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Osmotic pressure of suspensions comprised of charged microgels
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We determine the osmotic pressure of microgel suspensions using membrane osmometry and dialysis, for
microgels with different softnesses. Our measurements reveal that the osmotic pressure of solutions of both
ionic and neutral microgels is determined by the free ions that leave the microgel periphery to maximize their
entropy and not by the translational degrees of freedom of the microgels themselves. Furthermore, up to a given
concentration it is energetically favorable for the microgels to maintain a constant volume without appreciable
deswelling. The concentration where deswelling starts weakly depends on the crosslinker concentration, which
affects the microgel dimension; we explain this by considering the dependence of the osmotic pressure and the
microgel bulk modulus on the particle size.
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I. INTRODUCTION

Colloidal suspensions are comprised of Brownian parti-
cles, or colloids, dispersed in a liquid phase. Since the size
ratio between the colloids and the solvent molecules is typi-
cally between 100 and 1000, it is reasonable to treat the liquid
as a continuous medium with the colloidal particles dispersed
in it. One can then think of the equation of state associated to
the colloidal system, which, if sufficiently dilute, is nothing
but the ideal gas law, often called Van’t Hoff’s law in the
colloidal context: π = N

V kBT , with π the osmotic pressure,
N the particle number, V the accessible volume, kB Boltz-
mann’s constant, and T the absolute temperature. Note that
π depends on the particle number density, ρ = N/V . In terms
of the colloidal packing fraction, φ = vρ, with v the volume
occupied by a single colloid, we can write the ideal gas law as
π = kBT φ/v. This equation of state relates the three relevant
state functions of the colloidal system, (π, φ, T ), providing
the basis for the analogy between colloidal and atomic sys-
tems that have spurred much of the colloidal science work in
physics [1–10]. Obviously, as the particle density increases, π
deviates from the ideal gas law. For hard spheres, the equation
of state is the well-known Carnahan-Starling equation [11].
In the case, T only determines the thermal jiggling of the
particles and is unable to induce phase transitions, which only
occur via changes in φ.

Deviations from ideality also arise in the presence of other
interparticle interactions, which can either be attractive or
repulsive. An interesting example of this is provided by Brow-
nian emulsions, which consist of thermal droplets dispersed in
an immiscible continuous liquid phase. Below random close
packing, corresponding to φrcp ≈ 0.64, the osmotic pressure
of the emulsion is well-described by a hard-sphere model,

but in terms of an effective packing fraction accounting for
the short-range interdroplet repulsion due to the surfactant
stabilizing the droplets against coalescence [12]. Interest-
ingly, despite φrcp sets the largest achievable φ for hard
spheres packed in a disordered state [13–15], emulsions can
be compressed beyond random close packing. In this case,
the droplets are forced to facet and become nonspherical; the
scale of π is no longer set by kBT but rather by the energy
density cost associated with deforming the drops. The osmotic
pressure is then given by π = γ

a f (φ), where a is the drop ra-
dius, γ the interfacial tension, and f (φ) a function dependent
only on packing fraction; π is then controlled by the Laplace
pressure associated to the pressure jump at the droplet inter-
face, �P ∼ γ

a , reflecting that increasing the droplet density
in compressed emulsions occurs at the expense of the energy
cost related to deforming the droplets [12,16–18].

As a second example, consider charged colloidal suspen-
sions, which are comprised of colloids with a surface charge
density and an associated electric double layer composed of
counterions [19–22]; the colloid plus its double layer warrant
electroneutrality. However, those counterions at the outskirts
of the double layer that are weakly bounded to the particle,
that is, with an attraction strength of order kBT or lower, can
wander around the continuous phase, hence contributing to π .
In this case, these counterions can no longer be considered
as internal degrees of freedom of the colloid-double layer
complex; the associated translational degrees of freedom of
these ions then contribute to the suspension osmotic pressure.
Indeed, early studies on the sedimentation of charged colloidal
suspensions [23,24] clearly showed the existence of strongly
inflated density profiles, which were qualitatively explained
through the counterion contribution to π ; the result was a
gravitational length that was much larger than the one ex-
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pected if only the interacting charged colloids contributed to
π .

Importantly, this ionic contribution to the osmotic pressure
can have important consequences if the colloidal particles are
compressible since, in this case, an unbalanced number of
counterions between the inside and outside of the particles
can result in an appreciable size change and hence in an
associated change in the packing fraction of the suspension
[25–33]. Microgels, which are cross-linked polymer networks
in the colloidal-size domain, are an example of such com-
pressible particles. Indeed, they are known to respond to
external stimuli, including pH, T , solvent composition, or salt
concentration by swelling or deswelling [34–39]. While in the
deswollen state the particle bulk modulus, Kp, is comparable
to that of hard-sphere-like colloids, in the swollen state, Kp

can be significantly smaller [40]. Hence, in the limit where the
suspension osmotic pressure, π , is smaller than Kp, the micro-
gel particles will essentially retain their swollen volume, v0.
In contrast, for π � Kp, v will change in response to changes
in the suspension osmotic pressure. Regrettably, the way v

changes in this limit is hard to access experimentally; hence,
the value of φ for suspensions comprised of compressible
colloids is usually not known.

Alternatively, it is common to employ a generalized pack-
ing fraction, ζ = ρv0, defined in terms of the particle volume
in dilute suspensions, to parametrize particle number density
and know whether the soft-aspects of the particles might be
playing a role [10,29,41–44]; this is also usually done in
computer simulations addressing the behavior of soft colloidal
suspensions [33,45,46]. Clearly, ζ �= φ, in general. At small
particle densities, though, v = v0 and ζ = φ.

In the literature, the generalized packing fraction of mi-
crogels at high particle number densities has been determined
by measuring the viscosity of dilute microgel suspensions
[27,30,42] or by using static light scattering [47]. Both these
methods try to estimate the mass of a single microgel to
then use it to compute the number of particles in solution.
We previously showed that an alternative way to obtain φ

at high particle number densities is to measure the suspen-
sion osmotic pressure [48]. We were then able to discuss
the suspension phase behavior in terms of φ rather than
ζ [41].

