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Entropy production fluctuations encode collective behavior in active matter
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We derive a general lower bound on distributions of entropy production in interacting active matter systems.
The bound is tight in the limit that interparticle correlations are small and short-ranged, which we explore in
four canonical active matter models. In all models studied, the bound is weak where collective fluctuations result
in long-ranged correlations, which subsequently links the locations of phase transitions to enhanced entropy
production fluctuations. We develop a theory for the onset of enhanced fluctuations and relate it to specific phase
transitions in active Brownian particles. We also derive optimal control forces that realize the dynamics necessary
to tune dissipation and manipulate the system between phases. In so doing, we uncover a general relationship
between entropy production and pattern formation in active matter, as well as ways of controlling it.
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I. INTRODUCTION

Active matter systems are defined by forces that inject
energy locally into individual particles, driving nonequilib-
rium steady states that continuously dissipate energy. This
persistent dissipation and its associated entropy production
have been shown to have deep connections with structural
and dynamic properties of active matter [1–10]. Subsequently,
understanding the contributions to the entropy production in
active matter is the first step in manipulating their emergent
order [11–19], designing active metamaterials with novel re-
sponses [20–23], and utilizing active heat engines [24–30].
Stochastic thermodynamics provides a framework for study-
ing entropy production and has supplied general theories that
constrain its statistics [31–35] and its role in nonequilib-
rium response [36–50]. Here, we provide a general bound on
the distributions of entropy production for interacting active
matter using stochastic thermodynamics and large deviation
theory [51]. While not universal like the thermodynamic un-
certainty principle [52,53], the specific consideration of active
matter admits a tight bound generically, and one in which de-
viations can be physically understood. The bound we present
is valid arbitrarily far from equilibrium for self-propelled
particles and is saturated in the limit that the interparticle
contribution to the entropy production is small. Near phase
transitions, the bound is weak as fluctuations are enhanced due
to emergent effective long-ranged interactions that we quan-
tify. This work provides a link between entropy production
fluctuations and collective phenomena in active matter.

*dlimmer@berkeley.edu

We consider active matter systems that are self-propelled
and whose equations of motion are of the form

ṙi = v bi + μF i(rN ) +
√

2Dtηi, (1)

where ri denotes the position of the ith particle, v and bi set
the typical magnitude and direction of self-propulsion, μ is a
single particle mobility, and ηi is a Gaussian white noise with
〈ηα

i (t )〉 = 0 and 〈ηα
i (t )ηβ

j (t ′)〉 = δi jδα,βδ(t − t ′) for the α and
β components of the random force. The translational diffu-
sion coefficient, Dt , satisfies a fluctuation-dissipation relation,
Dt = β−1μ, where β−1 is the temperature times Boltzmann’s
constant. Throughout, we take μ = Dt = 1. The interparticle
forces are conservative, F(rN ) = −∇U (rN ), and in general
depend on all N particles’ positions, rN . This class of active
matter has a nonconservative self-propulsion term, vb, which
is driven by a constant energy supply. Our formulation is inde-
pendent of the statistics and dynamics of the self-propulsion
vector, b, and may be correlated due to aligning interactions.
The dynamics of the orientation vector b are model specific
and discussed in Appendix A, however our results are largely
independent of its form. For concreteness, below we will
consider collections of interacting active Brownian particles
(ABPs), active dumbbells (ADPs), run and tumble particles
(RTPs), and active Ornstein-Uhlenbeck particles (AOUPs).

The entropy production follows from time reversal symme-
try arguments of stochastic thermodynamics [54–58], �S =
ln P[�]/P[�̃], where P[�] is the probability of a forward
trajectory � = {rN (t ), bN (t )} and P[�̃] is the probability of
observing the time-reversed trajectory. We use the convention
that the parameter v is even under time-reversal, consistent
with previous work [59–63]. This convention ensures that
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(b) (c)(a)

FIG. 1. Entropy production fluctuations for a variety of active matter systems. (a) Rate function obtained by importance sampling versus
the bound in Eq. (8) with the symbols corresponding to the labels in (b) and (c). (b) Entropy production fluctuations for ρ = 0.1, ABPs with
Dr = 3, ADPs with spring constant k = 100 ε/σ 2 and rest length l = 1.5σ , and RTPs with a tumble rate γ = 1 for different self-propulsion
values. (c) Entropy production fluctuations for AOUPs for different parameter ranges and Dr = 1. In all panels the red line denotes Ib(s) and
the error bars are smaller than the symbols.

there is a nonvanishing entropy production in the limit of
noninteracting particles with no external fields accounting for
the energy injected into the single particles to drive persistent
motion. The choice of convention for time reversal without
an underlying microscopic model of self-propulsion is some-
what arbitrary [64]. However, all of the collective phenomena
reported below are independent of the convention [65]. The
convention we follow is analogous to the active work [61]
and can be derived independently from mechanical consid-
erations. Under this time reversal convention in the long time
limit, the entropy production is

�S = v

Dt

N∑
i=1

∫ t

0
dt ′ bi ◦ ṙi , (2)

where ◦ denotes a Stratonovich product (see Appendix B).
This definition codifies the amount of energy directly trans-
lated into motion in the form of persistent displacement
[63,64,66].

