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Self-diffusion in bidisperse systems of magnetic nanoparticles
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In the present paper, we study the self-diffusion of aggregating magnetic particles in bidisperse ferrofluids. We
employ density functional theory (DFT) and coarse-grained molecular dynamics (MD) simulations to investigate
the impact of granulometric composition of the system on the cluster self-diffusion. We find that the presence
of small particles leads to the overall increase of the self-diffusion rate of clusters due the change in cluster size
and composition.
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I. INTRODUCTION

The terms magnetic fluids, ferrofluids, or magnetic colloids
are used to address the systems that consist of single-domain
magnetic nanoparticles suspended in a carrier liquid [1–3]. In
such systems, magnetic nanoparticles can be well approxi-
mated by point dipoles, whose directions are determined by
the particles’ internal anisotropy and by the external mag-
netic field direction, if the latter is applied. In the past three
decades, thanks to their ability to interact with an external
magnetic field and keep the liquid state at the same time,
ferrofluids have found multiple applications in technology [4]
and medicine, such as drug targeting, magnetic resonance
imaging, and magnetic hyperthermia [5–11]. Important parts
of medical applications rely on knowledge of the diffusive
properties of magnetic particles in liquid carriers in the ab-
sence of an applied field. Thus, the main aim of this paper is
to study the impact of interparticle interactions and particle
polydispersity on the self-diffusion coefficient in a system of
magnetic dipolar particles. In other words, we will study the
equilibrium condition in which the average particle’s mobility
depends on the particle being a member of various ferroparti-
cle aggregates and can be considered constant in time due to
the steady cluster size distribution. In such systems, in contrast
to those described, for example, by Licinio et al. [12], the
average cluster size is constant in time.

The self-diffusion coefficient D(t ) is a proportionality
factor between the mean squared displacement 〈x2(t )〉 and
time t ,

〈x2(t )〉 = 1

dN

N∑
i=1

d∑
j=1

[
xi

j (t )
]2 = 2D(t )t, (1)
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where xi
j (t ) is the jth coordinate of the d-dimensional space

of the ith particle in a time moment t , N is the total number
of particles in the system, and the operation 〈·〉 means the
averaging over all coordinates of all particles in the system.
In this work, we investigate self-diffusion of permanently
magnetized ferromagnetic nanoparticles in bulk, d = 3, and
in quasi-two-dimensional (quasi-2D) layers, where the trans-
lations are in one plane but the rotations are not constrained,
d = 2.

There are several works where the diffusive behavior of
magnetic nanoparticles was investigated [13–23]. The main
differences of this paper from the previous studies is that here
we propose a method to analytically calculate D(t ), taking
into account self-assembly and polydispersity of magnetic
particles as well as the spatial constraints imposed on the fer-
rofluid sample in one model. This analytical model is verified
using coarse-grained hydrodynamics-free MD simulations.
The choice to ignore the hydrodynamics in the simulations
was dictated by the necessity to first thoroughly understand
the effects of interparticle magnetic interactions and sys-
tem dimension on the self-diffusion in a thermodynamic
equilibrium.

The paper is organized as follows. First, in Sec. II, the
analytical approach based on the DFT is explained; next, in
Sec. III, the simulations performed to verify the theoretical
models are described. The results are provided in Sec. IV and
the brief summary and outlook are in Sec. V.

II. THEORETICAL MODEL

Real magnetic fluids are inevitably polydisperse and might
have mixed relaxation mechanisms: Néel or Brownian [1].
When developing a theoretical model of the self-diffusion,
however, it is neither possible to accurately allow for a broad
particle-size distribution nor possible to describe various mag-
netization mechanisms. In this work, we consider a bidisperse
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approximation to polydispersity. It means that the model sys-
tem contains particles of two distinct sizes. The choice of a
bidisperse system is justified by the previous works [24–27],
showing that the impact of polydispersity can be already
seen in such a simplified approach [28]. As for the particle
magnetism, we focus on ferromagnetic single domain par-
ticle whose behavior can be successfully modeled by point
dipoles [25].