In this paper, we focus on the osmotic pressure itself,
rather than on the fluid-crystal phase transition. We start by
discussing what osmotic pressure is and how it can be mea-
sured. We then present details of how we actually measure
it using both membrane osmometry and dialysis. We focus
on how π depends on ζ and present a counterion-based
model that allows describing our results for suspensions of
ionic-microgels with varing crosslink concentration at pack-
ing fractions below random close packing. By assuming that
at even higher packing fractions, π is still controlled by the
counterions, we estimate φ in terms of ζ ; this further al-
lows obtaining how v changes with φ [48]. We then provide
an improved version of the same model and discuss how
particle compression, which is the defining key difference
between microgels and say emulsion droplets or conventional
hard colloids, affects the osmotic pressure of the suspension.
We end the paper by concluding and providing a few fi-
nal remarks on aspects and questions that could perhaps be
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FIG. 1. (a) Sketch of a solute-solvent mixture whose osmotic
pressure π we want to know. (b) Sketch of the solute-solvent mixture
in contact with a pure solvent reservoir via a semipermeable mem-
brane. (c) Sketch of a piston compressing the solute-solvent mixture
that is in contact with the pure solvent reservoir via a semiperme-
able membrane. The exerted pressure is the osmotic pressure π .
(d) Sketch of the solute-solvent mixture in contact with the pure
solvent reservoir via a semipermeable membrane in the absence of
the piston in (c). In this case, equilibrium is achieved after pure
solvent flows into the mixture to result in a hydrostatic pressure ρsgh,
with ρs the density of pure solvent, g the acceleration of gravity, and
h the height change of the free surface of the solute-solvent mixture;
this hydrostatic pressure exactly equals the osmotic pressure π of the
solute-solvent mixture.

tackled in the future either theoretically or using computer
simulations.

II. OSMOTIC PRESSURE: DEFINITION
AND FUNDAMENTALS

The osmotic pressure of a solute-solvent mixture, such as
that illustrated in Fig. 1(a), is the extra pressure required to
equilibrate the mixture with pure solvent. To determine π , we
introduce our sample in a pure solvent reservoir and allow
their coupling via a semipermeable membrane, as shown in
Fig. 1(b). The pressure required to equilibrate the system is
the osmotic pressure of the mixture; it is the pressure applied
to the piston in the schematic shown in Fig. 1(c). Alternatively,
we can allow solvent through the membrane into the mixture,
as schematically shown in Fig. 1(d). In this case, the extra
pressure required to establish equilibrium equals the gravita-
tional potential energy, per unit volume, of the pure solvent
that moved inside the mixture: π = ρsgh, with ρs the solvent
density, g the acceleration of gravity, and h the difference in
height between the free surface of the mixture and that of the
pure solvent.

Since solvent flow through a semipermeable membrane is
involved in defining the osmotic pressure of a mixture, it is not
surprising that it can be related to the chemical potential of the
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FIG. 2. (a) Sketch of two fluids comprised of identical particles (circles) separated by a partition (vertical line). There is a different number
of particles to each side of the partition. (b) Same as in (a) but after removing the partition. The arrow represents the flow direction. In
equilibrium, the intensive parameters match and thus P1 = P2 and μ1 = μ2. (c) Sketch of two fluids comprised of different particles, stars,
and circles. The two fluids are separated by a partition (vertical line). There are more circle particles on side 1 than on side 2, and more star
particles on side 2 than on side 1. The total number of particles on either side is N . (d) Same as in (c) after removing the partition and once
equilibrium is reached. In this situation, the pressure, and the chemical potential of both species, match. (e) Same as in (c), but now instead
of removing the partition, we make it permeable to circle-particles only. (f) Equilibrium situation reached, where only the chemical potential
of the circle particles matches at either side of the semipermeable membrane. The arrow represents the flow direction of these particles before
equilibrium is established. In this case, μcircle,1 = μcircle,2 but P1 �= P2 and μstar,1 �= μstar,2.

solvent [49]. To clearly grasp the significance of this connec-
tion, let us review some aspects of the chemical potential, μ,
of classical systems.

Consider a (P,V, T, N ) system, where P is the inten-
sive variable conjugate to the extensive variable V ; these
are the pressure and volume, respectively, for a fluid sys-
tem. The Gibbs equation in the energy representation then
is dE = T dS − PdV + μdN . It follows that μ = ( ∂E

∂N )
S,V

;
the chemical potential of the system is the rate of change of
its energy with the number of particles at constant entropy S
and constant V . This expression, despite its phenomenological
character, is a powerful definition with which to think and
understand what the chemical potential is. The key is that
particle addition or extraction is done at constant entropy. For
a classical system, adding a particle increases the number of
microstates and hence its entropy; this is familiar to us in
the context of ideal gases, since S ∼ V N in this case, but it
is generally true for any classical system. Note that since in
the process V is held constant, there is no work involved and
the energy has not yet changed. However, to comply with the
constant entropy condition, we must lower the entropy; this is
done by releasing heat, which as a result, causes the energy of
the system to decrease. Hence, for classical systems μ < 0.

Now, let’s recall some basic statistical mechanics. In gen-
eral, we know that μ = kBT ln z, with z the fugacity. For

ideal gases, ln z = ln ρ + ln λ3
t , with ρ the density and λt

the thermal de Broglie length. Recall that the loss in ideality
amounts to, at the thermodynamic level, a prefactor inside the
natural logarithm containing the λt term; this is sometimes
called an activity coefficient.

We are now ready to consider mass transfer between sys-
tems. We start with the simple case of two fluids comprised of
identical particles separated by a partition, each occupying the
same volume and at the same temperature, but with a different
number of particles; assume N1 > N2, implying that μ1 > μ2,
as illustrated in Fig. 2(a). If we now remove the partition, since
the composite system is isolated from the surroundings, the
maximum entropy principle requires that particles in regions
of high chemical potential flow to regions of low chemical
potential, as illustrated in Fig. 2(b). Equilibrium is reached
when S is maximum, corresponding to P1 = P2 and μ1 = μ2.

As a natural next step, let’s focus on two-component sys-
tems and consider two-fluid mixtures separated by a partition.
We represent each fluid with circles and stars, as shown in
Fig. 2(c), and consider that each initially occupies the same
volume and are at the same temperature, but that the number
of stars on side 1 is much smaller than on side 2 and, likewise,
that the number of circles on side 1 is much larger than that of
side 2. Hence, initially, μstar,1 < μstar,2 and μcircle,1 > μcircle,2.
Removing the partition results in star particles moving to side
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1 and circle particles moving to side 2; each flows toward
regions of lower chemical potential. At equilibrium, P1 = P2,
μstar,1 = μstar,2 and μcircle,1 = μcircle,2; see Fig. 2(d).

Now, if instead of removing the partition, we make it
permeable only to the circle particles, these will be the ones
flowing from side 1 to side 2 to reestate equilibrium, as
schematically shown in Figs. 2(e) and 2(f). In this case,
at equilibrium, μcircle,1 = μcircle,2 but P1 �= P2. Instead, P1 ≈
Pcircle,1, where we neglect the small number of star particles
on side 1, and P2 = Pstar,2 + Pcircle,2, where we have assumed
that the two fluids are weakly coupled; the resultant pressure
difference is balanced by the rigid walls of the container
and exactly corresponds to the additional pressure that is
needed to equilibrate the system in the presence of mass
transfer via a semipermeable membrane. Note that if the
fluids were ideal, the partial pressure of the circle particles
would be equal at equilibrium. In this case, P1 ≈ Pcircle,1 =
Pcircle,2 �= P2 = Pcircle,2 + Pstar,2, and the osmotic pressure π =
P2 − P1 = Pstar,2.

