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Nonequilibrium pattern formation in circularly confined two-dimensional
systems with competing interactions
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We numerically investigate the nonequilibrium behaviors of classic particles with competing interactions
confined in a two-dimensional logarithmic trap. We reveal a quench-induced surprising dynamics exhibiting rich
dynamic patterns depending upon confinement strength and trap size, which is attributed to the time-dependent
competition between interparticle repulsions and attractions under a circular confinement. Moreover, in the
collectively diffusive motions of the particles, we find that the emergence of dynamic structure transformation
coincides with a diffusive mode transition from superdiffusion to subdiffusion. These findings are likely useful
in understanding the pattern selection and evolution in various chemical and biological systems in addition to
modulated systems, and add a new route to tailoring the morphology of pattern-forming systems.
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I. INTRODUCTION

The systems with competing interactions exhibit a set of
interesting equilibrium and nonequilibrium structures show-
ing spatial modulation, a periodic deviation or deformation
of one basic structure with space-group symmetry, which
has attracted a large amount of experimental and theoreti-
cal attention [1–3]. In equilibrium, the presence of regular
spatial patterns is attributed to a compromise of competing
interactions [4–13]. That is, the formation of discrete clus-
ters is induced by short-range attractions, and the long-range
ordering of a modulated structure is stabilized by interpar-
ticle repulsions. It has been established that, for a certain
particle-particle interaction potential, particle density will be-
come an exact controlling parameter for the formation of
modulated structures [10,11]. With increasing particle den-
sity, two-dimensional (2D) modulated systems form ordered
clumps and stripes consisting of internally ordered particles,
anticlumps surrounded by hexagonally arranged particles, and
an ordered particle lattice [4,10,11]. In the three-dimensional
(3D) case, modulated systems show the following sequence of
ordered phases with increasing volume fraction of particles:
spherical clusters, cylindrical clusters, gyroid network of par-
ticles, layers of particles, gyroid network of voids, cylindrical
voids and spherical voids [14–17]. In nonequilibrium, it has
been found that modulated systems can also form various
dynamical structures or patterns depending upon the previous
history of the systems [6,18–21]. For example, in a moving
modulated system with quenched disorders driven by external
forces or fields, simulations show that depending on the mag-
nitude of pinning force two distinct moving steady states arise
at high drives [18]: For weaker pinning, the moving particles
show labyrinth patterns induced by the transverse instability
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in the system [1,22]. For stronger pinning, the transverse
modes are effectively suppressed by drives, so the particle
motion becomes frozen in the direction perpendicular to the
drive [23]. Consequently, the moving particles form ordered
stripelike patterns.

On the other hand, new modulated structures with dis-
tinct ordering can be produced by adding a confinement or
trap [14,15,24–37]. For example, in quasi-one-dimensional
channel-like confinements, it has been found that the oc-
currence of incommensurability between the periodicity of
modulated structures and the width of channel causes the
structural distortion of particle clusters for minimizing the
total energy [14,24,25], inducing various types of ordered
structures consisting of deformed (elongated or kinked) clus-
ters [26,27]. Moreover, for such confined systems, McDermott
and coauthors show that regular metastable structures are
formed by using quasistatic compression-decompression [38].
This suggests that the structural morphology of pattern for-
mation systems can be created by a dynamic procedure. In
addition to trap size, trap shape is also crucial in determining
the equilibrium structures of modulated systems. In modu-
lated systems with a circular trap, it has been numerically
demonstrated that the systems form a variety of equilibrium
configurations with concentric arrangements consisting of ei-
ther clumps or stripes or rings [28–37]. The formation of such
ringlike cluster structures is owing to the ordering competition
between the confinement boundary and the ground-state struc-
ture for the corresponding infinite system, which produces
a preordering structure which inherits properties from both
incompatible structures [39]. In contrast to the equilibrium
physical property of circularly confined modulated systems,
far less is known about the corresponding nonequilibrium
behaviors under varying external fields. Specially, it is unclear
whether new pattern formation phenomena present and how
the confinement affects the structural evolution of the systems
in nonequilibrium.