Along with particle polydispersity, the sample geometry
can also affect structural properties of magnetic fluids. In
order to include the influence of the sample dimension in
the model, we investigate a model bidisperse magnetic fluid
in two different geometries. The first case is a fully three-
dimensional system, while in the second case, nanoparticle
centers are constrained to move in one plane, but the rotations
are free. The second geometry is usually addressed as a quasi-
two-dimensional layer [29–41].

Below, for simplicity, we will discriminate between small
and large particles when describing the theoretical approach.
The main interaction between magnetic nanoparticles is the
non-central and long-range magnetic dipole-dipole one [42]:

Udd (i, j) = μ0

4π

( 〈 �mi, �mj〉
|�ri j |3 − 3〈 �mi, �ri j〉〈 �mj, �ri j〉

|�ri j |5
)

, (2)

where �mi and �mj are the magnetic moments of ith and jth
magnetic particles, respectively, �ri j is the vector connecting
the centers of ith and jth particles, and μ0 = 4π × 10−7 H/m
is the magnetic permeability of vacuum.

We can characterize this interaction using the parameter
λi j , which is the ratio of the magnetic energy of two particles,
i and j, in close contact with dipoles aligned head to tail to the
thermal one, kBT , with kB denoting the Boltzmann constant:

λi j = μ0| �mi|| �mj |
4πkBT σ 3

i j

, i, j ∈ {s, l},

σi j = σi + σ j

2
, i, j ∈ {s, l},

where indices s and l stand for small and large magnetic
particles, respectively, and σi j is the distance between two
touching particles with diameters σi and σ j .

A short-range repulsion between particles is described by
the Weeks-Chandler-Andersen (WCA) potential [43], which
also well known as the truncated and shifted version of the
Lennard-Jones potential [44]:

UWCA(i, j)

=
{

4ε
[( σi j

|�ri j |
)12 − ( σi j

|�ri j |
)6] + ε, |�ri j | � rc

i j,

0, |�ri j | > rc
i j,

(3)

where ε is the potential well depth of the Lennard-Jones
interaction. WCA potential is purely repulsive and the cutoff
rc

i j = 2
1
6 σi j corresponds to a distance where it goes to zero.

If magnetic forces are strong enough in comparison to
thermal fluctuations, magnetic particles form clusters, whose
main topology is a chain in bulk, whereas in quasi-2D layers
along with chains, rings can be formed [30–32]. If the tem-
perature decreases even more, rings, branched structures, and
percolating networks are observed [45–48], but this regime
goes beyond the scope of this study.

A. Three-dimensional bidisperse ferrocolloids

The system is considered to be in a thermodynamic equi-
librium; therefore, the free energy density functional has been
chosen as the basis for the proposed theoretical approach [49]
that is equivalent to the Wertheim’s theory actively used to
describe the equilibrium self-assembly in patchy colloids.
See Ref. [50] and references therein. Extending the work of
Ref. [49], where the free energy was calculated in the simplest
monodisperse approach in the limit of strong aggregation, the
expression for the free energy of a bidisperse ferrocolloid in
bulk can be written as [25]

F3D,bi = kBT
∞∑

n+m=1

IV∑
i=I

K (i, n, m)g(i, n, m)

×
[

ln
g(i, n, m)v(i, n, m)

e
− ln Q(i, n, m)

]
,

v(i, n, m) = v−αi
s v

m−βi

sl v
n−γi

l ,

vi j = π

6
σ 3

i j, i, j ∈ {s, l}, vss = vs, vll = vl , (4)

where g(i, n, m) is a number concentration of chains from
the ith topological class composed of n large and m small
particles; v(i, n, m) is a normalizing volume for a bidisperse
three-dimensional ferrofluid; αi, βi, and γi are the numbers
of small-small, small-large, and large-large particle contacts
in chains, respectively; K (i, n, m) is a combinatorial factor
equal to a number of entropically distinguishable chains in the
ith topological class with n large and m small particles; and
Q(i, n, m) is a partition function for chains of ith topological
class with n large and m small particles [25]. Notice that
the first part of the sum is the entropy of an ideal gas of
various clusters, whereas the second part contains energetic
contributions.