II. BOUNDS ON ENTROPY PRODUCTION

One convenient way to characterize the statistics of �S is
through its scaled cumulant generating function (CGF). For
the time and system size intensive entropy production, s =
�S/(Nt ), the CGF is defined as

ψ (λ) = 1

tN
ln

〈
eλs(�)Nt

〉
0, (3)

where 〈· · · 〉0 denotes average over paths and λ is the counting
variable that probes rare fluctuations of the entropy produc-
tion when nonzero. Cumulants of the entropy production are
computable from ψ (λ) through derivatives with respect to λ.
We define a rate function

I (s) = − 1

Nt
ln 〈δ[s − s(�)]〉0 , (4)

where δ(s) is Dirac’s delta function. The rate function is the
logarithm of the probability of s scaled by time and par-
ticle number. We are interested in the fluctuations of s in
the macroscopic limit at long time and large system size,
where I (s) can be calculated by a Legendre-Fenchel trans-

form, I (s) = maxλ [λs − ψ (λ)]. The transient fluctuations of
entropy production would require an alternative method from
the Legendre-Fenchel transform and are not considered in our
work.

Calculating ψ (λ) or I (s) exactly for interacting systems
is difficult because of many-body correlations. However, we
find that ψ (λ) can generally be rewritten by factoring out the
single particle part,

ψ (λ) = ψ f (λ) + 1

Nt
ln

〈
eλ�W

〉
uλ

, (5)

where ψ f (λ) is the CGF for an isolated active particle. The
remaining contribution to ψ (λ) represents interparticle corre-
lations and is given by the CGF of

�W = βv

N∑
i=1

∫ t

0
dt ′ bi · F i , (6)

averaged over an ensemble with an additional force uλ. The
force uλ is the optimal control force to realize rare entropy
production fluctuations for an isolated particle and its model
specific form is considered below. The observable �W is the
dimensionless work done on the surrounding particles due to
self-propulsion. By applying Jensen’s inequality to Eq. (5),

ψ (λ) � ψ f (λ) + βλv〈b · F〉uλ
, (7)

ψ (λ) is bounded (see Appendix D). The correction over the
single particle CGF can be interpreted as βλv times the ef-
fective drag a tagged particle feels in the direction of the
self-propulsion due to the surrounding particles [67]. This
gives rise to an effective velocity that is smaller than v and
dependent on the density and λ [68].

Inserting the bound on the CGF in Eq. (7) into the
Legendre-Fenchel transform, we derive a bound on the dis-
tribution of the entropy production, Ib(s),

I (s) � Ib(s) = max
λ

[λs − ψ f (λ) − βλv〈b · F〉uλ
]. (8)

By construction, the bound recovers the correct mean dissi-
pation and is tight far into the tails of the distribution in the
limit that fluctuations in �W are small and the saddle point
approximation to its CGF is accurate. Data in Fig. 1 confirms
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the upper bound for all of the active matter models studied.
Throughout, I (s) is computed using the cloning algorithm
[69,70] and Ib(s) by computing 〈�W 〉uλ

from direct simu-
lations. All simulations are done with a WCA interparticle
potential [71], U (r) = 4ε[( σ

r )12 − ( σ
r )6] + ε for r � 21/6σ

and zero otherwise. The parameter ε is the energy scale of
the interactions and σ is the particle diameter. ADPs have an
added harmonic potential between composite particles. Our
results are presented with a nondimensional v in units of
Dt/σ , γ , and Dr in units of Dt/σ

2, and bulk density ρ in
units of 1/σ 2 in two dimensions. Also, Dt , and β are set to 1.
Data in Fig. 1(a) show that there are large parameter regimes
where the bound is tight. In principle, the bound is valid when
the system is away from dynamical phase transitions, and
when ρ(v/Dr )2 < 1. Nevertheless, even when ρ(v/Dr )2 ≈ 1
we find the bound is still reasonably tight.

The detailed forms for I (s) and Ib(s) are distinct for dif-
ferent models of active matter. For ABPs, ADPs, and RTPs,
the entropy production fluctuations are Gaussian for isolated
particles, with ψ f (λ) = v2λ(1 + λ)/Dt (see Appendix C).
The corresponding control force, uλ = 2λvb, is appended to
the existing forces in Eq. (1) such that rare entropy pro-
duction fluctuations are realized by a renormalized velocity,
vλ = v(1 + 2λ). This ψ f (λ) gives rise to a bound that is
nearly Gaussian, as shown in Fig. 1(b). For low densities and
low velocities, I (s) ≈ Ib(s). Increasing v, the bound weak-
ens for smaller than average entropy production fluctuations,
s < 〈s〉0. Fluctuations that result in larger than average en-
tropy production, s � 〈s〉0, for large v are more probable than
predicted by the bound due to neglecting contributions from
interparticle correlations. However, the relative error between
the entropy production distribution and the bound decreases
into the tails due to the increasingly independent particle
behavior elaborated upon below.

For isolated AOUPs, the entropy production fluc-
tuations are generically non-Gaussian and ψ f (λ) =
Dr (1 −

√
1 − 2v2λ(1 + λ)/DtDr ), where Dr is the rotational

diffusion constant (see Appendix C). The fluctuations in s
are Gaussian only near the mean and are asymmetric [61].
This is in contrast to the Gaussian distribution that would
be predicted by the thermodynamic uncertainty relations,
and reflects the finite memory in the self-propulsion vector.
The control force includes the same renormalized velocity as
for ABPs, but in addition includes a force on the particle’s
orientation, uλ = ψ f (λ)b. In Fig. 1(c), we see that the
bound gives an accurate prediction of the fluctuations across
the densities and v’s considered. The fluctuations are still
enhanced relative to the bound for s < 〈s〉0, though less so
than in Fig. 1(b).