The connection with the solute-solvent mixtures that we
are interested in can easily be made if we take the circle
particles to be the solvent and the star particles to be the
solute. Assuming in this case that the solute and the solvent
are weakly coupled, we then see that the osmotic pressure
is simply π = P2 − P1. This result further illustrates that the
extra pressure required to equilibrate the system is nothing but
the pressure associated to the solute particles, which are those
that cannot flow through the semipermeable membrane.

We are now in a position to connect π and the chemical
potential of the solvent, μs. The starting point is the equilib-
rium condition, corresponding to the equality of the chemical
potential of the solvent at both sides of the semipermeable
membrane,

μpure
s (P, T ) = μs(P + π, T ), (1)

where μ
pure
s is the chemical potential of the pure solvent. It is

customary to introduce the notion of the excess chemical po-
tential, �μs = μs(P, T ) − μ

pure
s (P, T ), relating the chemical

potential of the solvent in the mixture relative to that of the
pure solvent. We then use that

μpure
s (P + π, T ) − μpure

s (P, T )

=
∫ P+π

P

(
∂μ

pure
s

∂P′

)
T

dP′ = vs π, (2)

where in the last step we have used the Gibbs-Duhem equation
and thus that the volume per particle of pure solvent is vs =
V
N = ( ∂μ

pure
s

∂P )
T

. Combining this last equation with Eqs. (1)
and (2) yields the relation that formally relates the osmotic
pressure to the chemical potential of the solvent:

π = −�μs

vs
. (3)

Since the solvent flows toward regions of lower chemical
potential, the minus in Eq. (3) indicates that the solvent flows
toward regions of larger π . Furthermore, since π is directly
related to the pressure exerted by the solute, we see that the
solvent will flow toward regions where the number density of
the solute is largest.

TABLE I. Microgel suspensions used in this paper. The labels
VP and p stand for ionic microgels comprised of 2-vinylpyridine
and for neutral microgels comprised of pNIPAM, respectively. The
crosslinker concentration, and swollen and deswollen diameters,
measured by dynamic light scattering, are cX , d , and dd , respectively.
We also provide the generalized packing fraction ζ f above which the
suspension crystallizes.

Label cX (wt. %) d (nm) dd (nm) ζ f

VP1 � 0.2 1050 ± 21 183 ± 3 -
VP2 ◦ 0.5 1020 ± 21 185 ± 5 1.9 ± 0.1
VP3 � 1.3 705 ± 8 177 ± 2 1.05 ± 0.05
VP4 � 1.6 701 ± 13 181 ± 2 0.87 ± 0.04
VP5 � 1.8 634 ± 8 177 ± 9 0.76 ± 0.03
VP6 � 2.5 545 ± 7 186 ± 3 0.65 ± 0.04
p1 ◦ 2.0 240 ± 3 79 ± 1 -
p2 � 2.0 280 ± 3 71 ± 2 0.58 ± 0.02

III. MATERIALS AND METHODS

A. Experimental system

Our microgel particles are comprised of 2-vinylpyridine
(2VP) and crosslinker divinylbenzene, and are immersed in
water [35]. Their swelling behavior can be controlled via
the suspension pH. For sufficiently low pH, the 2VP groups
ionize, drawing counterions to the inside of the particles. This
raises the internal osmotic pressure driving solvent into the
microgels and causing their swelling. The equilibrium size
results from the balance between this ionic osmotic pressure
and the elastic stress associated to the crosslinked network
[40,50]. We quantify the swelling behavior using multian-
gle dynamic light scattering [51], finding that for pH < 3.3,
all studied microgels are completely swollen, while they
are deswollen for pH > 4.5 [41]. Swollen and deswollen
diameters are shown in Table I for microgels with differ-
ent crosslinker concentration, cX ; we see that the swollen
size d increases as cX decreases, confirming the role of the
crosslinker in determining swelling equilibrium, while the
deswollen size dd remains essentially the same. We also note
that for 2VP microgels, dd at high pH is comparable to the
collapsed size dc [52]; hence, the swollen-to-collapsed volume
ratio α = ( d

dc
)3 ≈ ( d

dd
)3. For 2VP microgels with cX = 0.2%

and synthesized using the same protocol as those used here,
the network charge is Q = 5 × 106 e−, as obtained by titration
at pH = 3 [52]. Since the total solid fraction resulting from the
synthesis of microgels with different cX is always ≈1%, and
cX is 2.5 wt. % at most, Q is essentially the same at pH = 3
irrespective of cX .

We emphasize that despite in the swollen state the micro-
gels are most ionized, the effective charge per particle is small
due to the presence of counterions inside the particles. As a re-
sult, the repulsive interaction between microgels is weak and
the particles only appreciably interact when their interparticle
distance is comparable to or smaller than d . Consequently,
they behave as soft spheres. In fact, our microgel suspensions
freeze at packing fractions ζ f larger than that for hard-sphere
suspensions; ζ f is thus always larger than 0.49 [1], as shown
in Table I. Suspensions are prepared from a concentrated stock
suspension by dilution to the wanted generalized packing frac-
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FIG. 3. Schematic of the membrane osmometer in the (a) setting
the zero and (b) calibration stages. (c) Osmotic pressure readings
after subsequent injections in a typical calibration. The dashed line
indicates the stationary value, which is the one we take as the definite
osmotic pressure value. (d) Schematic of the membrane osmometer
in the measurement stage.

tion ζ , which we can relate to the density of the 2VP polymer
ρ0, the solvent density ρs, the polymer weight fraction in the
suspension c, and the size ratio α, using ζ = ρs

ρ0
c α. Since

ρs/ρ0 = 0.97 ≈ 1 [52], ζ ≈ c α. The pH of the suspensions
is fixed by adding a few drops of concentrated HCl.

We also use poly-N-isopropilacrylamide (pNIPAM) mi-
crogels; these are synthesized by well-established precipita-
tion polymerization techniques [37,53], where a crosslinker
[N, N ′-methylenebis(acrylamide), BIS, 2 wt %] is added to
the monomer and the reaction initiated using ammonium per-
sulfate (APS) [29,30]. Sodium dodecyl sulfate (SDS) is used
to finely control both the final size and the size polydispersity
of the resulting microgel suspension [54]. Prior to use, the
suspensions are extensively dialyzed to remove the surfactant
and any unreactant monomers.

B. Membrane osmometry

We use a commercial membrane osmometer (Wescor 4200
Colloid Osmometer) to measure the osmotic pressure of mi-
crogel suspensions. The apparatus consists of two chambers
separated by a semipermeable membrane. The pore size of
the membrane is ∼50 nm. The chambers to either side of the
membrane have a volume of ≈350 μl. One of them is coupled
to a pressure transducer that allows converting the mechanical
pressure into an electrical signal, which is then transformed
into a pressure value. The experimental procedure is the fol-
lowing:

(i) Setting the zero: We first fill both chambers with the
same solution, which we call the reference solution, as il-
lustrated in Fig. 3(a). In the work presented here, we use
deionized (DI) water at pH = 3.0 as our reference solution.
We add ∼50 μL of reference solution, allow 30–90 seconds
for the osmometer reading to equilibrate, and repeat the pro-
cess until the reading remains stationary. We associate an
osmotic pressure of zero to the reading of the transducer in
these conditions.

