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plate with arbitrary director orientation
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Except for director orientation, the deformation modes of constrained liquid crystal elastomer thin plate
display specimen geometry size dependence due to the boundary effect. In this paper, the effect of plate geometry
size on the spontaneous deformation of a simply supported liquid crystal elastomer plate is studied. The relation
between the deformation modes with director orientation and plate geometry size are investigated. Results show
that the deformation modes are decided by the director orientation for a certain liquid crystal elastomer, but the
geometry size affects the mode transformation with respect to the director. These results are supposed to be used
in the design and application of liquid crystal elastomer-based smart actuators or sensors.
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I. INTRODUCTION

Smart soft actuators, that exhibit programmable, fast, and
reversible shape variation under various kinds of external
stimuli, have attracted more and more academic intention
[1–3] considering their potential values in soft robots [4], arti-
ficial muscle [5], wearable electronics [6], and so on. Among
the general stimuli including the thermal, electric, light, mag-
netic, or solvent one [7–10], the light shows advantage due
to its easy and precise controlling in noncontact and a remote
way [11]. Therefore, programming the photoresponsive mate-
rial to achieve multiple desired deformations is an interesting
and prospective aspect in the smart device design.

Among the various photoresponsive materials, liquid
crystal elastomer (LCE) is supposed to be one of the ideal ma-
terials. Structurally, LCE is weakly cross-linked polymer with
liquid crystal moiety, which possesses both the anisotropic
orientation order of liquid crystal and the elasticity of polymer
networks [12]. Thanks to the liquid crystal molecules, liquid
crystal elastomer possesses stimuli-responsive and reversible
shape variation at the macroscopic scale [13]. Considering
the novel responses of LCE under light stimuli, exploring the
method for precise control of LCE structures and obtaining
the desired photo actuation mode become more and more
attractive [14–16].

The spontaneous deformation of LCE has been experi-
mentally demonstrated [17–19]. Meanwhile, the curvatures
of LCE plates with uniform director field have been inves-
tigated theoretically, showing that the spontaneous bending
could be obtained and the flat surface could even transform
into a surface with Gaussian curvature [20–23]. Some re-
search showed that the Gaussian curvature of a LCE thin
sheet could be programmed by designing the in-plane director
distribution including the planar nematic [24–26], splay or
twist nematic [27,28], and spiral patterns [29,30]. It is seen
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that for LCE beam structures, the director was mainly uni-
formly distributed along the beam axis [31–34], and for the
platelike LCE structures, the director was ordinarily treated as
a planar distribution [28,35]. However, in the real application,
the director is three-dimensional orientated and the specimen
is ordinarily constrained. Zhao and Liu [36] analyzed the
spontaneous bending of simply supported rectangular LCE
plates, and established the relation between the deforma-
tion modes and director orientation. It is noticed that for a
constrained LCE plate, the deformation mode transformation
along with the director relies on the plate dimension. Since
the specimen size could be arbitrary and usually constrained,
clarification of the plate geometrical size on the bending
modes of the LCE plate is necessary for its further appli-
cation in smart devices, which unfortunately has been less
focused.

Aiming at these problems, in this paper the effect of the
plate size on the spontaneous deformation of a simply sup-
ported LCE thin plate is studied to clarify the boundary effect.
Firstly, by using the finite-difference method, the spontaneous
deformation of the simply supported LCE plate is delineated.
Then different director orientation and plate dimension ra-
tio are taken into consideration to clarify the dependence of
the deformation pattern transformation with the director on
the geometrical size of the plate. Finally, the conclusion is
given.

II. GOVERNING EQUATION FOR THE SPONTANEOUS
DEFORMATION OF LCE PLATE

As shown in Fig. 1, a simply supported LCE plate is
perpendicularly illuminated by light with the uniform light
intensity I0. The length of the rectangular LCE plate is a,
width b = ζa, and thickness h. Because the plate is always
treated as a one-way plate while ζ is small, the parameter ζ

changes from 0.4 to 1 to obtain an arbitrary LCE plate.
According to our previous work [36], based on the

Kirchhoff-Love thin-plate theory, the dimensionless
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FIG. 1. (a) Sketch of a simply supported rectangular LCE plate
illuminated by downward light (the width of the plate changes from
0.4 a to a); (b) the director n has an angle φ with xOy plane, and
its projection in xOy plane has an angle θ with x axis; (c) the light-
induced transformation between trans and cis.