The functional (4) is minimized with respect to g(i, n, m)
using the Lagrange multiplier method under mass balance
conditions, which mean a constant amount of particles in the
system:

ϕs

vs
=

∞∑
n+m=1

IV∑
i=I

K (i, n, m)g(i, n, m)m, (5)

ϕl

vl
=

∞∑
n+m=1

IV∑
i=I

K (i, n, m)g(i, n, m)n, (6)

where ϕs and ϕl are volume fractions of small and large
particles, respectively.

After the minimization, all equilibrium concentrations
g(i, n, m) for chains are obtained.

The microstructure of a bidisperse system in bulk was
shown to mainly consist of four topological chain classes:
chains consisting of large particles only (class I), chains of
large particles with a small one at the end of chains (class
II), chains of large particles with two small ones at the ends
of chains (class III), and chains of small particles (class IV).
Earlier, we ignored the possibility of small particles to form
chains, as such clusters were insignificant for the magneti-
zation description works [25,51]; here, instead, allowing for
them is essential to calculate accurately the self-diffusion (for
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FIG. 1. The microstructure of bidisperse thin films of magnetic
fluids.

details, see Sec. IV). The topology of the clusters in bulk
corresponds to structures I, II, III, and VII in Fig. 1.

In order to calculate the self-diffusion coefficient in the sys-
tem, we need to calculate the self-diffusion for each structural
element individually. Considering the fact that we are focused
on the parameter regime where formed chains are short, we
approximate them by ellipsoids with a major semiaxis a and
two minor ones b. We can write the average mobility coeffi-
cient for ellipsoids:〈

Mtr
3D(k)

〉 =
[

Gtr
a (k) + 2Gtr

b (k)

3

]−1

, (7)

Gtr
a (k) = 8

3

[
2k

1 − k2
+ 2k2 − 1

(k2 − 1)
3
2

ln
k + √

k2 − 1

k − √
k2 − 1

]−1

, (8)

Gtr
b (k) = 8

3

[
k

k2 − 1
+ 2k2 − 3

(k2 − 1)
3
2

ln(k +
√

k2 − 1)

]−1

, (9)

where k = a
b is the aspect ratio of an ellipsoid, Gtr

a (k) and
Gtr

b (k) are geometric factors which characterize the amount
of a deviation of the ellipsoid from a sphere. The factors
Gtr

a (k) and Gtr
b (k) were obtained by Perrin [52] and used to

calculate the diffusion coefficients for ellipsoids in several
works for both three-dimensional and quasi-two-dimensional
geometries [53–57].

With equilibrium concentrations g(i, n, m) and the mo-
bility coefficients 〈Mtr

3D(k)〉 (7) for ellipsoids approximating
the chains at hand, we can calculate the translational self-
diffusion coefficient in a bidisperse ferrofluid in bulk as
follows:

Dtr
3D,bi =

(ϕs

vs
+ ϕl

vl

)−1

×
∞∑

n+m=1

[
σl

σs

III∑
i=I

K (i, n, m)g(i, n, m)
〈
Mtr

3D(ki(n, m))
〉

+g(IV, 0, m)

]
. (10)

Note that the coefficient Dtr
3D,bi (10) is normalized by the

self-diffusion coefficient of a small magnetic particle.

B. Quasi-two-dimensional bidisperse ferrofluids

Quasi-two-dimensional geometry assumes that particle
centers move in one plane and magnetic moments rotate
freely. There are some differences in free energy descrip-
tion between three- and quasi-two-dimensional geometries.
The main one is that entropic changes due to geometrical
constraints lead to much more versatile cluster topologies
in comparison to bulk. Four main classes considered above
for bulk are not enough to obtain the right results in thin
films [58,59]. Not only are new chain classes to be taken into
account, but also the rings formed by large particles are to be
considered [29–32]. Thus, the accurate description of clusters
formed in bidisperse monolayers requires 19 chain classes and
rings of large particles as shown in Fig. 1 [58].

