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Experimentally testing a generalized coarsening model for individual bubbles
in quasi-two-dimensional wet foams
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We present high-precision data for the time evolution of bubble area A(¢) and circularity shape parameter C(z)
for several bubbles in a quasi-two-dimensional foams consisting of bubbles squashed between parallel plates. In
order to fully compare with earlier predictions, foam wetness is systematically varied by controlling the height of
the sample above a liquid reservoir which in turn controls the radius r of the inflation of the Plateau borders. For
very dry foams, where the borders are very small, classic von Neumann behavior is observed where a bubble’s
growth rate depends only on its number 7 of sides. For wet foams, the inflated borders impede gas exchange
and cause deviations from von Neumann’s law that are found to be in accord with the generalized coarsening
equation. In particular, the overall growth rate varies linearly with the film height, which decrease as surface
Plateau borders inflate. More interestingly, the deviation from dA/dt o (n — 6) von Neumann behavior grows
in proportion to nCr/+/A. This is highlighted definitively by data for six-sided bubbles, which are forbidden to
grow or shrink except for the existence of this term. It is tested quantitatively by variation of all four relevant

quantities: n, C, r, and A.
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I. INTRODUCTION

Foams are out of equilibrium and made of bubbles that
coarsen by the diffusion of gas across the soap films between
neighboring bubbles of different pressure [1,2]. This occurs
in both two-dimensional (2D) and three-dimensional (3D)
systems and for any liquid content. Evolution kinetics like
coarsening also occur in other cellular systems, but the macro-
scopic nature of bubbles and a known microstructure make
foam an ideal system to study [3,4]. For ideally dry purely 2D
foams, a bubble’s area A changes at a rate that depends only
on its number n of sides according to von Neumann’s law [5]:

dA/dt = K,(n — 6), (D

where K, is a rate constant dependent on the physical chem-
istry of the gas and the surfactant solution. This coarsening
equation depends only on local topology and means that bub-
bles with less than six sides will shrink, bubbles with more
than six sides will grow, and bubbles with exactly six sides
will have constant area. The shrinking bubbles are small and
eventually disappear leading to an overall increase in the aver-
age bubble area; there is an collective average growth rate, and
eventually the foam enters a self-similar regime where size
and topology distributions under proper normalization remain
the same as the foam coarsens [6—14]. Whether the foam is
or is not in a self similar state, the local coarsening rules for
individual bubbles hold. However, the conditions for which
Eq. (1) was developed cannot be met exactly by experiments
on real foams which are necessarily wet and quasi-2D. An
appropriate question is whether von Neumann’s law can be
modified in a way to account for these factors and accurately
predict the behavior of individual bubbles as they coarsen in

2470-0045/2021/103(1)/012610(9)

012610-1

wet foams. This is our focus, which underlies but is entirely
separate from the question of self-similarity and the growth of
the average bubble size.

We must first define the difference between “dry” and
“wet” foams. In both cases the foams obey Plateau’s laws,
which are the structural criteria for foams in mechanical equi-
librium. In two dimensions, Plateau’s laws are as follows:
films separating bubbles are circular arcs; films meet in threes
at a vertex; the three films at a vertex are separated by equal
angles of 120°. In accordance with Plateau’s laws bubbles are
polygons with curved edges and vertices are all triconnected.
A foam is “dry” if there is effectively zero liquid in films,
Plateau borders, and vertices. Foam is “wet” if the both the
Plateau borders and vertices are inflated with liquid [15]. Wet
quasi-2D foams, where bubbles are squashed between paral-
lel plates, also have liquid in surface Plateau borders along
the top and bottom plates. These surface Plateau borders are
connected by soap films of constant thickness, regardless of
wetness [16—18]. Foams can also be “very wet” where there
is a breakdown of Plateau’s laws, and describing the foams
in terms of inflated vertices and Plateau borders is no longer
appropriate. Very wet foams have been studied in Ref. [19]
with regard to their collective growth dynamics, and Ref. [20]
develops a prediction for coarsening rates for individual bub-
bles but they are not considered here.