2470-0045/2021/103(1)/012604(9) 012604-1 ©2021 American Physical Society

https://orcid.org/0000-0001-9750-0789
https://orcid.org/0000-0002-9364-2891
https://orcid.org/0000-0002-6599-1875
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.103.012604&domain=pdf&date_stamp=2021-01-08
https://doi.org/10.1103/PhysRevE.103.012604


XU, TANG, WANG, XU, FANG, AND GU PHYSICAL REVIEW E 103, 012604 (2021)

FIG. 1. Particle positions and velocities at different times for the modulated system undergoing expansion by applying a sudden jump of
confinement strength from βs = 15.1 to β f = 0.1. Only one quarter of the sample is shown for clarity, while the inserts show the entire area.
Both the color code and the arrow length indicate the magnitude of particle velocity. The arrow shows the instantaneous direction of motion,
and its tail is at the particle position. The times t at which the figures were taken are as follows: (a) t = 0, (b) t = 1, (c) t = 2, (d) t = 3,
(e) t = 4, (f) t = 6, (g) t = 9, (h) t = 13, and (i) t = 100. See Supplementary Movie S1 for a movie of the entire explosion sequence [46].

Here, we will focus on a two-dimensional modulated sys-
tem confined in a circularly logarithmic trap [37]. In order
to control the dynamics of modulated systems, the initial
nonequilibrium state is prepared by using a rapid change
or quench in the confining strength of the trap. The system
then evolves toward its final equilibrium state, which is qua-
siordered clumps consisting of particles [37]. We reveal a
novel dynamics for an equilibrium single-clump system, man-
ifesting as various long-lasting dynamic structures including
concentric particle rings, stripes, and a ringlike arrangement
of clumps, as well as reticulation structures depending on con-
finement strength and trap size. These patterns are similar to
those occurring in Coulomb and colloidal explosions [40–44].
For laser-driven atomic cluster explosion, a large number
of electrons leave an atom cluster held together due to van
der Waals forces, and the excess positive charge remains
inside. This drives the expansion of the cluster in a hydro-
dynamic manner [42]. Similarly, for an aggregated colloid
cluster which trapped by optical laser tweezers, by using
long-range repulsive magnetic fields, a pattern of concen-

tric rings induced by the initial shell-like ordering of the
colloidshas been observed [43]. Moreover, we find that the
dynamic ring-to-stripe structural transformation occurs along
with a superdiffusion-to-subdiffusion mode transition in the
collectively diffusive motions of the particles. These findings
will provide insights into the nature of the nonequilibrium
dynamics of the system.

II. SIMULATION

We consider a two-dimensional (2D) overdamped
Langevin simulation of a system of pointlike particles
with competing interactions confined in a circular trap.
Such simulation is appropriate for systems like colloids,
superconducting vortices, and magnetic domains [18]. We
do not take into account possible hydrodynamic effects. The
equation of motion for a particle i is

η
dri

dt
= Fpp + Fpt + FT , (1)
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FIG. 2. The sequential trajectories with different durations t for the explosion shown in Fig 1: (a) t = 0 → 1, (b) t = 1 → 5, (c) t = 5 →
10, and (d) t = 10 → 20. In both panels (a) and (b), the central region of the sample is shown for clarity, and the inserts show the entire area.
The insert in panel (d) is the enlarged plot of one local clumplike cluster. The trajectories clearly show collective motions of the particles in
the clump over very short distances.

where η is the viscous drag coefficient which we set to unity,
Fpp and Fpt are the forces due to particle-particle interac-
tions and particle-trap interactions respectively, and FT is the
the thermal stochastic force. The particle-particle interaction
force is given by [10]

F pp(ri j ) = 1

r2
i j

− Be−Cri j , (2)

where ri j is the distance between particles i and j, the first
term is a long-range repulsion, and the second term is a short-
range attraction. The parameter B reflects the relative strength
of attraction to repulsion, and the screening length 1/C de-
termines the attraction range. For the competing interactions,
the long-range repulsive forces (decaying with distance as
1/r2) studied here are due to Coulomb repulsion, while the
nature of the short-range attractive forces varies between sys-
tems. For examples, in layered transition metal oxides, two
holes interact through a potential which is composed of a
repulsive Coulomb and two attractive exponential terms. The
short-range attraction between holes is due to the short-range
antiferromagnetic fluctuations [7]. In low-κ type II supercon-
ducting systems, the short-range intervortex attraction which
is in exponential form arises due to the vortex core-core in-
teraction [11]. Besides, such interaction model could be used
to study colloidal as well as charged-dust systems [30]. The
particles are trapped by a confinement potential with logarith-

mic form, which has been proposed to study the confinement
effects on the phase behaviors of modulated systems [37],