governing equation of spontaneous bending for an anisotropic
LCE rectangular plate has been derived as
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, ȳ = y

a
, w̄ = w

h
, α = a

h
, β = d0

h
,

(d11, d12, d14)

=
(

D11

D11
,

D12

D11
,

D14

D11

)
, (d22, d24, d41, d42, d44)

=
(

D22

D11
,

D24

D11
,

D41

D11
,

D42

D11
,

D44

D11

)
, (5)

and Di j = Ci jh3/12(i, j = 1, 2, 4), Ci j (i, j = 1, 2, 4) are el-
ements of material elastic matrix which are shown in
Appendix A. η0 is the light absorption constant and T0 is the
thermal characteristic time from the cis state to the trans state,
I0 is the light intensity at the upper plate surface. P0‖ denotes
the contraction coefficient which is parallel to the director n
and νs is spontaneous strain ratio.

Here, the simply supporting boundary conditions are con-
sidered, and the dimensionless boundary conditions are with
the form
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Comparing with our previous work [36], the only differ-
ence is the arbitrary plate dimension ratio ζ is taken into
consideration.

In order to solve Eq. (1), the plate is divided into (m + 1)
pieces in the x-coordinate direction and (n + 1) pieces in
the y-coordinate direction with step length λ, after which a
divided region of (m + 1) × (n + 1) dimensions is obtained.
The nodes of the plate change from j = 1 to m + 2 in the
x direction and from i = 1 to n + 2 in the y direction. By
using the finite-difference method, the discretization of the
governing equation is obtained as
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As shown in Fig. 2, the values of virtual nodes can be
replaced by the displacements of the nodes that are beside the
boundary in the plate. The replacement procedure is shown
in Appendix B. Then a set of algebraic equations with m × n
unknown displacement components are expressed as

A(m×n)×(m×n)V(m×n)×1 = B(m×n)×1, (9)

where V = {w2,2, . . . ,w2,m+1, . . . wn+1,2, . . . ,wn+1,m+1} is
the unknown dimensionless displacement components of the
m × n nodes inside the plate. Then the light-induced sponta-
neous bending of an arbitrary LCE plate is obtained.

III. NUMERICAL RESULTS AND DISCUSSION

Based on the above scheme, the spontaneous bending con-
figurations for simply supported LCE plates with different
sizes are investigated. In the calculations, we take E‖/E⊥ = 2,
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FIG. 2. The boundary conditions for simply supported LCE plate
edges.

G/E‖ = 0.1, V‖ = V⊥ = 0.5, T0 = 0.4 s, η0 = 0.000 22 s−1,
P0‖ = 0.001, d0 = h, I0 = 10 kw m−2 [32–34].

A. The effect of director orientation on the spontaneous
deformation of LCE square plate

Firstly, ζ = 1 is considered to study the influence of the
director orientation on the spontaneous deformation of LCE
square plate. Seen as Fig. 3, with the variation of director
orientation, three spontaneous bending modes are observed,
that is, the unimodal shape S1-1 [Fig. 3(a), the plate bends
against the light direction with only one deflection maximum
at the plate center], bimodal shape S2-1 [Fig. 3(b), the plate
bends against the light direction with two deflection maxima],
and the multimodal shape S3 [Fig. 3(c), part of the plate
bends along the light direction and the other part bends against
the light direction with multiple positive maxima and nega-
tive minima]. It should be noted that for Sp-q, p represents
the spontaneous bending shape (p = 1, 2, 3, corresponds to
the unimodal, bimodal, and multimodal shapes, respectively),
and q represents the spontaneous bending direction (q = 1,

2, against or along the light direction, respectively). For the
bimodal and multimodal shapes, the central area of the plate
is a saddle shape. This is because the opto-Poisson effect
leads to opposite strains in the directions that are along and
perpendicular to the director. In addition, the constraint of the
boundary condition restrains the displacement of boundary
nodes, resulting in these complex deformation modes.