Any further discussion is therefore focused on dry and
wet foams. Research on 2D and quasi-2D dry foams has
been conducted in both experiment [7-9,21] and simulation
[10-14,22], and general agreement with Eq. (1) is observed.
However, there are instances where deviations from von
Neumann’s law are found; one such study explains such de-
viations by modifying von Neumann’s law to account for
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differences from 120° of the internal angle at the vertices of a
bubble [6]; this leads to an overall reduction in the coarsening
rate. A later experiment reveals that removing much of the
liquid from the foam makes it so the internal angles have
no measurable differences from 120° and bubbles once again
follow Eq. (1) for their coarsening dynamics [7]. These early
experiments are evidence for the differences in coarsening
behavior between wet and dry quasi-2D foam.

Theoretical work followed in Ref. [15] to show why wet
foams coarsen more slowly; broadly they found that the liquid
can entirely be decorated at the vertices of a 2D foam. How-
ever, the vertices grow in size with increasing liquid volume
fraction; this reduces the length of the thin film faces between
bubbles where gas diffuses and slows the overall coarsening
rate. Additionally the liquid contained at the vertices can
potentially change the turning angle, which provides a local
quantity for deviations from von Neumann’s law for individ-
ual bubbles.

These early experiments show that wetness indeed affects
coarsening, but they were performed on foams where the
coarsening rates are well approximated by von Neumann’s
law with only small deviations; the theoretical work relies on
knowing the liquid volume fraction of the foam, which is no-
toriously difficult to measure in real systems and also focuses
on purely 2D foams. Wet quasi-2D foams can have coarsening
behavior much different than either of these cases because the
surface Plateau borders run along the top and bottom plates of
the cell and can swell with liquid. The swelling of the edges
between bubbles was considered in simulation with a 2D Potts
models [23] and in experiments on microfluidic foam [18].
These studies developed empirical formulas to describe the
observed coarsening; still lacking were experiments that sys-
tematically test how liquid fraction affects foam coarsening
and also develop some kind of modified von Neumann’s law
whose predictions about the coarsening of individual bubbles
rely on the individual bubble-level topology and liquid content
of the foam.

A pair of studies authored by previous members of this
group sought to fill that void. Work from Ref. [16] modifies
von Neumann’s law for wet quasi-2D foams. This study finds
an equation for coarsening that is derived by accounting for
the size of the Plateau borders due to a higher liquid fraction
foam and then going through the same topology based argu-
ments as von Neumann. The resulting equation is developed
for bubbles between two parallel plates separated by a dis-
tance H and makes two modifications to Eq. (1). The first is an
overall reduced coarsening rate because gas does not diffuse
through the Plateau borders enlarged by the liquid. The second
is a modification to von Neumann’s law due to the bubble
shape and size. This model assumes gas does not diffuse at
all through the Plateau border, i.e., “border blocking,” but
Ref. [20], the second work from the group, simulates gas flux
through the surface Plateau borders. It finds the rate of gas
diffusion is not zero and it is set by the geometric mean of
the size of the Plateau border and the width of the thin film.
Taking the shape and size dependent von Neumann modifi-
cation from Ref. [16] and correcting its reduced coarsening
rate for the amount of gas that diffuses through the surface
Plateau borders found in Ref. [20] a prediction for how the
area A of an n-sided bubble changes in time was developed.

This generalized coarsening equation is

dA_K ] 2r+7r re ( 6) + 6nCr @
dt — ° H H " N

where r = (1, + rp)/2 is the average radius of curvature of
the top and bottom surface Plateau borders, £ is the width of
thin films that separate two bubbles, and C is a dimension-
less shape parameter “circularity” of a bubble related to the
curvature of the edges of bubble. For an n-sided bubble the

circularity is
I 1) /A
C=|- — |/ = 3

i=

where 1/R; is the curvature of side i. Circularity is defined so
it equals 1 for circular bubbles, is positive for convex bubbles,
and is negative for concave bubbles. Experimentally, the aver-
age and standard deviation of the observed circularities were
measured to be approximately (C(n)) = (1 —n/5.73) £0.25
in the self-similar scaling state [16]. Though there is signif-
icant variance in circularity between different bubbles of the
same 7, previous work compared only dA/dt data to expecta-
tion in terms of the average circularity.