V (r) = −βln(R − r), (3)

where β characterizes the strength (or steepness) of the con-
fining potential, R is the radius of the confinement, and
this applies only for r < R. Correspondingly, the trap ex-
erts a centripetal repulsive force on the particle i, Fpt (ri ) =
−β/(R − ri ). As compared with two typical confinements,
hard-wall potentials [V (r) = 0 for r < R and V (r) = ∞ for
r � R] and soft-wall potentials including harmonic ones, this
confinement model has both definite confining boundary (or
size) and steepness. This confinement may appear in super-
conducting disks and can be artificially implemented by using
an external field or by nanostructuring or etching the sur-
face [37]. The thermal stochastic force is implemented with
a Box-Müller random number generator and has properties
〈F T

i 〉 = 0 and 〈F T
i (t )F T

j (t ′)〉 = 2ηkBT δi jδ(t − t ′) at a given
temperature T . We normalize lengths by l0, forces by f0,
and time by τ = ηl0/ f0. The equation of motion is integrated
by an Euler scheme with a normalized time step of �t =
0.001. We use an efficient method to calculate the long-range
Coulomb repulsion by cutting off the interaction potential
smoothly [45]. We let the cutoff radius Rc = 7.5a0, where a0

is the hexagonal lattice constant for the same particle density.
For Rc > 7.5a0, similar results are obtained. We employ the
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FIG. 3. Temporal and spatial characterization of the explosion dynamics of the modulated system. (a) Time evolution of mean-squared
displacement scaled by the time shows a diffusion crossover from superdiffusive to subdiffusive behaviors at ttr = 2.3τ . (b) Time evolution
of the displacements for four selected particles labeled A, B, C, and D in Fig. 2(c). (c) The radial distribution function g2(r) of the particle
distributions at different times. (d) Time-space plot of average radial density.

total particle number Np = 1936 (for a smaller trap size R,
similar results are obtained with a smaller particle number
N), R = 50 (unless specified otherwise), l0 = 7 × 10−8 m,
f0 = 2 × 10−12 N, τ = 3.5 × 104 s, B = 2, and C = 1. The
initial state of the system is obtained by using a static an-
nealing scheme at a fixed value of confinement strength and
trap size (βs = 15.1 and R = 50). First the particles are put
randomly on a circle box centered at the origin. Then the
system is annealed from a high temperature, which is set to
a value well above the melting temperature displayed by the
system, to zero temperature in a small annealing rate, and
finally forms an equilibrium single-clump cluster consisting
of the particles [37]; see the inset of Fig. 1(a).

III. RESULTS AND DISCUSSION

We first investigate, by tracking the particle motions, the
microscopic process of the modulated system which under-
goes “explosion” in the presence of an abrupt decrease of

confinement strength from βs = 15.1 to β f = 0.1 without de-
lay. As illustrated in Figs. 1(a)–1(i), we present the particle
positions and velocities at different times. Figures 2(a)–2(d)
shows the sequential trajectories with different durations.
The entire explosion sequence can be seen in Supplementary
Movie S1 [46]. It can be found that the system shows a rich va-
riety of patterns, which is already the case in equilibrium [37].
Clearly, the existence of multiple length scales in the interpar-
ticle interaction is crucial for the formation of these structures.
The overall interaction force includes not just two opposite
ranges of interactions but three, namely the (very) short-range
repulsion, intermediate range of attraction, and long-range
repulsion. These ranges are strongly dependent on the balance
of original repulsion and attraction governed by the constants
B and C. The fact that the particles do not have a finite size
but are considered pointlike implies that they can experience
all three ranges.

We find that the explosion dynamics can be characterized
by three stages. The early stage corresponds to the emergence
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of expanding concentric rings (particles are organized in dif-
ferent rings around the center): At t = 0 in Fig. 1(a), the
system forms the initial equilibrium state for β = 15.1, i.e., a
single dense bubblelike cluster structure. After the quench of
confinement strength, it can be found that almost all particles
(except a few particles nearby the trap center) move quickly
outward along the radial direction due to the interparticle re-
pulsions in a very short range [see Fig. 1(b) (t = 1)] and form
expanding concentric rings [see Fig. 2(a)]. This is reminiscent
of the patterns observed in Coulomb explosions [40,41] and in
colloidal explosions [43,44]. For the sake of simplicity, simi-
larly, one can temporally refer to the explosion of modulated
systems (which are sometimes termed as mermaid systems) as
“mermaid explosion” [47].

The intermediate stage corresponds to the continuous for-
mation of expanding concentric stripelike clusters. Figure 1(c)
for t = 2 shows that one ringlike stripe forms in the outer-
most layer of the expanding cluster structure. This suggests
that the interparticle attractions become important for the
relating particles with increasing particle separations. As a
result, particle layering occurs and manifests as the emer-
gence of centripetal movements (in the opposite direction of
expansion) for some particles; see the particle trajectories
in Fig. 2(b). It is worth emphasizing that the formation of
expanding concentric stripes is the signature for mermaid
explosions, in contrast with the expanding concentric rings
for colloidal explosions [43,44]. For further expansion, the
system forms more ringlike stripes with concentric configura-
tions, as shown in Figs. 1(d)–1(f), for t = 3, t = 4, and t = 6,
respectively. The outermost stripe transitions gradually into a
circular arrangement of clumps due to the decrement of local
particle densities.