III. RARE FLUCTUATIONS IN ACTIVE BROWNIAN
PARTICLES

In order to understand the origins of the deviations from
the bound and the connections to collective behavior in active
matter, we consider in detail a system of ABPs at condi-
tions near and far from its motility induced phase separation
(MIPS) transition. Additionally, the asymmetry of entropy
production fluctuations about its average, motivates us to
consider separately fluctuations of s > 〈s〉0 and s < 〈s〉0. In

(a)

(c)

(b)

(d)

FIG. 2. Larger than average entropy production fluctuations for
ABPs with N = 10 (purple circles), 20 (blue squares), and 40 (black
diamonds). Distribution of entropy production for (a) v = 10 and
(b) v = 120 with ρ = 0.1. In (a) and (b), the red lines are Ib(s) and
the dashed black lines are fits at λ = 0 to extract the second cumu-
lant. The average entropy production at finite λ for (c) v = 10 and
(d) v = 120 with ρ = 0.1. The dashed lines are from the cumulant
fits in (a) and (b), and the red line is the noninteracting rate function.

Fig. 2, the distributions for s > 〈s〉0 are shown for v = 10
and v = 120, for a variety of system sizes at fixed density,
ρ = 0.1. While the probability is larger than predicted by
the bound, it can be perturbatively corrected. Specifically,
we can expand Eq. (5) up to the second cumulant, ψ (λ) ≈
ψ f (λ) + (λ〈�W 〉0 + λ2〈δ�W 2〉0/2)/Nt . The result of this
approximation to the rate function is shown in Figs. 2(a)
and 2(b). For v = 10 the fluctuations are well described by
the cumulant approximation, while for v = 120 asymptotic
entropy production fluctuations are narrower than predicted.

The asymptotic behavior for s � 〈s〉0 is well described by
free particle motion for all v’s. This can be seen by consider-
ing dψ/dλ = 〈s〉λ from 〈s〉λ = ∫

ds s exp{Nt[−I (s) + λs −
ψ (λ)]}, which is a direct probe of the tails of I (s). As shown
in Figs. 2(c) and 2(d), for both large and small v, 〈s〉λ exhibits
a crossover from Gaussian statistics. Near λ = 0, 〈s〉λ varies
linearly with λ with a slope given by the variance 〈δs2〉0. For
λ � 0, 〈s〉λ varies linearly with λ with a slope given by the
free particle variance. An analogous crossover has been noted
in the current statistics of an interacting tagged ABP [68]. The
asymptotic free behavior implies that the most likely way for
the system to produce large amounts of entropy is to suppress
density correlations and decrease �W . This behavior results
from the system adopting a net orientation for the particles’
self-propulsion vector [60,72]. If the net orientation persists
in the thermodynamic limit, it would represent a spontaneous
symmetry breaking.

Fluctuations for s < 〈s〉0 are much larger than predicted by
the bound and are collective in origin. Figure 3 shows the
distributions of entropy production and 〈s〉λ for v = 10 and
v = 120 at ρ = 0.1 for three system sizes. The distributions
in Figs. 3(a) and 3(b) show significant finite size effects for
s < 〈s〉0. In Figs. 3(c) and 3(d), this is evident by a transition
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(a)

(c)

(b)

(d)

FIG. 3. Smaller than average entropy production fluctuations and
dynamical phase transition for ABPs for different system sizes N =
10 (purple circles), 20 (blue squares), and 40 (black diamonds). The
phase diagram and example structures are illustrated at the top with
phase separation on the left of the phase diagram and a homogeneous
state on the right. Distribution of entropy production for (a) v = 10
and (b) v = 120 with ρ = 0.1. In (a) and (b), the dashed red lines
are a Maxwell construction for the dynamical phases. The average
entropy production at finite λ for (c) v = 10 and (d) v = 120 with
ρ = 0.1. The dashed red lines are from the Gaussian fits in (a) and
(b) used in the Maxwell construction.

between two types of behavior that sharpens with increasing
N and occurs at larger λ with increasing v over the lim-
ited range of system sizes we can study numerically. These
features are a hallmark of a dynamical phase transition, in
this case between a dilute phase and a phase separated state
reminiscent of MIPS [73–75]. As has been found previously
[60], this shows that the most likely way for the system to
produce little entropy is to condense, decreasing the particles’
displacement by increasing the effective drag. We find we
can describe I (s) by explicitly assuming that each dynam-
ical phase is well approximated by a Gaussian distribution.
Specifically, assuming ψi(λ)Nt = λ〈�S〉i + λ2〈δ�S2〉i/2 for
i = d, c being the dilute and condensed phases, the rate func-
tion can be computed from a contraction principle [51] for
the CGF, ψ (λ) = maxλ[ψc(λ), ψd (λ)] (see Appendix A). The
result is a Maxwell construction and is shown in Fig. 3 to be
a good approximation in the infinite system size limit. Due
to the exponential difficulty of sampling large deviations in
interacting systems we are unable to study larger systems [76].
Additionally, effects from the relatively large persistent length
for v = 120 may complicate the extrapolation of these finite
size effects to larger systems.