Work from Ref. [16] shows that Eq. (2) accurately captures
the coarsening behavior of bubbles in a wet foam on average;
the data show there are deviations from von Neumann’s law,
and they are more pronounced for smaller wetter bubbles
with n < 6. One other deviation that is apparent from Eq. (2)
but only briefly mentioned in Ref. [16] is the fact that the
generalized coarsening equation allows for the coarsening
of six-sided bubbles. They do not show data for individual
bubble coarsening in violation of von Neumann’s law nor do
they find how this coarsening is affected by the bubble specific
shape and size. To explore the individual bubble dynamics
in depth we develop alternative methods of image analysis
to carefully reconstruct individual bubbles. From these re-
constructions precise measurements of the bubble areas and
circularities are obtained; the data are used to solve Eq. (2) and
the solutions predict the unique shape-dependent coarsening
of a bubble with great accuracy. We present data for individual
six-sided bubbles that coarsen. This behavior is an obvious
violation of Eq. (1), and it can be driven only by the bubble
shape. Other bubbles with n # 6 either grow or shrink more
slowly than predicted by von Neumann and in a nonlinear
fashion; this behavior is also predicted by solutions to Eq. (2)
and depends on the bubble size and circularity.

II. MATERIALS AND METHODS

Our experiments begin by making foam in a custom sample
cell and allowing it to coarsen until it is quasi-2D. The custom
sample cell, which has been used previously in Ref. [16],
allows us to control the liquid content of the foams so we can
systematically increase the wetness. As the foams increase in
wetness the size of the surface Plateau borders inflates; how-
ever, all data are collected from foams that obey Plateaus laws,
have vertices that are triconnected, and have bubbles that are
polyhedra with faces separated by both thin films and surface
Plateau borders. We take images of the foam over the course
of many hours, and the images are used to reconstruct the
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foam in a small neighborhood with high precision. The foams
are reconstructed using in-house algorithms, and from the
reconstructions the bubble areas and shapes are determined.
We discuss these processes in the following subsections.

A. Experimental materials

The foaming solution is 92% deionized water and 8%
Dawn Ultra Concentrated dish detergent and has a liquid-
vapor surface tension y =29+ 6 dyn/cm. This solution
generates stable foams that do not have any film ruptures.
The foam is generated inside a sample cell constructed from
two 1.91-cm-thick acrylic plates separated by a spacing H =
0.32 cm and sealed with two concentric o-rings; additional de-
tails about the specifications of the cell are found in Ref. [16]
and in Fig. S1 of the Supplemental Material [24]. It features
an annular trough that surrounds the foam and acts a reservoir
for excess liquid drained from the foam due to gravity. The
volume of the trough is large compared to the volume of
liquid in the foam, so that the height d from the top of the
liquid in the reservoir to the middle of the gap between the
plates is constant. The value of d is then set by the amount
of liquid sealed into the sample cell and serves as the key
parameter controlling the wetness of the foam. Specifically,
the foam drains into the reservoir, which causes the top and
bottom surface Plateau border radii to decrease until capillary
and gravitational pressures become equal:

y/re = pglld + H/2) — r], “4)

y/re = pgl(d — H/2) + 1p]. ®)

Here g is gravitational acceleration, and the terms in square
brackets represent the distance from the liquid surface to the
respective heights at which the surface Plateau borders begin
to flare out from the soap film. These are the key heights which
dominate the border-crossing gas flux [20]. For a chosen value
of d, the surface Plateau border radii may thus be computed
from these equations for use in Eq. (2).

Foams are produced as follows. First, the trough is filled
with the desired amount of liquid, then flushed with nitro-
gen and sealed. The entire sample cell is vigorously shaken
for several minutes until the gas is uniformly dispersed as
fine bubbles that are small compared to the gap H between
plates. The foam is thus initially very wet, opaque, and 3D.
Immediately it begins to drain and coarsen, rapidly at first,
then progressively more slowly as hydrostatic equilibrium is
approached. After a few hours, the bubbles become large
compared to the gap, and the coarsening rate is slow com-
pared to drainage. Thereafter Eqs. (4) and (5) hold, and the
foam is quasi-2D as desired for measurement. Figure 1 shows
example images for three such foams with different d and
hence different wetness. There it is evident that the border
radii r significantly increase with decreasing d. Foams with
these three wetnesses are used to garner all the data, and foams
made using d = {11.4, 5.9, 3.5} mm have approximate liquid
volume fraction ¢ = {0.01, 0.03, 0.06}; we note these volume
fractions are imprecise but are important to show they are
all relatively small and have the same order of magnitude.
Furthermore, the real figure of merit for wetness in a quasi-

FIG. 1. Top down view of quasi-2D foams of various liquid con-
tent as indicated by the distance d from top surface of liquid in the
sample cell reservoir to the center of the gap between the plates. From
(a) to (c) the wetness increases as d gets smaller. The images show
the surface Plateau borders along the top plate of the sample cell.
The thick surface Plateau borders along the top plate are connected
to slightly thicker ones along the bottom plate by thin films. Three
surface Plateau borders meet at a surface vertex. The vertices appear
bright due to light channeled through vertical Plateau borders that
span the gap between both plates.