The late stage corresponds to the structure transformation
from a cluster consisting of concentric stripes and ringlike
arrangement of clumps into quasiordered clumps through an
order-disorder transition mechanism. It is seen that both the
intrastripe and interstripe particle interactions become weak
with the expansion. In this case, even small transverse in-
stabilities or force fluctuations can make particles move out
of the caging well formed by the nearest neighbors. As a
result, obvious transverse motions arise and manifest as twist-
ing or stretching or breaking in the stripes, as illustrated in
Fig. 1(g) (t = 9), but either deformed stripes or clumps are
still organized in different rings around the center. With fur-
ther expansion, the ringlike arrangements will be completely
broken by transverse instabilities and the system structure
gradually evolves into polydisperse domains consisting of
discrete clumps and interconnected and irregular stripes, as
shown in Fig. 1(h) (t = 13). Then the system undergoes a slow
structural relaxation toward its equilibrium state; see Fig. 1(i)
(t = 100). Besides, our simulations show that the ordering of
clumps is not synchronized with intraclump particles. From
the particle trajectories for t = 10 → 20 in Fig. 2(d), one can
find that the clumps move irregularly, while the intraclump
particles show interesting coherently oscillating motions [see
the insert of Fig. 2(d)]. This is due to the fact that the
short-range repulsions between intraclump particles are al-
ways dominant over the long-range repulsions for interclump
particles, leading to a relatively short relaxation time for the

intraclump particles to reach their equilibrium ordered distri-
butions.

To quantitatively investigate the explosion dynamics
of the modulated system, we calculate four time- and
space-dependent functions: (i) the particle mean-squared
displacement (MSD) 〈�r2(t )〉 = (1/N )

∑N
i=1 |r2(t ) − r2(t0)|,

characterizing the dynamic property of particles in the re-
laxation (diffusion) process, (ii) the displacement for particle
i, �ri(t ) = |ri(t ) − ri(0)|, characterizing the motion of the
specifically selected particles, (iii) the radial distribution func-
tion (RDF) g2(r) = πR2

N
�N

2πr�r , where �N is the number of
particles whose distance to the origin point is between r
and r + �r, characterizing the layering properties of the
dynamical structures [48], and (iv) the radial density ρ(r),
characterizing the average number density of the particles
whose distance to the origin point is between r and r +
�r, which can be determined by using the relation ρ(r) =
g2(r) N

πR2 .
It is a standard forced diffusion that the motion of the

particles in an equilibrium single-clump modulated system
with high density undergoing expansion toward the “vacuum”
region in the trap [49]. Basically, the globally driving effect
induced by changing the external confining potential can lead
to superdiffusive behaviors [50–53]. While the intrinsic vis-
cosity of the system and the confining effect via the trap will

FIG. 4. Time evolution of mean-squared displacement scaled by
the time in log-log plot and linear plot (insert): (a) for different
confinement strengths β f at R = 50 and βs = 15.1; (b) for different
trap sizes R at βs = 15.1 and β f = 0.1.
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FIG. 5. Particle positions at different times for the modulated system undergoing expansion by applying a sudden jump of confinement
strength from βs = 15.1 to β f = 2 at R = 50: (a) t = 0, (b) t = 1, (c) t = 2, (d) t = 5, (e) t = 7, and (f) t = 200. See Supplementary Movie
S2 for a movie of the entire explosion sequence [46].

produce subdiffusive behaviors [50,51,54,55]. Clearly, the dif-
fusive behaviors of the expanding system are governed by the
interplay between these effects. This leads to a diffusion mode
transition from superdiffusion to subdiffusion at ttr = 2.3τ