Figure 4 shows the contour maps for the deflection of
the LCE plate under different θ and φ = 55◦. It is seen that
the spontaneous deformation is all unimodal shape, and the
deflection is central symmetric. However, the maximum de-
flection area (red range near the plate center in the contour
map) changes with the variation of θ . When θ < 45◦, the
red contour around the plate center is prolate ellipse with
the major axis along the ȳ axis [Figs. 4(a) and 4(b)]. When
θ = 45◦, the central red contour changes to a circle [Fig. 4(c)].
Along with the further increase of θ , the central red contour
changes again to an oblate ellipse, with the major axis along
the x̄ axis [Figs. 4(d)–4(f)]. In general, with the increasing of
θ from 0◦ to 180◦, the contour of the maximum deflection area
changes from prolate ellipse to oblate ellipse. θ = 45◦ is the
critical transform angle, at which the central red contour is a
circle. Moreover, it is noticed that the maximum deflections
coincide with each other when the sum of director orientation
θ is 90◦ or 180◦. This is induced by the symmetry of the
material and the geometric symmetry of the square plate.

Figure 5 plots the contour maps for the deflection of LCE
plate under different θ when φ = 39◦. It can be seen that
with the increasing of director orientation θ , the configuration
of the spontaneous bending transforms between multimodal
shape and unimodal shape. The deflection is also central sym-
metric and the maximum deflection points of the multimodal
shape are not at the plate center. When θ = 0◦, the contour
map is a horizontal hourglass with two minimum points (blue
area) at ȳ = 0.5 and two maximum points (red area) at x̄ = 0.5
[Fig. 5(a)]. When θ = 30◦, the contour map changes to a pos-
itive four-leaf clover shape with two maximum points at x̄ =
0.5 [Fig. 5(b)]. When θ = 45◦, the central red contour changes
to a circle [Fig. 5(c)]. Along with the further increase of θ ,
the contour map changes to a minus four-leaf clover with two
maximum points at ȳ = 0.5 [Fig. 5(d)]. When θ = 90◦, the
contour map is a vertical hourglass with two minimum points
at x̄ = 0.5 and two maximum points at ȳ = 0.5 [Fig. 5(e)].
Along with the increase of θ , it changes back to minus four-
leaf clover [Fig. 5(f)]. It is seen that in this situation, with
the increasing of θ , the contour map for four deflection peaks
changes on the order of hourglass, four-leaf clover, and hour-

FIG. 3. The spontaneous bending configurations of the simply supported LCE square plate.

012701-3



YING LIU AND DONG ZHAO PHYSICAL REVIEW E 103, 012701 (2021)

FIG. 4. The contour maps for spontaneous bending of LCE square plate with φ = 55◦ and (a) θ = 0◦ (b) θ = 30◦ (c) θ = 45◦ (d) θ = 60◦

(e) θ = 90◦ (f) θ = 120◦.

glass. θ = 45◦ is the critical transformation angle at which the
contour is a circle. The hourglass or four-leaf clover change
from horizontal or positive to vertical or minus, respectively.
In addition, when the sum of director orientation θ is 90◦
or 180◦, the spontaneous deformation modes are of the same

kind and the maximum deflections coincide with each other.
This is in accordance with that when φ = 55◦.

It is seen that the spontaneous bending modes are depen-
dent on the director orientation θ and φ. With a vast amount
of calculation, the partition of director orientation θ and φ

FIG. 5. The contour maps for spontaneous bending of LCE square plate with φ = 39◦ and (a) θ = 0◦ (b) θ = 30◦ (c) θ = 45◦ (d) θ = 60◦

(e) θ = 90◦ (f) θ = 120◦.
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FIG. 6. The regions of director orientation θ and φ that lead
to different spontaneous deformation modes of LCE square plate
(ζ = 1).

for different spontaneous deformation modes of LCE square
plate are given in Fig. 6. It is seen that the deformation modes
are mainly S1 or S3, whereas only in a small range S2-1

forms. It is also noticed that the spontaneous deformation
mode changes symmetrically with the variation of director
orientation θ and φ. Therefore, in the following discussion,
the variation of director orientation for 0◦ � θ � 90◦, and
0◦ � φ � 90◦ is considered.