2D foam is the Plateau border radius » in comparison with
the gap H.

B. Image analysis

After the foam is prepared it is immediately placed 75 cm
above a Vista Point A light box and 12.5 cm below a Nikon
D90 camera with a Nikkor AF Micro 105mm 1:2.8D zoom
lens. The lens is set to full zoom and the entire field of
view is 23.3 x 15.4 mm?. The location of the camera is
optimized to have the smallest absolute field of view while
also keeping the foam in focus, which allows us to devote
as many pixels as possible to any individual bubble. This
limits the total numbers of bubbles we can reconstruct in each
image, but each bubble will have very accurate measurements
of its area. An image is taken every minute for a minimum
of 24 h, but only images of the foam after it coarsens to a
quasi-2D state are kept for analysis. Once the foam enters
this state, we must identify the bubbles in each image to
find their shapes and areas. The latter can ostensibly be done
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"(a) d=11.4 mm
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FIG. 2. Three stages of the foam reconstruction for foams of two different wetnesses as indicated by d. (a), (d) The raw data. (b), (e)
Locations and orientations of the vertices determined by a Monte Carlo-like method described in the Supplemental Material [24]. (¢), (f) The
circular arcs that connect pairs of vertices as thick green lines. These arcs reconstruct the film network, and they match well with the middle

of corresponding surface Plateau borders.

by binarizing, skeletonizing, and watershedding the pictures
of the foam. However, our images have features of varying
brightness that make the skeletonized images poor representa-
tions of the foam and the subsequent watershed basins invalid
for measuring the area of bubbles. Instead we have developed
an algorithm for reconstructing these wet foams where we find
the (x, y) locations of the vertices as well as the orientation of
one of the three surface Plateau borders of the vertex with
respect to the x-axis. For brevity we show our vertex finding
method works by displaying in Fig. 2 the found locations
of the vertices; the method finds neither false positive nor
false negatives locations of vertices such that every bubble
we reconstruct has only n sides throughout its lifetime. The
Supplemental Material thoroughly explains the algorithm for
finding the vertices and why it is necessary over more usual
watershedding methods; also included is a movie that demon-
strates the vertex identifying process [24].

The orientations of the surface Plateau borders belonging
to a vertex are used to identify the network of neighboring
vertices. We know from Plateau’s laws that the films in 2D and
surface Plateau borders in quasi-2D foams are separated at a
vertex by an angle of 120°. Therefore knowing the orientation
of one surface Plateau border informs us of the directions of
the others. We know precisely where to investigate in order to
find the three neighbors of a vertex. After the neighbors are
determined for each vertex, we connect them to recreate the
film network of the foam.

Another of Plateau’s laws is that films connecting the ver-
tices in quasi-2D foam are arcs of circles. The center and
radius (x., y., R) of the circles that connect any pair of ver-
tices are defined by the vertex locations and a point midway
between the two vertices in the middle of the surface Plateau

border. The method used to determine this third point is pre-
sented in the Supplemental Material [24]. Additionally the
reconstructed film network is adjusted to better satisfy Plateau
laws; explanations of this process and a movie representing
the evolution of the reconstructions are also included in the
Supplemental Material [24]. In Figs. 2(c) and 2(f) we show
the circular arcs that reconstruct the film network.