In order to properly allow for the entropic changes stem-
ming from quasi-2D geometry, one needs to modify the free
energy functional (4). This can be done by adding the ex-
cluded area Sexcl,bi interactions [29,58]. Excluded area around
chains and rings is the area where the centers of other particles
cannot be. The details of the excluded area calculation can
be found in the work [58]. In order to write the free energy
density functional for a bidisperse quasi-two-dimensional
magnetic fluid, we introduce the function, Sav,bi, that shows
the area available for particle centers,

Sav,bi = S − Sexcl,bi = S · S̃av,bi,

with S denoting the total area of a monolayer.
The free energy density functional for a quasi-2D layer of

a bidisperse ferrocolloid can be written as [58]

Fq2D,bi = kBT
∞∑

n+m=1

XIX∑
i=1

K (i, n, m)g(i, n, m)

×
[

ln
g(i, n, m)schain(i, n, m)

eS̃av,bi
− ln Q(i, n, m)

]

+kBT
∞∑

n=5

f (n)

[
ln

f (n)sring

eS̃av,bi
− ln W (n)

]
,

schain(i, n, m) = s−αi
s sm−βi

sl sn−γi

l , sring = sl ,

si j = π

4
σ 2

i j, i, j ∈ {s, l}, sss = ss, sll = sl ,

(11)

where f (n) is a number concentration for rings consisting of
n large particles (n � 5), W (n) is a partition function for rings
of n large particles, and schain(i, n, m) and sring are normalizing
areas for terms corresponding to chains and rings, respec-
tively. Here, the entropic part of the functional contains the
first-order correction for intercluster interactions through the
excluded area factors. Magnetic intercluster interactions are
still not considered. This sets the limitations on the particle
area fraction and the magnetic interaction strength as will be
clarified below when comparing analytical predictions to the
results of the simulations.
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The functional (11) is minimized similarly to the bulk case
with respect to chain and ring concentrations by the Lagrange
multiplier method under mass balance conditions which can
be written in the thin film as follows:

ρs

ss
=

∞∑
n+m=1

XIX∑
i=1

K (i, n, m)g(i, n, m)m, (12)

ρl

sl
=

∞∑
n+m=1

XIX∑
i=1

K (i, n, m)g(i, n, m)n +
∞∑

n=5

f (n)n, (13)

where ρs and ρl are area fractions of small and large particles,
respectively. After the minimization of the functional (11),
we know equilibrium concentrations g(i, n, m) for chains and
f (n) for rings.

In order to approximate chains in the monolayers, we use
ellipsoids just as we did in a three-dimensional case (see
Sec. II A). The average mobility for chains in quasi-2D sys-
tems has a slightly different form in contrast to (7) due to the
geometrical constraints:〈

Mtr
q2D,ch(k)

〉 =
(

Gtr
a (k) + Gtr

b (k)

2

)−1

. (14)

For an approximation of a ring, we have chosen a torus
with the major radius c and minor one h:

c = 2σl√
2
(
1 − cos 2π

n

) , h = σl

2
, ξ = h

c
,

where ξ is the ratio of a major radius to minor one.
The geometric factor for a torus, analogous to those for

ellipsoids given by Eqs. (8) and (9), has the following form:

Ftr
a (ξ ) = 4

3
b

Z (ξ ) − 3(
Z (ξ ) − 1

2

)
(Z (ξ ) − 2) − 2

, Z (ξ ) = ln
8

ξ
.

Here, the translational motion can only happen in two
directions along the major radius. The factor Ftr

a (ξ ) was ob-
tained by Johnson and Wu [60] and was used to calculate the
diffusion coefficients for a torus by Thaokar [61].

The average mobility for the torus has the following form:〈
Mtr

q2D,r (ξ )
〉 = Ftr

a (ξ ). (15)

Using obtained equilibrium concentrations g(i, n, m) for
chains and f (n) for rings and the average mobility coefficients
〈Mtr

q2D,ch(k)〉 and 〈Mtr
q2D,r (ξ )〉, we can write the expression for

self-diffusion coefficient in quasi-2D bidisperse ferrofluids:

Dtr
q2D,bi =

(ρs

ss
+ ρl

sl

)−1
( ∞∑

n+m=1

XIX∑
i=1

[
K (i, n, m)g(i, n, m)

×〈
Mtr

q2D,ch(ki(n, m))
〉
sl

]
+

∞∑
n=5

f (n)
〈
Mtr

q2D,r (ξ (n))
〉
sl

)
. (16)

III. COMPUTER SIMULATIONS

In order to verify the developed theoretical approach,
we performed coarse-grained molecular dynamics simula-
tions [62,63] using the software package ESPRESSO [64,65].