B. The effect of plate size on the spontaneous
deformation of LCE plate

Apart from the director orientation, the plate size also has
a significant influence on the deformation modes of a con-
strained liquid crystal elastomer plate. Comparing the above
results of the square plate with those of the rectangular one
(ζ = 0.5) [36], it is observed that the bending modes are
similar, but the division of director orientation for different
spontaneous bending modes is different. Therefore, in the
following part, we will further discuss the effect of the plate
dimension ratio on the spontaneous deformation under a given
director orientation.

Figure 7 gives the effect of the plate dimension ratio on
the maximum deflection area for the simply supported LCE
plate in the modes transformation process when θ = 90◦,
φ = 47◦. The dashed cross lines give the maximum deflection
position. It is seen that with the decreasing of the plate di-
mension ratio, the spontaneous bending shape changes from
unimodal mode to bimodal mode. The maximum deflection
area is always on the bisector of the width, and the maximum

FIG. 7. The effect of plate dimension ratio on the maximum deflection area of simply supported LCE plate with θ = 90◦, φ = 47◦

(transforming from unimodal shape to bimodal shape).
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FIG. 8. The effect of the plate dimension ratio on the maximum deflection area of simply supported LCE plate with θ = 90◦, φ = 44◦

(transforming from unimodal shape to bimodal shape, and further to multimodal shape).

deflection is decreased with the decreasing of the plate dimen-
sion ratio. For the bimodal modes, the distance of the two
maximum deflection areas is increased with the decreasing
of ζ . This is because for a constant director orientation, the
relative influence of opto-Poisson effect is increased with
the decreasing of plate dimension ratio. In addition, due
to the constraint of simply supported boundary condition,
the spontaneous bending mode is changed with the plate
size.

Figure 8 shows the effect of the plate dimension ratio on the
maximum deflection area of the simply supported LCE plate
in the modes transformation process when θ = 90◦, φ = 44 ◦.
Similarly, the dashed cross lines give the maximum deflection
position. It is seen that with the decreasing of plate dimen-
sion ratio, the spontaneous bending shape may change from
unimodal mode to bimodal mode, and further to multimodal
mode. The distance of the two positive maximum deflection
areas is also increased with the decreasing of the plate di-
mension ratio. In addition, the positive maximum deflection
is still decreased with the decreasing of the plate dimension
ratio.

Figure 9 shows the effect of the plate dimension ratio on
the maximum deflection area of spontaneous bending con-
figuration of a simply supported LCE plate with θ = 30◦,
φ = 40◦. With the decreasing of the plate dimension ratio,
the spontaneous bending shape changes from multimodal
shape to unimodal shape. The maximum deflection area is
always on the bisector of the width or the length. It is seen

that with the decreasing of the plate dimension ratio, the
positive maximum deflection is increased while the sponta-
neous bending configuration changes from multimodal shape
to unimodal shape. However, the maximum deflection of uni-
modal is decreased with the decreasing of the plate dimension
ratio.

Figure 10 gives the effect of the plate dimension ratio
on the maximum deflection area of the unimodal shapes
for the simply supported LCE plate when θ = 0◦, φ = 60◦.
It is seen that for some director orientation, the variation
of the plate dimension ratio has no effect on the bending
configurations which are all unimodal shapes with the de-
flection maximum at the plate center. With the decreasing
of the plate dimension ratio, the shape of the maximum de-
flection area changes from circle to ellipse, and the long
axis of the ellipse will become longer. Moreover, the maxi-
mum deflection is decreased with the decreasing of the plate
dimension.

It is observed that the plate size has a great influence on the
spontaneous deformation of simply supported LCE plate with
constant director orientation. In order to manifest this effect
clearly, Fig. 11 gives the division of director orientation for
spontaneous bending modes Sp-q (p = 1, 2, 3 and q = 1, 2)
with different ζ . It is seen that with the decreasing of plate
dimension ratio, the region for unimodal mode (S1-1 and
S1-2) is decreased, whereas the regions for bimodal mode
(S2-1 and S2-2) and multimodal mode (S3) are increased.
This is because the influence of the boundary parallel to the
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FIG. 9. The effect of the plate dimension ratio on the maximum deflection area of simply supported LCE plate with θ = 30◦, φ = 40◦

(transforming from multimodal shape to unimodal shape).