With the film network carefully reconstructed we can
finally determine the areas and shapes of the coarsening bub-
bles. We first identify which vertices belong to a bubble.
The bubble area is then calculated in two steps using, first,
the location of the vertices and then using the equations of
the circular arcs that connect them. The bubble is initially
treated like a polygon where the vertices are connected by
straight lines. This treatment gives a polygonal area of o =
> (xiyit1 + Xi+1vi)/2 where the sums are between all pairs of
connected vertices belonging to a bubble. Because the vertices
are actually attached by arcs of circles and not straight lines,
we then account for the area under the circular arcs; the bubble
area is in total its polygonal area plus or minus the area under
each of the n circular arcs of the bubble if the arc bends away
or towards the centroid of the bubble, respectively. Once the
bubble area is known we use it along with the values of R for
each of the n sides of the bubble to evaluate Eq. (3). This is
done for all bubbles in an image and for all images.

Finally we measure the uncertainty in the areas and circu-
larities. These uncertainties account for how well the foam
is reconstructed, and to determine them we refit the films
connecting neighboring vertices. We refit on three points: two
of the points are the vertex locations slightly shifted so the
distance between them increases; the third remains in the
bright band in the middle of the film but is shifted to maximize
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FIG. 3. Rate of change of bubble area A versus A divided by
the square of the gap H between plates, for a dry foam consisting
of bubbles with different numbers of sides as labeled by n. Each
point represents the data for one bubble, and there are data for
1533 bubbles. The von Neumann expectation dA/dt = K,(n — 6) is
plotted for K, = 0.030 & 0.001 mm?/min, as shown by horizontal
dashed lines and gray swaths.

the distance from each vertex. This provides values for the
center and radius (x/, y., R’), and these are used to find areas
A’ and circularities C’. The values of A" and C’ are used only to
determine the uncertainties which are then AA = A — A’ and
AC = C — ('; in these equations A and C are the originally
calculated values of the area and circularity of each bubble,
and all data presented in upcoming figures are A += AA and
C = AC. Once the areas, circularities, and uncertainties for
each are calculated, all bubbles are tracked using standard
particle-tracking procedures.

III. COARSENING RATES

Having tracked individual bubbles, we observe how their
areas change throughout their lifetime. Recall that von Neu-
mann’s law says for 2D dry foams that the coarsening rate of
a bubble should depend only on its number of sides; bubbles
with n > 6 grow, bubbles with n < 6 shrink, and bubbles with
n = 6 do not have their area change. Equation (2) general-
izes coarsening behavior for quasi-2D wet foams where the
wetness of the foam along with the size and shape of a bubble
will have an effect. Coarsening rates for bubbles in a quasi-2D
geometry are shown in Fig. 3 for foams that are effectively dry
and in Fig. 4 for wet foams of varying liquid content.

To test for von Neumann-like behavior we make dry foams
by standing the sample cell so that the plane of the foam
is vertical. Drainage results in all the liquid pooling to the
bottom of the cell and bubbles far from the liquid do not have
any enlarged Plateau borders. A very conservative estimate
for this distance is 1 cm above the bath which is about 4
times the capillary length, and only bubbles this distance and
above the liquid pool are analyzed. For dry foams it is easier
to acquire information about the bubble areas than for the
wet foams. The areas of dry bubbles are determined from a
process where we binarize, skeletonize, and watershed images
of the foam. Bubbles are the watershedding basins of the
skeletonized images, and the number of pixels within each
basin is converted into the bubble area.

Wet Foam
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FIG. 4. Coarsening rate versus number of sides multiplied by the
circularity and divided by the square root of the area of individual
bubbles; data are shown for wet foams with various liquid content
as labeled by d. Coarsening data for individual bubbles are shown as
colored dots, and in panels (a), (b), and (c) there are data for N =
[63, 90, 68] bubbles, respectively; the x-axis values are calculated
using the bubble-specific values of C(¢)/+/A(?). The black dashed
lines show the expectation for the generalized coarsening equation;
they are evaluated by making simultaneous fits to the coarsening rates
for all bubbles in each wetness where the reduced coarsening rate
K and the average radius of curvature of the Plateau borders r are
fit parameters. The gray swaths show the equation evaluated using
K+ AK and r £+ Ar.

Individual bubble tracks show areas that change linearly
with time, and to find the coarsening rate for each bubble we
fit lines to the data. The values of dA/dt are plotted versus
bubble area in Fig. 3. It is evident that the coarsening rates
are the same for all bubbles with the same number of sides,
and the choice of x-axis shows this is true regardless of the
size of the bubble. The coarsening rates for n-sided bubbles
follows von Neumann’s law dA/dt = K,(n — 6), and rate
constant K, is found to be K, = 0.030 £ 0.001 mm? /min.