For s < 〈s〉0, it is not sufficient to perturbatively cor-
rect the bound even for v = 10, which is far from the
MIPS transition. To understand this behavior we have de-

veloped a coarse-grained theory. We define a fluctuating
density field as ρ(r, t ) = ∑N

i=1 δ[r − ri(t )]. With this field,
�W can be computed by assuming that the collisions are
concentrated directly in front of a tagged particle. Under that
assumption, �W can be written in terms of ρ(r, t ), �W ≈
−βv

∫
dt

∫
drdr′ρ(r, t )F (|r − r′|)ρ(r′, t )/2 , which is a con-

volution of two points of the density field with the interparticle
force. For simplicity we have assumed that F (0) = 0. Further
assuming that the force can be Fourier transformed, we find

�W = −βv

2

∫
dt

∫
dk |ρ̂(k, t )|2F̂ (k) , (9)

where ρ̂(k, t ) is the Fourier transformed isotropic density field
and F̂ (k) the Fourier transformed force.

In order to evaluate the statistics of �W , we require an
evolution equation for ρ̂(k, t ). From the equation of motion
for the position and orientation of each particle in the presence
of the single particle control force, standard techniques afford
an exact equation of motion for ρ(r, t ) [77]. Its solution is
complicated by its nonocality and coupling to a polarization
field arising from the dynamics of the particle’s orientation
(see Appendix E). Rather than deal with it directly, assuming
the system is macroscopically homogeneous on the largest
scales, we expect the density field to evolve diffusively. Thus,
in the limit that k → 0, the stochastic equation of motion for
ρ̂(k, t ) takes the form

∂ρ̂(k, t )

∂t
≈ −k2Dλρ̂(k, t ) +

√
2�λk2η̂ρ , (10)

where Dλ is the effective diffusion constant, �λ is the effective
mobility, and η̂ρ is a complex noise [67,74,78–80]. Assum-
ing that the polarization field relaxes quickly, and linearizing
around a homogeneous density, these parameters can be de-
rived explicitly for each active matter model.

Equation (10) has the form of an independent Ornstein-
Uhlenbeck process for each Fourier mode of the density [80].
The CGF for �W can be solved exactly within this approxi-
mate linearized dynamics. Defining �ψ = ψ − ψ f ,

�ψ (λ) ≈ 1

N

∑
k>0

k2Dλ

[
1 −

√
1 + βλvλF̂ (k)�λ

D2
λk2

]
, (11)

we get an approximate correction to the bound in Eq. (7)
due to interparticle correlations. This correction is valid for
all positive λ, but becomes unstable at a critical value λc � 0
reflecting the breakdown in the linearized evolution equation
for ρ̂(k, t ). For a finite system with largest wave vector k =
2π

√
ρ/N , the location of the instability is found by setting the

discriminant to zero, λc ≈ −4π2D2
0ρ/βvF̂ (0)�0N , where for

the short ranged forces considered, we can approximate the
force as F̂ (0) and we can neglect the λ dependence in vλ,Dλ,
and �λ. This instability signals the dynamical phase transition
that occurs at λc = 0− in the thermodynamic limit and whose
influence on the dynamics of active matter increases with v,
and with increasing proximity to MIPS, consistent with the
results in Fig. 3. In a phase separated state, �W is a large neg-
ative number which counteracts the free particle contribution
and reduces the entropy production.

The origin of phase separation can be understood by not-
ing that the optimal control potential which gives rise to
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rare entropy fluctuations is, for large interparticle separations
r/σ � 0 and in the limit λ approaches zero (see Appendix E),

V̂λ ≈ − βvλ

ND0

∑
k>0

|ρ̂(k, t )|2
2k2

F̂ (k) . (12)

The inverse Fourier transform will involve a convolution be-
tween the WCA force and 1/k2 which gives rise to a Bessel
function. Since the WCA potential quickly decays, the long
range contribution in real space is a logarithmic potential,

Vλ(r) ≈ −βλv

D0
ln r/2 , (13)

which is attractive for λ < 0 with a magnitude that depends
on v and the control force is uλ ≈ (βλv/D0)∇ ln r/2. For
negative enough λ or large enough v, this force will give rise
to phase separation. This optimal control force is similar to
other passive models near diffusive instabilities [80–82].

IV. DISCUSSION

The long-ranged effective force demonstrates how effec-
tive attractions are introduced by self-propulsion in order to
minimize the entropy production. This force is unique and
encodes the way in which self-propelled particles interact
provided the condition of obtaining a lower than average
value of the entropy production. As such, it provides a
sharp relationship between entropy production and emergent
collective behavior in active matter. Correlations between en-
tropy production and motility induced phase separation have
been observed previously at the level of the mean behavior
[1,83,84], however this work codifies that relationship on the
level of fluctuations.

For both MIPS and the dynamical transition we discuss,
phase separation is the result of a diffusive instability where
density accumulates due to unbalanced fluxes made possible
by the system being kept from thermal equilibrium. We have
shown such collective behavior results from the reduction of
entropy production and enhancement of density correlations.
Large entropy production, by contrast, arises through the sup-
pression of density correlations. Thus, our results show how
the structure of entropy production fluctuations are intimately
connected to long-ranged correlations in active matter. We
expect that deviations from the bound derived here can serve
as a guide to identify criticality and novel phases of active
matter generally.

The codes used to generate the data in this paper can be
found at Ref. [85].
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APPENDIX A: SIMULATION DETAILS

1. Model definitions and parameters

a. ABPs and RTPs

For both ABPs and RTPs the orientation vector has a
fixed magnitude, so in two dimensions it can be uniquely
parametrized by an angle θ . For the ith particle, bi =
{cos(θi )x̂i, sin(θi )ŷi}, where x̂i and ŷi are the unit vectors in
the x and y directions, respectively. For ABPs, the dynamics
of θi are Brownian,

θ̇i(t ) = ηθ
i (t ), (A1)

where ηθ
i is a Gaussian white noise, satisfying 〈ηθ

i (t )〉 = 0
and 〈ηθ

i (t )ηθ
j (t ′)〉 = 2Drδi jδ(t − t ′) with Dr the rotational dif-

fusion constant. We take Dr = 3Dt/σ
2 throughout.