(ii) Calibration: We keep the chamber in contact with the
transducer with the same reference solution and fill the other
chamber with a polymer solution of known osmotic pressure,
as schematically shown in Fig. 3(b). We use Dextran T110 in
DI water at pH = 3.0. The osmotic pressure of this polymer
solution, noted as πdx, is well-known [55,56]. We proceed as
before and progressively introduce the dextran solution until a
steady-state reading is obtained. This typically happens after
four or five injections, as shown in Fig. 3(c). We then calibrate
the transducer reading to the known value of πdx.

(iii) Confirming the zero: We remove the dextran solution
from the corresponding chamber and replace it with the refer-
ence solution to confirm that the osmotic pressure reading is
zero, as it should be.

(iv) Measurement: We introduce the microgel suspension
and determine the suspension osmotic pressure with respect
to the reference solution used in the calibration stage; this
is schematically illustrated in Fig. 3(d). Note that the pH of
the reference solution, the dextran solution, and the microgel
suspension is always 3.0. This assures that the π we measure
for the microgel suspension does not include the contribution
from the excess ions required to set the pH to 3.0.

C. Dialysis

We also determine the suspension osmotic pressure using
dialysis. The dialysis tubing we employ (Spectra/Por 2, Spec-
trum) has a quoted cutoff molecular weight of ∼13 kD. Prior
to use, the tubing is introduced in deionized water and brought
to a temperature slightly below the boiling point of water for
a few seconds to remove undesired iodine ions [57]. This
process is repeated at least three times. Once cleaned, the dial-
ysis tubing is filled with the microgel suspension at pH = 3.0
and at a generalized volume fraction ζ0, corresponding to an
initial osmotic pressure π0. The sample is then introduced in a
dextran solution of known osmotic pressure πdx; see Fig. 4(a)
and 4(b). Since the volume ratio between the external dextran
solution and the microgel suspension is >100, the dextran
solution effectively acts as a particle reservoir. As a result, at
equilibrium, the osmotic pressure of the microgel suspension
is π = πdx. In contrast, the value of ζ will, in general, differ
from ζ0.

IV. RESULTS AND DISCUSSION

A. Dialysis results

The time for the microgel suspension to equilibrate with
the dextran solution depends on the osmotic pressure differ-
ence π0 − πdx. For a microgel suspension at the same ζ0, the
time-dependence of the weight fraction c is more pronounced
for πdx = 50 kPa than for πdx = 2.5 kPa, as shown in Fig. 5(a)
with squares and circles, respectively. In both these cases,
πdx > π0 and thus the solvent flows out of the dialysis tubing,
causing c to increase. If, alternatively, we had πdx < π0, sol-
vent would flow into the dialysis tubing causing c to decrease.

Equilibrium is reached when π = πdx. Note that in this
state, there are suspensions found in fluid or crystalline states,
as shown in Figs. 4(c) and 4(d). To determine c, we use
gravimetric analysis [41]; we carefully extract the dialysis
bags from the dextran reservoir and perform the necessary
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π = 0.12kPa
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π = 0.84kPa

ζ = 0.52
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π = 17.5kPa

ζ = 4.8
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FIG. 4. (a) Dialysis bag (white) immersed in a dextran solution
reservoir. Red arrows indicate that solvent can be exchanged depend-
ing on the osmotic pressure π0 of the sample in the dialysis bag and
of the dextran solution πdx . (b) Series of microgel suspensions im-
mersed in dextran solutions. (c,d) Microgel suspensions synthesized
with cX = 4.0 wt. % and cX = 0.5 wt. %. The microgel suspensions
in the dialysis bags are in either a disordered or in a crystalline
phase. On top of every image we indicate the generalized volume
fraction, ζ , and the osmotic pressure, π , of the microgel suspensions
at equilibrium.

mass measurements. From c, we calculate ζ using the size
ratio α. We also measure the suspension pH.

Interestingly, we always find that the suspension pH >3.0,
as shown with symbols in Figs. 5(b)–5(d) for microgels with
cX = 1.6%, cX = 1.8%, and cX = 2.5%, respectively. We also
see that the equilibrium pH increases with c. In constrast, the
pH of the particle reservoir remains equal to 3.0, as expected.
To understand this result we recall that the dialysis tubing is
permeable to both the solvent and the ions. Hence, at equilib-
rium,

ln ([H+]in) + ln ([OH−]in + [Cl−]in)

= ln ([H+]out) + ln ([OH−]out + [Cl−]out) (4)

where we have treated the ions (H+, OH−, and Cl−) as
an ideal gas. The subindeces in and out refer to inside and
outside the dialysis tubing, respectively. We further impose
electroneutrality on both sides of the dialysis tubing, and thus

[H+]in + f · [M] = [OH−]in + [Cl−]in,

[H+]out = [OH−]out + [Cl−]out (5)

where f represents the fraction of ionized monomer inside
the microgel particle and [M] is the total concentration of
ionizable groups. We estimate [M] from c and the molecular
weight of the 2VP monomer, Mw = 105.14 g/mol, assuming
that the density of swollen microgel suspensions is equal to
the solvent density: [M] = ρs c

Mw
. Combining Eqs. (4) and (5),
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FIG. 5. (a) Polymer weight fraction c of a microgel suspension
inside the dialysis tubing as a function of the time inside dextran
reservoirs at osmotic pressures πdx = 2.5 kPa (circles) and πdx = 50
kPa (squares). The dashed lines indicate that equilibrium has been
attained. (b) Suspension pH versus c for samples (b) VP4, (c) VP5,
and (d) VP6. Black solid lines represent the prediction from Eq. (6)
using f = 0.8 and [H+]out = 1 mM. The dashed lines are the pre-
dictions for [H+]out = 2.9 (upper curve) and [H+]out = 3.1 (lower
curve), corresponding to the error in our pH measurements.

we can solve for [H+]in:

[H+]in = 1
2

( − f · [M] +
√

( f · [M])2 + 4[H+]2
out

)
. (6)

The associated pH is pHin = −log10([H+]in). We now use
that pHout = −log10([H+]out) = 3.0 and fit pHin versus c us-
ing Eq. (6), with f as a fitting parameter. The solid lines in
Figs. 5(b) and 5(d) are the results from the fit and describe the
experimental results reasonably well. We find f ≈ 0.8 in all
cases, reflecting that at these pHs, the number of 2VP groups
in the particles that are ionized is high. The dashed lines in
Figs. 5(b-d) are the expectations from Eq. (6) for f = 0.8
also, but with pHout = 2.9 or pHout = 3.1, which account for
the experimental uncertainty in pHout. The data points all
lie within these lines. We emphasize, however, that as pHin
increases, we expect f to decrease. Our model bypasses this
fact by fixing a value of f that is high, but not 1, to reach a
compromise to the possible f variation.