Turning to our main interest in wet foams, we find by
contrast with the dry case that bubbles with the same number
of sides do not all coarsen at the same rate. This is shown in
Fig. 4, which plots dA/dt not versus area but rather versus
the quantity x = nC/~/A that controls the deviation from von
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FIG. 5. The average Plateau border radius (a) and reduced coars-
ening rate (b) versus the distance d from top surface of liquid in the
sample cell reservoir to the center of the gap between the plates. Data
are shown as points, and expectations are shown as solid curves with
a gray swath reflecting uncertainty in y, p, d, and £. In panel (b) the
value of K, used to evaluate the expectation is plotted as a dashed
line. Note that as d increases, the foam becomes drier and hence r
decreases, and K increases in good accord with expectation.

Neumann behavior in Eq. (2); unlike the data for the dry
foams, the coarsening rates for individual bubbles in a wet
foam will be affected by their size as well as their shape,
and this is in accordance with our generalized coarsening
equation. Thus the choice for the x-axis is appropriate and
their values are determined from the raw values of C(¢) and
A(t) taken for individual bubble tracks, as well as the number
n of sides found from the reconstruction of the network. The
coarsening rates on the y-axis are the numerical derivatives
of the area data smoothed over a Gaussian window. Indeed,
we find in Fig. 4 that dA/dt is not constant for a given n
but rather varies linearly in x as predicted. Also as predicted,
the slope varies with wetness independent of n. Thus there is
good qualitative agreement with expectation, which may now
be tested more quantitatively:

According to Eq. (2), the separation and slope of the
data clusters are set, respectively, by the values of K =
K,(1 — 2r/H + m+/rt/H) and the average radius of curvature
r of the surface Plateau border. To find K and r, these param-
eters are adjusted to simultaneous fit the coarsening rates for
all the bubbles in each wetness. Excellent fits are achieved, as
illustrated by the dashed lines in Fig. 4. The gray swaths show
the fitting equation evaluated across the acceptable range of
fitting parameters, K + AK and r + Ar.

To complete the analysis, the fitting parameter results are
plotted versus, d, the distance from top surface of liquid in
the sample cell reservoir to the center of the gap between the
plates which controls wetness, and compared with expecta-
tion in Fig. 5. In Fig. 5(a), results for the average Plateau
border radius r decrease with increasing d for drier foams.

The expectation for r is shown as a solid curve surrounded by
a gray swath that represents the uncertainties in y, p, and d.
There are no fitting parameters, and even so the agreement is
very good. In Fig. 5(b) results for K increase with increasing
d for drier foams, and the expectation is similarly shown.
Now the overall rate K, is adjusted to give a good fit to the
data. This yields K, = 0.023 £ 0.002 mm?/min, taking the
film thickness from across a reasonable wide range of values,
107> mm < £ < 1073 mm [25-27]. The result is somewhat
smaller than the value K, = 0.030 & 0.001 mm?/min mea-
sured in Fig. 3 for a perfectly dry foam using the usual von
Neumann equation. The source of discrepancy is not known,
but could arise by a slight change in the physical chemistry
of the solution. Nevertheless, the parameters r and K give
excellent fits in Fig. 4 to the expected variation with wetness,
further demonstrating the validity of the generalized coarsen-
ing equation.

IV. INDIVIDUAL BUBBLE COARSENING

In this final section we highlight that bubble shape drives
the deviations from von Neummann’s law, by returning to
the raw data for bubble area and circularity versus time for
a few individual bubbles in the above analyses. We begin with
six-sided bubbles, some of which grow and some of which
shrink as seen by careful inspection of the sign of dA/dt data
in Fig. 4. This effect, and its analog for n # 6, is more obvious
and dramatic in A(¢) versus ¢t data for individual bubbles as
follows.