The dynamics of θ for RTPs are piecewise constant over
waiting times, τ , satisfying a Poisson process [86,87]. The
waiting time distribution is given by an exponential distribu-
tion,

P(τ ) = γ e−γ τ (A2)

with constant reorientation rate γ . We take γ = Dt/σ
2. At

each τ , the particles reorient by drawing a new θ chosen
uniformly over the range [0, 2π ].

b. ADPs

Each ADP is composed of two particles that are tethered
together by a harmonic bond. The harmonic bond potential is
given by UH(r) = k(r − l )2/2, where k is the spring constant,
l is the rest length, and r is the displacement between the two
bonded particles. We take k = 100 ε/σ 2 and l = 1.5 σ . The
self-propulsion direction is along the bond vector. For the ith
ADP, composed of monomers 1 and 2, bi = r̂i,12, where r̂i,12

is the unit displacement vector between monomers 1 and 2.
The time evolution of the orientation vector is given by the
time evolution of the displacement vector between the two
composite particles as dictated by their individual equations
of motion [88,89].

c. AOUPs

For AOUPs, the self propulsion vector changes both its
magnitude and direction. Its equation of motion takes the form
of an Ornstein-Uhlenbeck process and given by

ḃi = −Drbi + ξi, (A3)

where ξi is a Gaussian random variable satisfying 〈ξi,α (t )〉 = 0
and 〈ξα

i (t )ξβ
j (t ′)〉 = Drδi jδα,βδ(t − t ′) for each α, β compo-

nent [9,48].

2. Bound and cloning calculation details

For all simulations we used N =10, 20, or 40 particles. A
two-dimensional square box of length L with periodic bounds
was used and the length chosen to give the desired density
through the equation L = √

N/ρ. The equations of motion are
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FIG. 4. The convergence of the estimate of the CGF for N = 40,
v = 120 for t = 500 �t for different numbers of walkers Nw .

discretized using a first order Euler method. Calculations of
the rate functions, I (s), require enhanced sampling techniques
in order to probe rare fluctuations. For this we use the cloning
algorithm [69]. Cloning results were run with 2.4 × 104–
1.5 × 107 walkers. The cloning parameters varied for the
models considered. For ABPs, RTPs, and ADPs, we used a
time step of δt = 10−3–10−5, depending on the v, a branching
time of tint = 50δt , and an observation time of t = 10tint . For
AOUPs, we used a timestep of δt = 10−4, a branching time of
tint = 10δt , and an observation time t = 30tint .

Each estimate for the CGF at a specific lambda is the
mean from three runs. They were checked for convergence in
walker number and time [76,90]. For the simulations of ABPs
in Fig. 3, we used cloning with guiding forces to accelerate
convergence of the estimate [60,70]. This was done by adding
the non-interacting control force uλ to the equations of motion
and using cloning with the weight �W [see Eq. (5)]. The full
CGF was then obtained by adding back the noninteracting
CGF, ψ f (λ).

In Fig. 4, we show the convergence in walkers (Nw) for
negative λ. The critical λ is close to −0.0015. In the limit
that the walkers go to infinity the hysteresis seen in the
dip around the critical λ will disappear. In Figs. 5, 6, 7 we
show the convergence as a function of walker number for
λ = −6.94 × 10−4, λ = −0.0021, and λ = −0.0028 which
are before, close to, and after the critical point. The CGF
estimate was easily converged for positive λ for 1.2 × 104

walkers which is consistent with [60].
To compute Ib(s), we require a numerical estimate of

〈�W 〉uλ
, which was computed for all systems with N =

40 particles for an observation time of t = 106δt . The ob-
servation time and particle number were increased until
convergence of the running average was obtained.

3. Gaussian fits for Figs. 2 and 3

In Fig. 2, the Gaussian fits for small fluctuations for
v = 10 and v = 120 is 〈s〉0 = v2(1 − 0.84ρ), 〈(δs)2〉 = 3v2,
and 〈s〉0 = v2(1 − 0.63ρ), and 〈(δs)2〉 = 12v2 with ρ = 0.1

FIG. 5. Convergence of the CGF estimate for v = 120, N = 40,
t = 500�t , λ = −6.94 × 10−4, which is right before the phase tran-
sition. In theory, the CGF estimate is converged at zero on the y axis.

which are represented by black dotted lines. There is not a
clear size dependence for the system sizes studied here and
we have found that all three system sizes considered have the
same best fit.

In Fig. 3, we fit the dense phase in a similar way. Al-
though the transition has a system size dependence, once
the system is within the phase separated state there is not
a clear system size dependence in the variance. The Gaus-
sian fit for the phase separated peak in Fig. 3(a) and 3(b)
is given by 〈s〉0 = v2(1 − 0.84ρ), 〈(δs)2〉 = 2v2 for v = 10
with ρ = 0.58, and 〈s〉0 = v2(1 − 0.84ρ), 〈(δs)2〉 = 2v2 for
v = 120 with ρ = 1.12. Note that the variance for both v’s
considered for the phase separated system is given by the
noninteracting CGF. The averages used in the Maxwell con-
struction and those in Fig. 3(c), and 3(d) are slightly different

FIG. 6. Convergence of the CGF estimate for v = 120, N = 40,
t = 500�t , λ = −0.0021, which is close to λc. In theory, the CGF
estimate is converged at zero on the y axis.
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FIG. 7. Convergence of the CGF estimate for v = 120, N = 40,
t = 500�t , λ = −0.0028, which is after the phase transition. In
theory, the CGF estimate is converged at zero on the y axis.

due to the shift in the mean in the thermodynamic limit given
by 〈s〉λc = 〈s〉0 + λc〈(δs)2〉0 but the slopes are identical.