More importantly, our model provides the option to set the
value of pHout such that at equilibrium pHin = 3.0; this is a
desirable aspect if we want to obtain π at fixed pHin. Our
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model thus provides the way to adjust pHout to obtain how
π depends on ζ at a fixed pH of say 3.0.

In addition, these experiments and our modeling confirm
that the suspension is locally electroneutral and that the coun-
terions that are able to leave the microgel, because they may
be attracted with a strength of order kBT , remain within the
vicinity of where the microgel particles are [24,58]. They do
not leave, for instance, to the dextran reservoir outside the
dialysis bag; at most, they might exchange with other equally
charged ions. This further implies that in the membrane os-
mometry experiments, the number of counterions does not
change, remaining essentially constant in the chamber where
the microgel suspension is located. Hence, by fixing the pH to
3.0 on both sides of the membrane, we assure we measure the
suspension osmotic pressure without the contribution from the
ions used to set up the pH value of the samples.

B. Osmotic pressure of ionic microgel suspensions

The osmotic pressure determined via membrane osmom-
etry versus ζ for all VP microgels in Table I is shown in
Figs. 6(a-f). The experimental ζ range explored spans from
∼0.01 to ∼3 and includes fluid, fluid-crystal coexistence, and
crystalline phases. We also measure π using dialysis. In this
case, we use Eq. (6) to calculate pHout so the equilibrium
pH inside the dialysis tubing is 3.0. We find that the dialy-
sis (crossed symbols) and membrane osmometry experiments
compare well in the ζ range where these overlap, as shown in
Figs. 6(a)–6(f) for 2VP microgels with different cX . Note that
we plot the dimensionless pressure πv0

kBT versus ζ , as for hard
sphere suspensions πv0

kBT is a universal function of φ.
In the dilute limit, where ideal behavior must hold, π =

kBT
v0

ζ . However, if, for example, we consider VP microgels
with cX = 2.5%, we have v0 = 4 × 10−20 m3 and would
expect π ∼ 2 Pa at ζ = 0.01. In contrast, we find that the
measured osmotic pressure is more than three orders of mag-
nitude larger. Additionally, in this low concentration regime
and based on ideal gas expectations, π ∝ ζ

v0
[48]; we also do

not observe this experimentally. These results suggest that the
origin of π in our suspension is not related to the translational
degrees of freedom of the microgel particles. Since the only
other particles that can potentially contribute are the free ions
in solution, we then consider an ionic microgel and its asso-
ciated counterions [25]. Due to the size difference between
the microgel and the counterions, one can think of the charge
on the polymer network in terms of a Donnan potential that
decays to zero in the vicinity of the particle (see Fig. 7). This

decay defines a characteristic length scale κ−1 =
√

(d/2)3

2lBQ ,
where lB is the Bjerrum length, and implies that some of the
counterions that are required to assure electroneutrality will
be attracted to the microgel particle with a strength of order of
kBT . These ions can then escape from the particle for entropic
reasons and contribute to the suspension osmotic pressure. We
estimate the fraction, �, of these ions as [25]

� =
(
κ−1 + d

2

)3 − (
d
2

)3

(
d
2

)3 ≈ 6
κ−1

d
= 3

2

√
d

lBQ
, (7)
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FIG. 6. (a-f) Normalized osmotic pressure versus ζ correspond-
ing to samples VP1–VP6. Symbols represent experimental data from
membrane osmometry (noncrossed symbols) and dialysis (crossed
symbols). The solid line is the best fit to Eq. (8) for ζ < 0.63.

where we have used that κ−1 << d . By treating these ions as
an ideal gas, we can write their contribution to the suspension
osmotic pressure in terms of the microgel volume fraction:

πc(φ) = kBT
�QN

V − Nv0
= kBT

�Q

v0

φ

1 − φ
, (8)

where �Q is the number of free counterions per microgel
contributing to π and V − Nv0 is the volume that is available
to them; note that it is φ that enters in Eq. (8). Considering
that φ ≈ ζ for ζ � 0.63, we can fit the data in Figs. 6(a-f)
with �Q as a free parameter. We find that the model describes
the experiment. Furthermore, �Q is well described by Eq. (7)
[48].

Interestingly, this ionic contribution also determines the os-
motic pressure of pNIPAM microgel suspensions. In contrast
to VP microgels, pNIPAM microgels are considered neutral,
since their swelling is not affected by variations of the suspen-
sion pH. The pNIPAM microgels used here all have a similar
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FIG. 7. Illustration of the Donnan potential inside a swollen ionic
microgel and its smooth decay at the outer regions of the particle.

mass, mp ≈ 6.4 × 10−16 g [29], and are synthesized via pre-
cipitation polymerization using a constant amount of initiator,
mAPS = 0.228 g. The molecular weight of APS, (NH4)2S2O8,
is MAPS = 228 g/mol. Now, since these neutral pNIPAM
microgels contain SO−

3 groups, which originate from the ini-
tiator, residing at the periphery of the particles [53], there must
be an equal number of NH+

4 counterions in solution due to
electroneutrality. The total number of counterions per particle
can be estimated as

QpNIPAM = 2
NAmpmAPS

mMAPS
= 6.8 × 104 , (9)

where m = 11.33 g is the total mass of all reactants used in the
synthesis and NA = 6.022 × 1023 mol−1 is Avogadro’s num-
ber. The quantity mpmAPS/m represents the fraction of APS
incorporated per microgels, and the 2 in the prefactor accounts
for the fact that every molecule of APS has 2 associated NH+

4
counterions.

These counterions are located mainly in a double layer at
the particle periphery; those attracted with an energy � kBT
can leave the microgel. Assuming these ions behave as an
ideal gas, we expect that for low-ζ values, the osmotic pres-
sure would increase linearly with ζ and that the slope of the
line is related to the number of free counterions in suspension:

πv0

kBT
= Qfreeζ . (10)

As an example, we plot in Fig. 8 the values of the osmotic
pressure π measured using membrane osmometry for two
suspensions of pNIPAM microgels, p1 (blue circles), and p2
(green squares); in the swollen state the diameters of these
microgels are 240 and 280 nm, respectively. Both microgels
are synthesized with cX = 2 wt %. In these measurements, the
reference solution was deionized water at pH = 7.0 and 20 ◦C.
By comparing the results of the measurements in Figs. 6 and
8, we find that the osmotic pressure values of the pNIPAM and
2VP microgel suspensions are of the same order of magnitude.
In contrast to the suspensions of 2VP microgels, however, π

FIG. 8. Normalized osmotic pressure versus ζ for pNIPAM mi-
crogel suspensions comprised of particles with a diameter of 240 nm
(circles) and 280 nm (squares). The lines are linear fits to the data
according to Eq. (10).

increases linearly with ζ for the pNIPAM microgel suspen-
sions.