All simulations are done with NVT ensemble with N be-
ing the total number of magnetic particles in the system, V
being the volume of the simulation box, and T denoting the
constant temperature. Molecular dynamics is based on finding
time-dependent (t-dependent) solution of Langevin equations
of motion in periodic boundary conditions [63]:

Mi
d�ν i

dt
= �Fi − T �ν i + 2�ξT

i , (17)

Ii
d �ωi

dt
= �τ i − R �ωi + 2�ξR

i , (18)

where for the ith particle Mi denotes the mass tensor, �ν i is the
translational velocity, �Fi is the force acting on it, T stands for

the translational friction coefficient, �ξT
i is a stochastic force,

Ii is particle inertia tensor, �ωi is the rotational velocity, �τ i is
a torque acting on the particle, R is its rotational friction

coefficient, and �ξR
i is a stochastic torque. Both �ξT

i and �ξR
i

are modeling the random kicks of the solvent molecules in
order to avoid simulating the carrier liquid explicitly. Note that
hydrodynamic interactions are not considered here, as we are
mainly interested in the qualitative impact of dipolar forces,
polydispersity, and geometrical constraints.

Thus, along with systems of dipolar magnetic particles,
we also modeled a system consisting of soft spheres (with-
out dipoles). Moreover, in order to reduce the dimension of
the parameter space, we fix the total volume (area) fraction
of particles, ϕ = ϕs + ϕl = (Nsvs + Nlvl )/V (ρ = ρs + ρl =
(Nsss + Nl sl )/S), and we vary the ratio between volume (area)
fractions of small, ϕs(ρs), and large, ϕl (ρl ), particles. Simulat-
ing bidisperse systems requires us to have a sufficient amount
of particles in each fraction, Ns and Nl . We set that the minimal
number of particles of each fraction should not be less than
100 for any volume ϕ and area ρ fractions of interest. Also,
it should be noted that we consider 512 magnetic particles
as minimum for each system (for monodisperse systems N =
Ns = Nl = 512).

Long-range magnetic dipole-dipole interaction (2) between
all the particles in the dipolar systems are calculated using
dipolar P3M (dP3M) algorithm [66]. In the case of quasi-2D
geometry, for speeding up the calculations, full 3D periodicity
is assigned to the system, but the interactions in the direction
perpendicular to the layer surface are removed with the help
of dipolar layer correction method [67].

All the parameters in the simulations are dimensionless.
So, all the distances r∗ in the computer simulations are mea-
sured in units of small particle diameter σs = 1, a magnetic
moment square (m∗

i )2 is measured in units of the ratio of a well
depth of the potential (3) to the particle diameter cube ε/σ 3

i .
Units of the ratio of the potential well depth to the Boltzmann
constant ε/kB is used to measure the temperature T ∗ and time
t∗ is measured in units of square root of the ratio of a particle
mass Mpart

i and particle diameter square to the potential well

depth
√

Mpart
i σ 2

i /ε:

r∗ = r

σs
, (m∗

i )2 = m2

ε/σ 3
i

,

T ∗ = kBT

ε
, t∗ = t

√
ε

Mpart
i σ 2

i

.
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FIG. 2. The mean squared displacement 〈x2(t )〉 vs simulation
dimensionless time t in a log-log scale. Red curve is the mean
squared displacement obtained in simulations for a monodisperse
bulk system with particle volume fraction 5% and λ = 3. Blue curve
shows the ballistic part of the curve [〈x2(t )〉 ∝ t2]. Green line allows
to us see where the diffusive regime is reached [〈x2(t )〉 ∝ t]. Black
and green vertical dashed lines correspond to time moments t = 50
and t = 200, respectively.

All the computer simulations are performed for the following
values of the parameters: T ∗ = 1, Mpart

i = 1, Ii = 1, T = 1,
and R = 3/4. The time step was chosen to be 5 × 10−3.

We have performed 2 × 105 integrations to reach the ther-
modynamical equilibrium of the system. The statistical data
for further calculations is obtained by the following 2.8 ×
106 integrations. Using the statistical data and the algorithm
correlat ion [68] in ESPRESSO we calculate the mean squared
displacements of all the coordinates of all the particles in
different moments of time. For each time moment, we find
the value of the mean squared displacement, 〈x2(t )〉, given by
the expression (1). After that, we can obtain the self-diffusion
coefficient as a function of time.