APPENDIX B: GENERAL FORM FOR THE
ENTROPY PRODUCTION

In order to derive the entropy production for each model,
we assume that the self-propulsion is even under time reversal.
The difference between choosing the self-propulsion to be
even under time reversal is that there is a non-interacting term,
as shown in Ref. [65]. All of the collective phenomena are thus
going to be independent of the convention. The distinction
between choice of sign is described in more detail in Ref. [61].
We note that the convention used in this manuscript is consis-
tent with Refs. [59,60,62,63]. We also note that the form of the
active work is closely related to the swim pressure described
in the literature [91,92] and can be derived independently from
mechanical considerations.

We take the standard definition of the entropy production
based on the path probability and its time reversal,

�S = ln P[�]/P[�̃], (B1)

P[�] is the probability of observing a path denoted � =
(rN (t ), bN (t )), and �̃ = (r̃N (t ), b̃N (t )) is the time reserved
path. In the time reversed path, we change the signs of
functions with explicit time dependence, ˙̃ri(−t ) = −ṙi(t ) and
˙̃bi(−t ) = −ḃi(t ). In the subsequent sections, we write out
P[�] for ABPs and AOUPs and their corresponding entropy
production. The ADPs and RTPs can be derived analogously.
It is found that all models considered have the same form of
�S in the long time limit.

1. ABPs

The probability of observing a path for a system of ABPs
with conservative interactions in the Stratonovich convention

is

P[�] ∝ exp

[
−

N∑
i=1

∫ t

0
dt ′ (ṙi − v bi − μF i(rN ))2

4Dt

+ ∇ri · (μF i(rN ))

2
+ ḃ

2
i

4Dr

]
, (B2)

where the gradient term in the second line follows from the
Stratonovich convention. After performing the time reversal
operation and taking a ratio of path probabilities, the entropy
production then becomes

�S = 1

Dt

N∑
i=1

∫ t

0
dt ′ [v bi ◦ ṙi(t

′) + ṙi ◦ μF i
(
rN

)]
, (B3)

which is a sum of two terms. However, since we are using the
Stratonovich convention the chain rule is preserved and the
term

N∑
i=1

∫ t

0
dt ′ṙi ◦ F i

(
rN

) = U (rN (0)) − U (rN (t )) (B4)

does not grow with time, unlike the first term. In the long time
limit it will become negligible, and can be neglected in the
entropy production.

2. AOUPs

For AOUPS using the Stratonovich convention, the deriva-
tion of the form of the entropy production follows similarly as
for the other models. Specifically, the path probability is

P[�] ∝ exp

[
−

N∑
i=1

∫ t

0
dt ′ (ṙi − v bi − μF i(rN ))2

4Dt

+ ∇ri · (μF i(rN ))

2
+

(
ḃi + Drbi

)2

2Dr
− ∇bi · Drbi

2

]
,

(B5)

where the additional force on bi results in the last two terms.
After performing the time reversal operation, the entropy pro-
duction is

�S =
N∑

i=1

∫ t

0
dt ′

(
v bi ◦ ṙi

Dt
+ ṙi ◦ μF i(rN )

Dt
+ 2ḃi ◦ bi

)
,

(B6)

where the first two terms are analogous to the ABPs. Both the
second term and third term do not grow with time, and so in
the long time limit the entropy production reduces to

�S = v

Dt

N∑
i=1

∫ t

0
dt ′ bi ◦ ṙi , (B7)

which is equivalent to the form found for the ABPs.
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APPENDIX C: FREE PARTICLE CGFS AND OPTIMAL
CONTROL FORCES

The free particle CGF is computable from the solution of a
generalized eigenvalue equation of the form

Lλνλ = ψ f (λ)νλ , (C1)

where Lλ is the Lebowitz-Spohn, or tilted, operator and νλ

and ψ f (λ) are the maximum eigenvector eigenvalue pair. The
tilted operator is derivable from the time evolution of the
CGF and the relation to the spectrum of Lλ and the CGF
follows from the long time limit. Generically, for a current-
type variable [51,54] the optimal control force that realizes
rare entropy production fluctuation is given by

uλ = 2λvb + 2D · ∇ ln νλ , (C2)

where D is a matrix of diffusion constants in define in space
crossed with the self-propulsion vector dimension and ∇ =
{∇r,∇b}. The optimal control force is encoded in the maxi-
mum eigenvector associated with Lλ [51].