The solid black lines in Fig. 8 represent linear fits of the
data. From the slope of the fits, we find Qfree,p1 = (6.0 ±
0.7) × 103 and Qfree,p1 = (8 ± 1) · 103. This indicates that
for both pNIPAM microgels, the counterions that leave the
particle are ≈10% of the total, consistent with previous find-
ings [29].

The observed linearity in the probed ζ range can be un-
derstood from the fact that, in contrast to ionic microgels,
pNIPAM microgels have a neutral network and thus there
is no Donnan potential; the ions can then locate both inside
and outside the particles [29,30,59]. Increasing the particle
number density proportionally increases the number of free
ions per particle, and since these can explore the inside and
outside of the microgels, π should increase linearly with ζ .

The picture that emerges is that inside the VP microgels,
which posses a charged network that in the continuum limit
result in a Donnan potential, there are strongly bound coun-
terions. At the interface of the microgels, however, there is
an electric double layer with some weakly bound counterions
that are able to escape to increase their entropy; these ions
seem to control the osmotic pressure of the suspension. This
results in an unbalance of charges producing an effective
charge. Note that this effective charge is small relative to the
network charge; we find there are O(103) ions that contribute
to π , while the network charge Q is O(106). The fact that
� is O(10−3) explains (i) why the swelling of individual
microgels is correctly described by assuming the microgel is
electroneutral when these are in dilute suspension [27,52,60]
and (ii) why the osmotic pressure of these effectively free ions
overwhelms the contribution associated to the translational
degrees of freedom of the particles, as there are O(103) ions
that escape per microgel particle.

Interestingly, the existence of an effective charge enables
looking at our results from the perspective of charge renor-
malization theories [61], which were originally developed to
understand how the surface charge of hard colloids is renor-
malized due to the presence of ions and other particles with
their double layers in suspension.

012609-8



OSMOTIC PRESSURE OF SUSPENSIONS COMPRISED OF … PHYSICAL REVIEW E 103, 012609 (2021)

In this context, there is a maximum effective surface
charge that is feasible within the Debye-Hückel approxima-
tion, which applies when the renormalized charge, which is
small, is taken into account in substitution of the surface
bare charge of the particles. Hence, there is a corresponding
maximum osmotic pressure from those ions that leak out of
the particles [62]. This result follows from geometry and the
fact that the Coulomb energies generated by the escaping ions
cannot get much larger than kBT [63]. The maximum free
charge that is obtained is [62] ∼1.75z(d/lB)2, with z the va-
lence of the free ions. In our case, z = 1, since the counterions
of the VP microgels are Cl− ions. Considering now that the
diameter of the smallest microgel studied is d = 240 nm, we
find that the maximum number of free ions is of order 105,
which is larger than the 103 we find experimentally. There-
fore, our results are within the limits prescribed by charge
renormalization theories.

C. φ − ζ relationship and microgel shrinkage at high ζ

In compressible-particle suspensions such as microgel sus-
pensions, the particle volume generally depends on φ [64]. As
a result, quantifying φ can be challenging. Yet, it is highly
desirable since φ is a relevant thermodynamic variable of the
system. To do this, we need to determine v(φ). This can be
done at high ρ using small-angle neutron scattering combined
with contrast matching techniques [28–30,33,65–68]. Quite
generally, in an elastic scattering experiment, the measured
intensity contains information on both the architecture and
shape of the single scattering object and the particle arrange-
ment in the sample; these are, respectively, related to the form
factor, P(q), with q the scattering momentum transfer and the
structure factor, S(q). The idea behind contrast matching is
to use the difference in neutron-scattering length between hy-
drogen (−3.74 × 10−15 m) and deuterium (6.67 × 10−15 m)
[69] to eliminate the part of the scattered intensity coming
from the structure factor. In this case, S(q) = 1, and we can
directly determine the form factor of the compressible parti-
cles in crowded environments, which can be used to further
determine how the particle volume changes with φ. The ad-
vantage of neutron scattering is that the use of deuterated
and/or hydrogenated molecules does not significantly change
the chemistry of the samples but allows fine tuning of the con-
trast of the suspensions. Note that in light- or x-ray scattering,
tuning the sample contrast requires using different solvents
to, for example, change the relative refractive index of the
suspension.

Contrast variation in neutron-scattering experiments can
be achieved using the so called tracing method or the zero
average contrast (ZAC) method. The tracing method consists
in suspending a small amount of hydrogenated microgels in a
sea of deuterated microgels that are contrast-matched with a
H2O/D2O mixture [28,29,33]. Therefore, the form factor of
the hydrogenated microgels can be probed directly at high
concentration and fitted with appropriate models to obtain
both the characteristic length scales within the microgels and
the microgel radius and suspension polydispersity, which then
allows obtaining the microgel volume [29,33].

The ZAC method relies on measuring the scattered in-
tensity of a suspension composed of a 50/50 mixture (by

number) of identical hydrogenated and deuterated microgels
[28,67,68]. It can be shown that once the particles are sus-
pended in a ≈50 wt %–50 wt % mixture of H2O/D2O, S(q) =
1 and the measured scattered intensity is proportional to the
average form factor of the two species mixed in solution [67].
Once this form factor is obtained, the structural information
of the particle can be obtained by fitting it with proper models
[28,67].

It is important to note that while for the ZAC method
the use of identical particles is essential, since an average
form factor is measured, in the tracing method this is not
necessary since the signal of the deuterated particles is com-
pletely contrast-matched. Therefore, in the tracing method,
the deuterated particles can be used to crowd compressible
microgels with both different sizes [29] and internal architec-
ture to determine their response to crowding [33,65].

In addition to scattering techniques, super-resolution
fluorescent microscopy (SRFM) has shown to be a pow-
erful experimental tool to directly image microgels in real
space [70–74]. It has to be noted, anyhow, that SRFM
requires the fluorescent labeling of the particles. This
can be achieved by adding free amines, e.g., using N-
(3-aminopropyl)methacrylamide hydrochloride (APMA) as
comonomer. Any dye that is amine reactive, such as N-
hydroxysuccinimide (NHS) ester varieties, can be added at a
later stage [72]. Whether the additional comonomer changes
the crosslinking of the polymeric network and, therefore, the
bulk modulus of the microgels, has not yet been investigated.
Furthermore, these microscopy techniques require that the
observed microgels are immobilized. This can be achieved in
a crowded environment [72,73], but in dilute and semidilute
conditions the compressible particles must be adsorbed onto
a solid substrate [70,71,74]. When soft particles adsorb onto
solid substrates they deform [75]. Consequently, the compar-
ison between these measurements and the structure of the
particles in bulk is sometimes not that easy.

Another fact that must be considered is that to induce
the blinking of the dye, samples for SRFM have to be pre-
pared with the addition of salt, typically mercaptoethylamine
[70,72,73], which limits the experimental conditions at which
SRFM can be performed.