A. Bubbles withn = 6

According to von Neumann’s law, the area of six-sided
bubbles in a dry foam should not change in time. By contrast,
for wet foams, the expectation of Eq. (2) for six-sided bubbles
reduces to dA/dt = 6KnrC(t)//3mwA(t). Therefore, sign of
the circularity shape parameter C(¢) and the magnitude of
C(t)/+/A(t) determines whether a six-sided bubble grows or
shrinks and at what rate. Data for the area of examples bubbles
in foams of various wetness are shown in Fig. 6, where the
area is seen to either decrease as in Figs. 6(a) and 6(b) or
to grow as in Fig. 6(c). The corresponding circularities are
plotted in Figs. 6(d)—6(f). There we see C(t) < 0 in Figs. 6(d)
and 6(e) for bubbles that shrink and C(t) > 0 in Fig. 6(f) for
the bubble that grows. This shows there is good qualitative
agreement with Eq. (2) and the coarsening behavior. Addi-
tional data in the Supplemental Material for A(z) and C(t)
versus time [24] show more examples of qualitative agreement
between the change in area and bubble shape for many six-
sided bubbles from foam with d = 5.9 mm.

To demonstrate the quantitative validity of Eq. (2) for
dA/dt for these three six-sided bubbles, we numerically in-
tegrate it using the displayed C(¢) data in order to obtain
A(t) versus t along with the fitted values of K and r dis-
cussed above. The resulting predictions for A(¢) versus ¢ are
displayed as dashed curves with a surrounding gray swath
that reflects statistical uncertainties in K, r, and C. Evidently,
the agreement is remarkably good. Of course this is expected
based on the success of the fits in the previous figures. Nev-
ertheless it is a powerful demonstration that von Neumann’s
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FIG. 6. The area (a)—(c) and circularity (d)—(f) versus time for individual six-sided bubbles. The bubbles come from foams of increasing
wetness from left to right as labeled by decreasing d. The images in panels (d)—(f) show the bubble at the times pointed to by the black lines.
The von Neumann expectation is that six-sided bubbles do not change their area in time, but panels (a) and (b) show six-sided bubbles that
shrink, and panel (c) shows a bubble that initially grows and eventually shrinks. These area changes are driven by the bubble circularity, which
is negative at all times in panels (a) and (b) and positive during the bubble growth in panel (c); in all parts the data are represented by dark
green circles except in panels (c) and (d) when the bubble is growing or has positive circularity, then the data are plotted with a light green x.
The blue dashed lines are the numerically integrated solutions to the generalized coarsening equation using the bubble circularity data as well
as values of K and r corresponding to the bubble wetness. The gray swaths are generated similarly, incorporating statistical uncertainty in C
as well as uncertainty in the values of K and r. In panel (f) the black dashed line shows where C = 0.

law is indeed violated for wet foams according to prediction in shape; how the circularity of a bubble affects its coarsening is
terms of the bubble shape. Note that the agreement is accurate demonstrated qualitatively in the Supplemental Material with
at the level of ~#0.01 mm, and that the comparison was made plots showing A(¢) and C(¢) versus time for many n-sided
possible by the high precision of our data. bubbles from foam with d = 5.9 mm [24].

These results raise a new question: What controls the value Quantitatively this is demonstrated for one five-sided and
and time evolution of a bubble’s circularity shape parameter one seven-sided bubble in Fig. 7 and for other bubbles in
and hence whether A grows or shrinks? To begin exploring this the Supplemental Material [24]. Just as in Fig. 6, the top
issue, we examine the photographs of the example bubbles and bottom rows, respectively, show area and circularity data
shown in Fig. 6 at early and late times. In these it is not  versus time, along with photographs of the bubbles at early
possible to visually discern the area changes. But, in Fig. 6(d), and late times. For n = 5 and for n = 7 the bubbles respec-
it is nevertheless apparent that the shortest side becomes much tively shrink and grow, nearly linearly with time as expected
shorter and more highly negatively curved. Since the Eq. (3) from the von Neumann law. Indeed the area change is evident
definition of C features an unweighted sum of curvature for  in the photographs. However, in both cases the area change
each side, the very short, very curved film contributes very is slightly slower than linear. And, in fact, this deviation is
strongly to C, and hence is responsible for it being both perfectly captured by numerical integration of the coarsening
negative and a decreasing function of time. More generally, equation using the C(¢) data, exactly as done for the six-sided
six-sided bubbles often have a small few-sided bubble as examples. Now the sign of the deviation is more clear: Five-
neighbor that shares a short film that shrinks and becomes sided bubbles always have positive circularity, while (n — 6)
more curved with time. Thus we find C(¢) tends to be negative is negative; therefore they shrink more slowly than in the von
and decreasing for many six-sided bubbles. Six-sided bubbles Neumann law. Similarly, seven-sided bubbles always have
with C > 0, that grow with time as in Fig. 6(c), exist but are negative circularity, while (n — 6) is positive; therefore they
more rare. We leave it to future studies to further consider =~ grow more slowly than in the von Neumann law. For the
the distribution and evolution of shape parameters in terms of ~ example n = 5 bubble, the circularity is roughly constant as it
nearest-neighbor size and shape correlations. shrank. By contrast, the circularity of n = 7 example bubble

decreased as two of its shorter sides became even shorter
and more curved, similar to what was seen for typical n = 6
B. Bubbles with n # 6 bubbles.