x axis is relatively enhanced with the decreasing of ζ . It is
easier to obtain complex deformation in the x-axis direction,
leading to larger region of bimodal and multimodal modes.
As shown in Figs. 11(b) and 11(c), it is interesting to find that
when the plate dimension is close to the golden ratio (between
0.61 and 0.62), the partition line between the region S1-2
and S2-2 goes through the point (θ = 0◦, φ = 0◦). As seen in
Figs. 11(a)–11(c), with the decreasing of ζ , the region of φ for
bimodal (S2-2) is extended. When ζ is larger than the golden
ratio, the planar nematic with in-plane director (φ = 0◦) is all
unimodal (S1-2). When ζ is smaller than the golden ratio, the
planar nematic with in-plane director (φ = 0◦) will have both
unimodal (S1-2) and bimodal (S2-2) modes. Moreover, the
region of θ for bimodal (S2-2) is extended with the further
decreasing of ζ .

IV. CONCLUSION

In this paper, the effect of plate geometry size on the
spontaneous deformation of simply supported LCE plate is
investigated to clarify the boundary effect. The plate size in-
duced spontaneous bending modes transformation is clarified.
Moreover, the division of director orientation and plate di-
mension ratio for different spontaneous bending configuration
is given. From the above results, we can conclude that the
following.

The director orientation and plate geometry size have a
coupling effect on the spontaneous deformation of a con-
strained LCE plate. Three spontaneous bending modes are
observed along with the variation of the director orientation
or plate dimension ratio, that is, unimodal, bimodal, and
multimodal shapes. With the decreasing of plate dimension
ratio, the region for unimodal shape is decreased, whereas
the regions for bimodal shape and multimodal shape are
increased.

The maximum deflection area is always on the bisec-
tor of the width or the length. With the decreasing of
plate dimension ratio, the maximum deflection of uni-
modal shape as well as the bimodal shape is decreased,
while the distance between these two maximum deflec-
tion areas is increased. For a given director orientation,
during the variation process of the plate dimension ratio,
the unimodal shape has the largest maximum deflection
whereas the multimodal shape has the smallest maximum
deflection.

The results obtained in this paper provides a theoretical
guidance on the predesign of LCE-based intelligent light-
driven devices.
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FIG. 10. The effect of the plate dimension ratio on the maximum deflection area of unimodal shape with θ = 0◦, φ = 60◦.

FIG. 11. The effect of the plate dimension ratio on the division for spontaneous bending configurations of the LCE plate.
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APPENDIX A

The elastic matrix of the LCE plate in the given coordinate system, with the form
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E‖ and E⊥ are the elastic modulus along and perpendicular to the director n. ν‖ and ν⊥ are the Poisson ratio in the plane along
and perpendicular to the director n. G is the shear modulus and s = E⊥E‖. T = T2T1, where T1 and T2 are coordinate transform
matrices with the form

T1 =
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APPENDIX B

For edge BC [as shown in Fig. 2(a), at j = m + 2 in the x direction and from i = 2 i = 2 to n + 1 in the y direction], the
boundary conditions are w = 0 and M̄xx = 0. There,

− d14
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Equation (B1) represents n equations when I changes from 2 to n + 1. Then it is written as matrix form
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1 WF − M̄s

xxλ
2I = 0, (B2)

where WF = {w2,m+3,w3,m+3, ...,wn+1,m+3} is the displacement values of virtual nodes and W = {w2,m+1,w3,m+1, ...,wn+1,m+1}
is the displacement values of the nodes that are beside the boundary in the plate. The coefficient matrices are
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2· · ·
· · ·

− d14
2 −d11

d14
2

− d14
2 −d11

⎤
⎥⎥⎥⎥⎥⎥⎦

, (B3)

AF
1=

⎡
⎢⎢⎢⎢⎢⎢⎣

d11
d14
2

− d14
2 d11

d14
2· · ·
· · ·

− d14
2 d11

d14
2

− d14
2 d11

⎤
⎥⎥⎥⎥⎥⎥⎦

. (B4)
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Then, the values of virtual nodes (WF = {w2,m+3,w3,m+3, ...,wn+1,m+3}) are obtained as

WF = (
AF

1

)−1
A1W − (

AF
1

)−1
Ms

xxλ
2. (B5)

The solving procedures for other edges are the same and not given here.
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