Finally, we mention that methods to achieve an in silico
synthesis of microgels have been recently developed [76–79].
In contrast to simulation based on an ideal lattice model, these
methods lead to reliable internal structures (with different
topology and chain lengths of the polymeric network) and
swelling behavior of the simulated microgels [80].

Unfortunately, computer simulations are still limited both
in the total size of the microgels that can be simulated and
in the number of microgels that can be simulated at the same
time. Nevertheless, insights on the particle-to-particle effec-
tive interaction potential have already been achieved [81].
These results can be useful to rationalize the variation of the
volume of the microgels with increasing packing fraction.

A completely different way to obtain φ is to use the
measured π and the counterion model accounting for π at
relatively low φ [48]. The strategy is based on the fact that,
experimentally, we measure π = π (ζ ), while Eq. (8) provides
πc = πc(φ). Since the osmotic pressure is determined by the
counterions, π (ζ ) = πc(φ). From the measured π at certain
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(b) (c)(a)

ζ−1

FIG. 9. (a) φ − ζ relation obtained from the mapping of the measured osmotic pressure and the model osmotic pressure described by
Eq. (8) for VP1, VP4, and VP6 microgels. The solid line corresponds to φ = ζ . (b) Relative volume change of individual microgels as function
of ζ . The solid line is the limiting case, v(ζ ) ∼ ζ−1, when only isotropic shrinking happens. (c) Relative volume change as function of φ. In
all panels: (circles) VP1, (down triangles) VP4, and (squares) VP6 microgels.

ζ , and the model in Eq. (8), we can then map ζ onto φ.
Figure 9(a) shows this mapping for three suspensions com-
prised of 2VP microgels with different cX . Note that ζ = φ

for ζ up to approximately random close packing, as indicated
with the solid line in Fig. 9(a). Interestingly, for cX = 1.6%
and cX = 2.5% the mapping follows this solid line up to ζ ∼
0.83 and ∼0.78, respectively, indicating that these microgels
keep their volume even above random close packing. This be-
havior is qualitatively reproduced by Monte Carlo simulations
of ionic microgels at high packing fractions approximated
with the Flory-Rehner theory and interacting via a Hertzian
potential [82].

Therefore, at these high concentrations, the microgels
first change their shape without appreciable deswelling
[72,73,83,84]. This is consistent with crosslinked polymer
networks having a shear modulus that is typically much
smaller than their bulk modulus [85]. The concave-down
shape of the φ − ζ data also reflects this fact: the curvature
of the φ − ζ data reflects its tendency to stay close to the
φ − ζ line, which corresponds to a lack of compression, em-
phasizing that changing shape at constant volume is easier
than changing volume at constant shape. Interestingly, for the
softest microgel (cX = 0.2%), the deviation from the solid
line occurs at a φ below which particle-particle contacts are
forced due to steric constrains, which is expected for soft
particles that shrink due to the osmotic pressure of the ions
[29].

Note that in our case, deswelling happens at larger gener-
alized packing fractions compared to prior works with also
ionic microgels [25,86]. These other microgels have a similar
swelling ratio compared to our microgels; hence, it is reason-
able to assume they have a stiffness that is comparable to the
stiffness of our particles. The key difference, however, resides
in the values of �. While the � values for our microgels are
within 2.2 × 10−3 and 1 × 10−3, the � values in Refs. [25,86]
are at least 3 × 10−2, which is an order of magnitude larger.
Hence, counterion-induced deswelling is expected to occur
earlier for the ionic microgels used in Refs. [25,86] than for
our microgels.

We also note that for ζ > 1, the normalized osmotic pres-
sure shown in Fig. 6 grows much more strongly than linearly.
This suggests that the counterions are not uniformly dis-
tributed in the suspension volume, as πv0/(kBT ) would grow
linearly with ζ in this case; this supports the φ − ζ mapping
performed, which relies on the fact that the osmotic pressure

is determined by the counterions in the free volume outside
the microgel particles.

Importantly, though, for φ = 1 − �, we expect that the
osmotic pressure inside the microgels, πinside, becomes equal
to the pressure exerted by the counterions, πc:

� = 1 − φ → πinsidev0

kBT
= Q(1 − �) = Qφ

πcv0

kBT
= �Qφ

1 − φ
= Qφ = πinsidev0

kBT
. (11)

This condition then provides the volume fraction above
which counterion-induced deswelling is expected to stop play-
ing a role. It is at the φ given by this condition that the
counterions become uniformly distributed throughout all the
suspension volume. Since � is of order 10−3 in our case, the
corresponding φ for this to happen is very high and above
those reached in our experiments. Note this also explains why
in Ref. [86] a jamming transition is observed after a glass
transition; this happens at packing fractions where counterion-
induced deswelling no longer has a major effect, allowing
steric effects to become dominant in controlling suspension
behavior. We have not seen traces of this phenomena in our
data.

From the values of φ and ζ , we calculate v/v0 = φ/ζ

[48]. When plotted versus ζ , we see that v/v0 decreases for
sufficiently large ζ , indicating the microgel compression. We
reach the v(ζ ) ∝ ζ−1 regime expected for pure isotropic com-
pression at high ζ , as shown by the solid line in Fig. 9(b).
Hence, the microgels both change shape and volume at high
ζ . There might, however, be some mild interpenetration as the
particles both change shape and shrink [72,73,83].

When v/v0 is plotted against φ, Fig. 9(c), the concave-
down slope of the data emphasizes again that microgels can
more easily change shape than compress. We can also obtain
the volume fraction at which the microgel volume begins to
shrink, φs. To determine φs, we fit a straight line to the 4
points closest to the v/v0 = 1 line having v(φ)/v0 � 1, as
illustrated in Fig. 9(c) for the VP6 microgels, and calculate
the intersection of both lines. We find that within error, φs

is independent of d [see Fig. 10(a)], and thus of cX and the
microgel stiffness.

This can be understood from the fact that for microgel com-
pression to occur, the osmotic pressure must be comparable to
the microgel bulk modulus Kp. In our suspensions, π is due
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FIG. 10. (a) Packing fraction φs where microgel shrinking begins
as a function of the microgel swollen diameter d . (b) Ratio between
the osmotic pressure at which microgels begin to shrink πS = π (φs)
and the prefactor, �Q/v0, of πc.

to the counterions, which scales with d as πc ∝ d−5/2. The
microgel bulk modulus also depends on microgel size; it is an
energy density after all. Provided that the characteristic energy
scale does not change as the particle compresses, we expect
that Kp should scale with d as Kp ∝ d−3. As a result, the vol-
ume fraction where the microgels shrink remain only weakly
dependent on d , consistent with the lack of a clear trend in
our experimental results. We emphasize that the results are
largely independent of the method used to obtain φs from the
v/v0 versus φ curve.