While the way bubble shape drives violation of the von
Neumann law is most evident for six-sided bubbles, it can also
be seen for bubbles with other side numbers n. According to
Eq. (2) the coarsening rates for bubbles with the same n are In this work we show that the generalized coarsening equa-
different from one another depending on the individual bubble ~ tion describes the coarsening behavior of bubbles in a wet

V. CONCLUSION
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FIG. 7. The area (a)—(b) and circularity (c)—(d) versus time for
individual bubbles with n number of sides as labeled in the bubble
images; both bubbles come from a foam with the same wetness
indicated by d. The images in panels (c) and (d) show the bubble
at the times pointed to by the black lines. In panels (a) and (b) the
black dash-dotted lines are tangent to the data at early times and
demonstrate the area changes for these bubbles is nonlinear. This
behavior is due to the bubble circularity where five- or seven-sided
bubbles shrink or grow more slowly because C(t) > 0 or C(¢) < 0,
respectively. The blue dashed lines are the numerically integrated
solutions to the generalized coarsening equation using the bubble
circularity data as well as values of K and r corresponding to the
bubble wetness. The gray swaths are generated similarly, incorporat-
ing statistical uncertainty in C as well as uncertainty in the values of
K andr.

foam and predicts changes to the area of individual bubbles.
This is some of the most precise data taken of coarsening
bubbles, and very small changes in bubble area are accu-
rately measured. This becomes increasingly important when
considering how small in magnitude the area changes are
for six-sided bubbles. To show the average behavior follows
Eq. (2), we make a simultaneous fit to the data of differ-
ent n-sided bubbles where the fit parameters are the reduced
coarsening rate K and the radius of curvature of the Plateau
borders r. The r values from the fit agree with the calcu-

lated values of r values determined from Egs. (5) and (4). A
mystery remains why the K values from the fit are somewhat
different from the expected values; still the K values from the
fit decrease monotonically with increasing wetness and are
predicted if K, = 0.023 mm?/min. We show that dA/dt is not
constant for any set of n-sided bubbles but instead depends on
the individual bubble shape and size.

Using these parameters we show how Eq. (2) also predicts
the coarsening behavior of individual bubbles. In particular
the coarsening of six-sided bubbles, which is not predicted by
von Neumann’s law, is determined exclusively by the bubble
shape. We show this by solving Eq. (2) through numerical
integration of the circularity data for several six-sided bubbles
from foams of different wetness. The data show the six-sided
bubbles coarsen with rate changes depending on their shape,
and this is matched by solutions to the generalized coarsening
equation. The shape changes that drive the coarsening rate
changes are easily visualized, especially for shrinking six-
sided bubbles, from changes in the film network that cause
changes in circularity. Coarsening six-sided bubbles are the
most obvious violations of von Neumann’s law, but other
n-sided also have their coarsening rates reduced due to shape
effects. In some cases this leads to obvious nonlinear behavior.

Further verification of our generalized coarsening equa-
tion is possible by working with a hexagonal packing of
bubbles, which can be accomplished with a specialized cell
with hexagonal boundary conditions. If all bubbles are six-
sided, then any observed coarsening both is in violation of
von Neumann’s law and would necessarily be due to the
bubble circularity. Additionally future work could continue
to increase the liquid volume fraction of the foam to study
systems that are “very wet” where there is a breakdown
of Plateau’s laws and bubbles are separated only by liquid
faces. The coarsening behavior of these foams is predicted in
Ref. [20], but this equation is not yet tested experimentally.
Coarsening also necessarily relaxes the system and induces
rearrangements [28]. While this study focuses on the dynam-
ics of coarsening, we can also study bubble rearrangements in
both dry and wet foams brought on by coarsening.
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