In Fig. 2, we show 〈x2(t )〉 as a function of dimensionless
simulation time in a log-log scale for a monodisperse bulk
system with particle volume fraction 5% and λ = 3. As one
can see, the initial part of the red curve corresponds to the bal-
listic regime and the mean squared displacement is quadratic
with t . The green line shows when the diffusive regime is es-
tablished an the mean square displacement becomes linear. In
molecular dynamics simulations, we obtain the mean squared
displacement curve for dimensionless time t ∈ [0, 200] and
found that the segment t ∈ [50, 200] can be used to calculate
the self-diffusion coefficient for all systems. In Fig. 2, this part
of the red curve is located between two vertical lines t = 50
(black dashed one) and t = 200 (green dashed one).

In order to obtain the coefficient like (10) or (16), we
perform simulations for both dipolar and nondipolar systems
and calculate

DCS(ρ, λ) = DCS
dip(ρ, λ)

DCS
0 (ρ)

, (19)

where DCS
dip(ρ, λ) is the self-diffusion coefficient obtained for

systems with dipolar interactions and DCS
0 (ρ) for those with-

out. Considering such a ratio allows us to clearly understand
the contribution of dipolar forces to the self-diffusion.

TABLE I. Types of magnetic particles to study different bidis-
perse systems.

Magnetic dipole-dipole interaction
Particle type parameter (λll or λss)

Large A 3.5
particles B 4
Small C 1
particles D 1.5

E 2

IV. RESULTS AND DISCUSSION

We consider two types of large and three types of small
magnetic particles. Combining each type of large particles
with each type of small ones, we obtain six different bidis-
perse systems. Particle parameters are provided in Table I.

(a)

(b)

FIG. 3. Self-diffusion coefficient as a function of a small particle
volume fraction for ferrofluids in a bulk. Lines are the theoretical
results of Eq. (10); symbols are the computer simulation data. Solid
lines and × symbols correspond to systems with large particles of
type A, while dotted lines and + symbols correspond to systems with
large particles B. Red color is chosen for systems with small particles
of type C, blue for systems with small particles D, and green for
systems with small particles E.
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(a)

(b)

FIG. 4. The dependence of an average chain length on a small
particle volume fraction for three-dimensional obtained analytically.
Solid lines correspond to systems with large particles of type A, and
dotted lines correspond to systems with large particles B. Red color
is chosen for systems with small particles of type C, blue for systems
with small particles D, and green for systems with small particles E.

A. Bulk systems

In bulk, we study bidisperse ferrofluids with the total vol-
ume fraction ϕ = 0.04, and thus starting from a large particle
monodisperse system we come to a small particle monodis-
perse system through a series of binary mixtures with different
granulometric compositions.

In Fig. 3, we plot the dependence of the self-diffusion
coefficient on a small particle volume fraction for different
three-dimensional bidisperse ferrofluids. The self-diffusion
coefficient is growing with an increasing small particle vol-
ume fraction. This behavior is caused by the chain shortening
illustrated in Fig. 4, where the average chain length Lav

ch, 3D,

Lav
ch, 3D =

∑∞
n+m=1

∑IV
i=1(n + m)K (i, n, m)g(i, n, m)∑∞

n+m=1

∑IV
i=1 K (i, n, m)g(i, n, m)

, (20)

decreases with growing ϕs. This behavior is usually addressed
to as a “poisoning effect” [25]. Shorter chains correlate with
faster diffusion.

Figure 3 exhibits good agreement between theory and sim-
ulations, especially for the systems with small particles of type
E, as the DFT approach described in Sec. II A is known to

(a)

(b)

FIG. 5. The self-diffusion coefficient as a function of a small
particle volume fraction for three-dimensional magnetic fluids. Same
as Fig. 3, but here the lines are the theoretical results obtained
from Eq. (10), in which small particles are forced to remain single.
Symbols are the computer simulation data. Solid lines and × symbols
correspond to systems with large particles of type A, and dotted lines
and + symbols correspond to systems with large particles B. Red
color is chosen for systems with small particles of type C, blue for
systems with small particles D, and green for systems with small
particles E.