In order to fully solve the eigenspectrum it is neces-
sary to solve the eigenvalue problem for the adjoint tilted
operator [93]

L†
λqλ = ψ f (λ)qλ , (C3)

since in general Lλ is not Hermitian. The boundary condi-
tions of the eigenvectors must obey a normalization boundary
condition νλ(b)qλ(b) → 0 as b → ∞ [93]. The boundary con-
dition can equivalently be written as∫

db qλ(b)νλ(b) = 1, (C4)

and for convenience we impose that∫
db qλ(b) = 1. (C5)

1. ABPs

The tilted generator for the entropy production of an iso-
lated ABP is

Lλ = v b ·
[
∇r + λ

v b
Dt

]
(C6)

+ Dt

[
∇r + λ

v b
Dt

]
·
[
∇r + λ

v b
Dt

]
+ ∇2

bDr ,

which can be solved on a periodic domain by a constant
eigenvector, νλ = const. This is equivalent to assuming that
the stationary state is uniform and isotropic for all λ. The CGF
follows by noting b · b = 1 and is

ψ f (λ) = λ
v2

Dt
+ λ2 v2

Dt
, (C7)

and that the control force that realizes the rare dynamics
reduces to uλ = 2λv b. The corresponding equation of motion
is

ṙi = v(1 + 2λ) bi +
√

2Dtηi , (C8)

where we see explicitly that the control force acts to renormal-
ize the self-propulsion velocity.

2. AOUPs

The tilted generator for the entropy production of an iso-
lated AOUP is

Lλ = v b ·
[
∇r + λ

v b
Dt

]
+ Dt

[
∇r + λ

v b
Dt

]
·
[
∇r + λ

v b
Dt

]

+Dr

2
∇2

b − Drb · ∇b ,

(C9)

which contains an additional convective term in b due to the
constant restoring force. Assuming the system maintains a
uniform and isotropic state at all λ, such that the eigenvector
does not depend on r, we can simplify the tilted operator,

Lλ = λ
v2|b|2

Dt
+ λ2 v2|b|2

Dt
+ Dr

2
∇2

b − Drb · ∇b , (C10)

where b is the magnitude of the vector b. The domain of b is
from 0 to ∞, the eigenvector from Eq. (C1) is

νλ(b) = exp

( |b|2ψ f (λ)

2Dr

)
, (C11)

and its corresponding eigenvalue is

ψ f (λ) = Dr

(
1 −

√
1 − 2v2

DrDt
λ(1 + λ)

)
, (C12)

which can be verified by inserting νλ(b) back into Eq. (C1)
and noting that since it is in two dimensions it is split up into
the x and y dimensions with |b|2 = b · b = b2

x + b2
y and ∇2

b =
∇2

bx
+ ∇2

by
. The left eigenvector can also be solved to obtain

the normalization constant but it is not needed for the control
force calculations.

The optimal control force in the r and b directions, uλ =
{ur

λ, ub
λ} are

uλ = {2λv b, bψ f (λ)} , (C13)

which is the result for the control force for noninteracting
AOUPs. The biased equations of motion become

ṙi = v(1 + 2λ) bi +
√

2Dtηi (C14)

and

ḃi = −Drbi(1 − ψ f (λ)/Dr ) + √
Drξi , (C15)

where the former is identical for ABPs and the latter is specific
to AOUPs.

APPENDIX D: ENTROPY BOUNDS FROM GIRSANOV
TRANSFORMATION

The CGF for the entropy production can be rewritten as an
average over the biased ensemble by performing a change of
measure, or Girsanov transformation, from the original path
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ensemble with probability P[�],

ψ (λ) = 1

tN
ln

∫
D[�]P[�]eλ�S

= 1

tN
ln

∫
D[�]

P[�]

Puλ
[�]

Puλ
[�]eλ�S

= 1

tN
ln

〈
P[�]

Puλ
[�]

eλ�S

〉
uλ

, (D1)

where Puλ
[�] denotes a path ensemble with an additional force

uλ added to the original equations of motion, and 〈· · · 〉uλ

denote ensemble average with respect to that measure. Using
Jensen’s inequality, we find a general bound within an arbi-
trary control ensemble [94],

ψ (λ) � 1

tN

(
λ〈�S〉uλ

+
〈
ln

P[�]

Puλ
[�]

〉
uλ

)
, (D2)

which need not be tight. However, below we show how in the
systems studied by choosing uλ to be the optimal control force
for the free particle, we can arrive at the tight bound on the
entropy production.

1. ABPs

The relative actions with and without the single particle
control force for a system of interacting ABPs is

ln
P[�]

Puλ
[�]

=
N∑

i=1

∫ t

0
dt ′ v2λ(1 + λ)

Dt
− v

Dt
λbi ◦ ṙi

+βvλbi · F i
(
rN

)
, (D3)

which employs the identity b · b = 1. We recognize the first
term on the right hand side as ψ f (λ), the second term as
the negative of the entropy production, and the final term
as �W . Inserting this relative action into Eq. (D1), we note
that the entropy production terms cancel, and we can pull the
constants out of the average. The bound can be shown to work
analogously for the ADP and RTP models since the added
control force does not change the statistics of the orientation,
b, and only changes the positional degrees of freedom.

2. AOUPs

The relative actions with and without the single particle
control force for a system of interacting AOUPs is

ln
P[�]

Puλ
[�]

=
∫ t

0
dt ′

(
v2λ(1 + λ)

Dt
− ψ f (1 − ψ f /2Dr )

)
b2

+ψ f (λ) − v

Dt
λbi ◦ ṙi + vβλbi · F i

(
rN

)
, (D4)

which is more complicated than for the ABPs due to the
fluctuating magnitude of the self-propulsion vector. We still
can identify the same structure as before, with the free particle
CGF, negative of the entropy production, and �W , however
there is an additional first term in the parenthesis. Inserting
the definition of ψ f from Eq. (C12) we find that the term
proportional to v2b2 is identically 0. This leaves us with the
bound for AOUPs.