Consistent with the interplay between π and Kp in de-
termining microgel deswelling, we note that the condition
Kp < π is satisfied in the two cases for which we have mea-
surements of Kp. We previously found that Kp = (1.6 ± 0.1)
kPa for cX = 1.3% and (0.4 ± 0.02) kPa for cX = 0.5% [40],
which are slightly smaller than the pressure at φs, πS =
π (φs) = 2.1 ± 0.4 kPa and (1.1 ± 0.4) kPa, respectively.
These ideas to understand when microgels compress suggest
that the ratio between πs, corresponding to the osmotic pres-
sure where compression begins, which depends on Kp, and the
osmotic pressure, should only show a weak dependence on d

and thus on cX . Consistent with this expectation, πS
�Q/v0

shows
no dependence on d , as shown in Fig. 10(b).

Therefore, it is the balance between the suspension osmotic
pressure and the microgel bulk modulus what determines
when the microgels appreciably compress. Certainly, for φ >

φrcp, steric effects should begin to play a role and could poten-
tially compete with counterion-induced deswelling. However,
we believe the latter dominates the behavior. To address this,
we begin by considering that the magnitude of microgel-
microgel interactions will be approximatively given by the
single-particle bulk modulus, Kp, times the strain experienced
by the microgels, γ . From the literature [40], we know Kp

is of order 1 kPa, and that the strain γ = �d/d , with �d the
change in d , is considerably small. Hence Kpγ < πc and steric
effects are expected to play a secondary role compared to
counterion-induced deswelling, indicating that the suspension
osmotic pressure is essentially equal to πc, even at values of
packing fraction above random close packing.

Finally, the constancy of πSv0/(�Q) in Fig. 10(b), suggests
that when v0 decreases, corresponding to more crosslinked
microgels, �Q must also decrease. Since the value of Q is
constant, irrespective of cX , we conclude that � is smaller for
larger cX . This fact could be exploited in applications where
counterion-induced deswelling is not desireable, and large
particle volume fractions are desired with the least number
of microgel particles; this could allow, for example, achieving
changes in suspension rheology with less amount of material
compared to what would be needed if counterion-induced
deswelling was at play.

D. Improved model for the counterion osmotic pressure

The initial assumption in the counterion model is that �

is independent of ζ . This is not true at high concentrations,
where, as we have seen, the volume of the microgel is not
constant. As a result, � changes. We then follow an iterative
procedure to obtain �(ζ ) from the v = v(ζ ) obtained in the
previous section, where we assumed � was constant, and
iteratively repeat the process until the answer converges.

We then start with a constant � for v = v0, shown in
Fig. 11(a) with a dashed line, an associated fit of the ex-
perimental π to Eq. (8), shown with the solid black line in
Fig. 11(b), the φ − ζ relation, shown with circles in Fig. 11(c),
and the v = v(φ) curve, shown with circles in Fig. 11(d). We
then take the v(φ) obtained, and calculate �(φ) using �(v) =
( 9

2
√

π
)1/3 v1/3

lBQ , where we have substituted κ−1 = 0.5
√

v
π lBQ .

The result is shown with triangles in Fig. 11(a). We find that
�/v changes by a factor of ∼2 with respect to the initial �.

We then calculate πc using

πc = kBT
�(v)Q

v

φ

1 − φ
(12)

and obtain that the difference between the new πc and the
initial one is not large, as shown with a blue line in Fig. 11(b).
The resultant change in the π − ζ mapping and v(φ) relation
is shown with triangles in Figs. 11(b)–11(d). A third iteration
leaves the result unchanged [squares in Fig. 11(a) and red line
in Fig. 11(b)]. Note that the φ − ζ and v(φ) relation remain
qualitatively unchanged, suggesting the conclusions from the
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FIG. 11. (a) Normalized fraction of unbounded counterions
times the microgel volume versus ζ after two iterations using
Eq. (12). The dashed line corresponds to the initial condition for the
iterative model. The triangles are the results after the first iteration
while the squares correspond to the results after the second iteration.
(b) Osmotic pressure for suspensions comprised of VP5 microgels
and fits obtained after each iteration. (c) φ − ζ mapping for each it-
eration. (d) Relative volume change as a function of packing fraction
for each iteration. In panels (c) and (d), circles, triangles, and squares
correspond to the initial condition, and the first and second iterations,
respectively.

simpler analysis in the previous section remain essentially
unchanged [squares versus triangles in Figs. 11(c) and 11(d)].

V. CONCLUSIONS

We have performed careful dialysis to obtain the osmotic
pressure of microgel suspensions and compared the results
with those obtained using membrane osmometry, finding ex-
cellent agreement between the two. In doing so, we have
presented basic thermodynamic aspects on how π is related
to the solvent chemical potential, and used these ideas to
understand the behavior of ionic-microgel suspensions. Our
mesasurements indicate that the free ions in solution control
the osmotic pressure of the suspensions. Note that this is true
for ionic microgels (with charges distributed along all the
polymeric networks) but also for neutral microgels since they
possess charges in the particle periphery due to the polar ini-
tiator used in the precipitation polymerization synthesis [53].

This is particularly important for microgel suspensions since
microgels are compressible and can shrink in response to an
unbalanced osmotic pressure inside and outside the particles
[29,45,59,60,78].

By combining membrane osmometry and dialysis results,
we have proven the significance of the Donnan equilibrium
conditions as well as the consistency with charge renormal-
ization ideas [61,63]. From the experiments, we have used π

to obtain how φ depends on ζ . This approach further allows
determining the volume change of the microgels as a function
of packing fraction, which depends on the mechanical prop-
erties of particles; the shape of the microgel volume versus
φ curves we have obtained indicates that these particles can
change shape more easily than they can compress, and thus
have a shear modulus that is smaller than the bulk modulus.
A similar behavior has been observed for larger microgels
visualized in a confocal microscope [83].

Our model can further be used to explore the role of
osmotic pressure and osmotic deswelling in affecting the
shape of different microgel particles. Recent advances in the
synthetic protocols allow obtaining microgels with different
internal structures, including hollow microgels, which are
polymeric networks with a solvent-filled cavity in their cen-
ter. Similar to regular microgels, these hollow soft particles
can be synthesized with both charges along all the polymer
backbone (ionic hollow microgels) [87] or with charges solely
concentrated at the external periphery of the shells and that
are due to the polar initiators used in the synthesis (neutral
hollow microgels) [33]. Recent results have shown that the
swelling toward and away from the internal cavity can be
tuned by salt or microgel concentration [65,87]; these effects
are definitively related to the suspension osmotic pressure and,
therefore, as demonstrated here, to the concentration of ions in
suspension.

Finally, we mention that even in suspensions of microgels
considered neutral, the osmotic pressure is governed at low
concentrations by the free ions derived from the polar initiator
used in the synthesis. This means that the use of, namely,
neutral microgels as model systems for truly soft spheres must
be carefully analyzed to fully understand which properties in
their phase behavior are due to the structural softness and
which properties are due to ionic effects. These problems
can be better studied and rationalized either by developing
new model systems for truly neutral and soft spheres, for
example, by using an apolar initiator, or by dramatically min-
imizing the amount of charges incorporated to the microgel
periphery.
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