overestimate slightly the probability of two weakly interact-
ing particles (like those of types C and D) to form clusters.
However, it turns out to be crucial to allow for the possibility
of small particles to cluster with each other. The proof can
be found in Fig. 5. Here, we plot analytically calculated self-
diffusion coefficients for bidisperse systems, restricting small
particles to remain nonaggregated. The discrepancy between
theoretical results and computer simulation data is clearly
large in this case and it grows with ϕs. In fact, more small
particles are in the system mean a higher probability of finding
small clusters of them that would lead to an overall decrease
of the self-diffusion in comparison to small particle ideal gas.
In other words, self-diffusion turns out to be very sensitive to
even slight changes in granulometry and already a low fraction
of small particles that aggregate can manifest itself clearly
when studying this quantity.

It is worth noting here that in monodisperse bulk systems
of magnetic nanoparticles, the self-diffusion coefficient actu-
ally monotonically decreases with increasing particle volume
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(a)

(b)

FIG. 6. The dependence of the self-diffusion coefficient on a
small particle area fraction for quasi-2D magnetic fluids. Lines are
the theoretical results, and symbols are the computer simulation data.
Solid lines and × symbols correspond to systems with large particles
of type A, and dotted lines and + symbols correspond to systems
with large particles B. Red color is chosen for the systems with small
particles of type C, blue for the systems with small particles of type
D, and green one for the systems with small particles E.

fraction due to the strengthening of interparticle correlations
and enhanced cluster formation [69]. So, if we consider two
systems with the same volume fraction of magnetic material,
but one containing few large particles and another containing
both a greater number of particles, including both large and
small particles, we can predict that the self-diffusion in the
latter will be higher than in its monodisperse counterpart.

B. Quasi-2D layers

The next step is to investigate whether or not the transition
from three-dimensional geometry to a monolayer leads to
qualitative changes in self-diffusion behavior of bidisperse
ferrofluids. Like in a three-dimensional case described above,
in quasi-2D, we study the systems at constant area fraction
ρ = ρs + ρl = 0.04.

Similarly to bulk systems, we can define the average chain
length for a quasi-2D system:

Lav
ch, q2D =

∑∞
n+m=1

∑XIX
i=1 (n + m)K (i, n, m)g(i, n, m)∑∞

n+m=1

∑XIX
i=1 K (i, n, m)g(i, n, m)

. (21)

(a)

(b)

FIG. 7. Average chain and ring lengths as functions of small
particle area fraction for quasi-two-dimensional magnetic fluids with
large magnetic particles of type A. Solid lines are chosen for average
chain lengths, and dotted lines correspond to average ring lengths.
Red color is chosen for the system AC, blue for the system AD, and
green for the system AE.

The comparison between average chain lengths from the
mathematical model and computer simulations can be found
in Ref. [58]. Additionally, the average ring length can be
calculated as

Lav
r, q2D =

∑∞
n=5 n f (n)∑∞
n=5 f (n)

. (22)

In Fig. 6, the self-diffusion coefficients for various bidis-
perse systems are plotted. Solid lines are the analytical results
[Eq. (11)], and symbols represent the data obtained via molec-
ular dynamics. It can be seen that qualitatively the picture does
not change: The self-diffusion is growing with increasing ρs.
Even the relative decrease of the chain length in quasi-2D
systems is very similar to that in bulk, as seen when com-
paring the results in Figs. 7(a), 4(a), 8(a), and 4(b). However,
quantitatively, the difference between the two geometries is
rather clear: Clusters in bulk are on average larger. As an
outcome, the relative growth of the self-diffusion on growing
fraction of small particles in the system is more pronounced
in a monolayer. Finally, the ring size shown in Figs. 7(b)
and 8(b) is also quickly decreasing with ρs, and the rings
actually disappear. So, once small particles are added to the
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(a)

(b)

FIG. 8. Average chain and ring lengths as functions of small par-
ticle area fraction for quasi-two-dimensional magnetic fluids. Solid
lines are chosen for average chain lengths, and dotted lines corre-
spond to average ring lengths. Red color is chosen for the system
BC, blue for the system BD, and green for the system BE.

system, the slow contribution of rings to the self-diffusion
vanishes.