APPENDIX E: ENTROPY PRODUCTION FROM
COARSE-GRAINED DENSITY FIELD

Here, we elaborate on our coarse grained theory of the
interacting term. Assuming that the important contributions
to the interparticle entropy production come from forces that
directly oppose self-propulsion, we approximate bi · F(ri j ) ≈
−F (ri j ), where F(ri j ) is the contribution of the ith particle’s
force due to particle j and ri j is the displacement vector
between particles i and j with magnitude ri j . As presented,
under this approximation the fluctuations of �W depend only
on the time evolution of the density field. Below we first
derive an approximate equation of motion for the density, in
the limit of small k and small fluctuations from its mean.
Then we describe the approximate calculation of the cumulant
generating function and control force.

1. Equation of motion for the density

We are interested in the density fluctuations with the added
control force which changes the self-propulsion speed pro-
portional to λ as vλ = v(1 + 2λ). To arrive at an effective
equation of motion for the density we first define the instanta-
neous density field as

ρ(r, t ) =
N∑

i=1

δ[r − ri(t )] , (E1)

and corresponding polarization field as

P(r, t ) =
N∑

i=1

δ[r − ri(t )]bi(t ) , (E2)

where δ is the Dirac delta function. In principle, higher order
multipoles in the orientation field are needed to completely
describe the dynamics, however we neglect quadrupole and
higher fields. For the homogeneous states considered, this has
been shown to be a good approximation [95,96]. Following
the standard procedures [77,86] a set of coupled stochastic
equation of motion for both fields. For the density field,

∂ρ(r, t )

∂t
= −∇r

[
μρ(r, t )

∫
dr′F(r − r′)ρ(r′, t ) + vλP(r, t )

]

+ Dt∇2
r ρ(r, t ) + ∇r

√
2�ληρ (r, t ), (E3)

where �λ = Dtρ(r, t ) is the mobility and the noise obeys the
statistics 〈ηρ(r, t )〉 = 0 and 〈ηα

ρ (r, t )ηβ
ρ (r′, t ′)〉 = δα,βδ(t −

t ′)δ(r − r′). For the polarization field,

∂P(r, t )

∂t
= −∇r

[
μP(r, t )

∫
dr′F (r − r′)ρ(r′, t )

]

−∇r
vλρ(r, t )

2
+ Dt∇2

r P(r, t )

− DrP(r, t ) + ∇r

√
2�PηP(r, t ), (E4)

where ηP(r, t ) has the same noise statistics as ηρ and �P =
Dt P(r, t ).

We assume there is a separation of time scales between the
density field, which we assume to be slow, and the polarization
field, which we assume to relax quickly. Further we assume
that on the scale of density fluctuations, the polarization is
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constant and homogeneous [67]. These so-called adiabatic
assumptions are standard in the treatment of instabilities in
the ABP system. Under these assumptions, the polarization is
stationary and can be averaged separately from the density and
we can neglect its gradient terms. Rearranging the remaining
terms, we have an explicit relation between the polarization
and density fields,

P(r, t ) = − vλ

2Dr
∇rρ(r, t ) , (E5)

which effectively separates the evolution of the two fields.
Inserting this into Eq. (E3) we arrive at a closed equation of
motion for the density,

∂ρ(r, t )

∂t
= −∇r

[
μρ(r, t )

∫
dr′F(r − r′)ρ(r′, t )

]

+Dλ∇2
r ρ(r, t ) + ∇r

√
2�ληρ (r, t ) (E6)

with Dλ = Dt + v2
λ/2Dr as the effective diffusion constant.

While the equation is closed, it is still nonlinear due to the
fluctuating convective term from the interparticle interactions.
While more sophisticated expansions exist, for the low den-
sities we consider, we can linearize the evolution equation by
simply dropping the second order term in the density,

∂ρ(r, t )

∂t
= Dλ∇2

r ρ(r, t ) + ∇r

√
2�ληρ (r, t ) , (E7)

which results in a standard fluctuating diffusion equation.
Corrections due to interactions can be included phenomeno-
logically by making Dλ and �λ depend on the mean density.

Introducing the Fourier transforms, for the density

ρ̂(k, t ) =
∫

dre−ik·rρ(r, t ) (E8)

and the noise

η̂(k, t ) =
∫

dre−ik·rη(r, t ) , (E9)

we can arrive at the equation of motion in Eq. (10).

2. CGF and optimal control force

The equation of motion for the Fourier transformed
density takes the form of a set of uncoupled, complex
Ornstein-Uhlenbeck processes for each wave vector. The large
deviations of such a system for observables like �W have
been considered in detail in Ref. [80]. The tilted operator for
which the CGF of �W is the largest eigenvalue and has the
form

Lλ =
∑
k>0

−k2Dλρ̂k∇ρ̂k + k2�λ∇2
ρ̂k

− λ
βvλ

2
F̂ (k)|ρ̂k|2 ,

(E10)
which has to be solved for both the real and imaginary parts of
ρ̂k . This can be done following the method of Ref. [80]. The
resulting CGF is

�ψ (λ) = 1

N

∑
k>0

�ψk (λ) , (E11)

where for each k,

�ψk (λ) = k2Dλ

[
1 −

√
1 + βλvλF̂ (k)�λ

D2
λk2

]
, (E12)

and the corresponding eigenvector

νλ =
∏
k>0

exp

[ |ρ(k, t )|2
2�λk2

�ψk (λ)

]
, (E13)

factorizes into a product of independent modes, each quadratic
in the density. For a density type variable, the optimal control
force is a gradient force, and so can be written as a potential. It
is computable following Refs. [80,97], which in the limit that
λ approaches zero we recover Eq. (12).
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