for the radial heat flux is qr = T,r (λ‖n2

r + λ⊥n2
z ) +

ξT [( 1
2 + n2

z )(ṅrnr,r + ṅznz,r ) + 1
2r nrnz(ṅznr − ṅrnz )] +

vz,rξT [nr,r (nz + 1
4 nzn2

r ) − 3
4r nznr]. The full heat conductivity

equation has the dimensionless form

(πU0)2δ5χ̇ = ∇,r

[
χ,r

(
λn2

r + n2
z

) + δ6χ

(
1

2
+ n2

z

)
(ṅrnr,r + ṅznz,r )

]

+ δ6∇,r

{
χ

1

2r
nrnz(ṅznr − ṅrnz ) + u,r

[
nr,r

(
nz + 1

4
nzn

2
r

)
− 3

4r
nznr

]}
, (A3)

where δ6 = ξ (K1/λ⊥γ1d2) and λ = λ‖/λ⊥. The parameter δ6 = δ2/δ3 
 1 for nematics and Eq. (A3) has the form (18). The
quasistationary form of the solution of the equation with δ5 
 1 and δ6 
 1 is Eq. (20).
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