Besides splitting the system into chains and rings, we can
also investigate the contribution of various chain classes to
the mobility of the system. In order to do it, we group classes
according to the number of small magnetic particles, m, in
them. As long as the probability of finding a given cluster goes
down with m, we will focus on m = 1 and m = 2. Chains of
classes II and IV contain m = 1 small particles, while chains
of classes III, V, VI, VIII, and XII contain m = 2. Using our
theoretical approach, in Fig. 9, we plot self-diffusion coeffi-
cients of all the chains consisting of n large and m = 1 [see
Fig. 9(a)] and m = 2 [see Fig. 9(b)] small particles. All curves
in the figures have nonmonotonic behavior.

In Fig. 9(a), the red curve corresponds to the chains of
the second class and blue one describes the self-diffusion
coefficient for chains of the class IV. We can conclude that a
contribution of chains of the second class to the self-diffusion
is an order of magnitude higher than that of chains of the
fourth class. The self-diffusion coefficients of all chain classes
containing n large and two small particles are presented in
Fig. 9(b). Red color for a curve is used for the chain class
III, blue for chain class V, green for chain class VI, yellow

(a)

(b)

FIG. 9. Self-diffusion coefficients for some classes of chain ag-
gregates: (a) all the chains consisting of n large and one small
magnetic particles; (b) all the chains consisting of n large and two
small magnetic particles.

for chain class VIII, and magenta for chain class XII. We
can highlight contributions of classes III and VIII to the self-
diffusion. Chain classes V, VI, and XII have less pronounced
contribution. Nonmonotonic behavior of all curves can be ex-
plained by the fact that the in both monodisperse limited cases,
none of the plotted chain classes can be formed. The reason
for the maximum in Fig. 9(a) to be on the left in comparison
to that in Fig. 9(b) is the difference in the number of small
particles: To form classes with more small particles, one needs
a higher small-particle concentration. It is worth mentioning
that even though all those chain classes for a given length
will be approximated by identical ellipsoids with Eq. (14), the
contribution to the average mobility in the system will differ
drastically through the chain formation probabilities.

V. CONCLUSIONS

In this work, we put forward an analytical approach
to calculate self-diffusion coefficients in bidisperse systems
of self-assembling magnetic nanoparticles. This approach is
based on the density functional theory that can be applied
to describe thermodynamically equilibrium microstructure of
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these systems both in bulk and in quasi-2D layers. Another
component of the theoretical approach is the approximation
of typical clusters by shapes with known mobility. Here,
we use ellipsoids and tori to approximate chains and rings
respectively. These approximations can be justified in case
of relatively short chains and small, not too flexible rings.
These conditions are fulfilled either in bulk systems where
the interactions between large particles are three to four times
stronger than the thermal fluctuations or for the same systems
in thin layers, where under the same conditions along with
chains, also rings of five to seven nanoparticles form. The
analytical model proposed here does not take into account
hydrodynamic interparticle interactions and is meant to an-
alyze the impact of cluster formation and polydispersity on
the self-diffusion. Thus, in order to verify such a theoretical
approach, we performed hydrodynamics-free molecular dy-
namics simulations.

We find that, on the one hand, the proposed analytical
approach is reliable in the discussed parameter range, namely
volume or area fraction of magnetic material below or around
5%, magnetic interactions between the particles are up to four
times higher than kBT ; on the other hand, we show that in
case the total volume or area fraction of magnetic material
is fixed in the system, one can increase self-diffusion by

considering mixtures of small and large particles, where the
clusters are smaller and as such the overall diffusion is faster.
This effect is more pronounce in quasi-2D layers, where the
clusters are in general smaller and with growing small particle
fraction the size and the number of slow ring-like aggregates
decays rapidly and the rings basically disappear. Finally, we
discover that even a low fraction of small particles that is
forming chains in the systems—their interactions are barley
higher than the thermal fluctuations—manifests itself in the
self-diffusion behavior, unlike, for instance in scattering or
magnetic properties previously investigated [25,51]. We show
it by confronting simulation results and analytical predictions
with different number of structural units taken into account.

This work forms a solid basis for investigating gradient dif-
fusion as well as the effects of hydrodynamics on the diffusion
in magnetic nanoparticle systems.
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