[see Fig. 3(a)], where ttr is the transition time.
On the other hand, the system displays highly dynamic

density inhomogeneity and remarkable instability in the ex-
plosion; see Fig. 2. Naturally, it is expected that the obviously
dynamic disparities arise for different particles depending on
their relative positions in the initial single-clump structure, so
we measure the displacements �r(t ) of four selected particles
located at representative positions of the cluster structure,
labeled A, B, C, and D, as shown in Fig. 2(c). In Fig. 3(b),
for particles A, B, and C, following an initial superdiffusive
regime, we find the particles exhibit subdiffusive behaviors
in the long time. For particle A, for t < 1τ , the �r(t ) shows
a power-law dependence on the time �r(t ) ∼ tα , α = 0.82,
where α describes the particle diffusibility. Similarly, the
�r(t ) for the particles B and C also show a power-law depen-
dence on the time with α = 0.68 and α = 0.58, respectively.
In contrast with particle A, which locates at the outermost
layer of the cluster structure, the existence of stronger caging
effect decreases the particle diffusibility of the particles B and
C. For particle D, which locates in the central area of the trap,
�r(t ) shows the subdiffusive behaviors even in the short time
because of the strong caging effect. For 4τ < t < 5τ , �r(t )
shows a rapid decrement with time. This is attributed to the oc-
currence of particle centripetal movement [see Fig. 2(b)] due
to the instantaneously dominant short-range attractions in the
formation of a clumplike cluster at the trap center. Moreover,
the rapid increment of �r(t ) with time for 7.5τ < t < 19τ

reflects the enhanced particle motility during the stripe-clump
transformation process.

Figure 3(c) shows the radial distribution function g2(r) of
the particle distributions at different times. At t = 1τ , we can
find a series of peaks occur in the g2(r) for r � 29.25l0, indi-
cating the layer ordering of the particles in the early stage of
the explosion. At t = 2.3τ , a main peak with several subpeaks
presents at r = 32, which is a signal of the formation a circular
stripe in the edge of the expanding cluster. The three peaks for
15.75l0 < r < 36.3l0, at t = 3τ , correspond to the concentric
and ringlike stripes in the intermediate stage of the explosion
[see Fig. 1(d)]. While three subpeaks occur in the outermost
main peak (at r ≈ 34.2l0), indicating the intrastripe particles
form ringlike distributions. The g2(r) for t = 6τ shows six
main peaks with near equidistance, which are respectively
produced by five concentric stripes or circular arrangements
of clumps and a central clump [see Fig. 1(f)]. Note that these
main peaks in g2(r) are smoothed at t = 13τ . This indicates
the formation of disordered clumps in the stripe-to-clump
structure transformation in the late stage of the explosion,
as shown in Fig. 1(h). The g2(r) for t = 100τ displays the
reappearance of multiple main peaks with various subpeaks,
signaling the formation of quasiordered clumps with circular
arrangements [see Fig. 1(i)]. Furthermore, we obtain the spa-
tiotemporal evolution of the g2(r, t ) of the moving particles,
as shown in Fig. 3(d). In addition to capturing the structural
transition of the locations of the high- and low-density regions
in the spatiotemporal structure, it consistently confirms the
arrangements of particle rings, particle stripes, and the ring-
like distributions of particle clumps are periodic in different
stages of the explosion. In the short-time regime, g2(r, t )
demonstrates homogeneously and continuously layered dis-
tributions, reflecting the ordering of the dynamic structures
in the early stage of the explosion. In the intermediate-
time regime, g2(r, t ) shows five bright stripes that mark the
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FIG. 6. Particle positions at different times for the modulated system undergoing expansion by applying a sudden jump of confinement
strength from βs = 15.1 to β f = 0.1 at R = 65: (a) t = 0, (b) t = 2, (c) t = 3, (d) t = 6, (e) t = 20, and (f) t = 200. See Supplementary Movie
S3 for a movie of the entire explosion sequence [46].

formation and evolution of the expanding stripes. Before en-
tering the long-time regime corresponding to the occurrence
of seven stripes, the five stripes are blurred, reflecting the
structure evolution during the early stage of order-disorder
development.

In view of the fact that the confining effect plays an impor-
tant role in this quench-induced dynamics, now we measure
the time evolution of MSD scaled by the time for different
confinement strengthes β f and trap sizes R, as shown in Fig. 4.
It is seen that the particle diffusibility should be enhanced with
decreasing β f . In this case, the superdiffusion duration will
become longer before entering the subdiffusion regime. Ac-
cordingly, the time-scaled MSD peaks shift toward the longer
time regimes with the decrement of β f ; see the inserts of
Figs. 4(a). For increasing R, at fixed confinement strength βs,
it is clear that the corresponding initial equilibrium systems
are of lower particle densities. This implies smaller short-
range interparticle repulsions and thus lower diffusibility in
the short time. As a result, the time-scaled MSD peaks shift
toward the shorter time regimes with the decrement of R, as
shown in Figs. 4(b). On the other hand, in the long time,
the confining interactions are decreasing with the increment
of trap size R, leading to enhanced particle diffusibility, as
demonstrated in Fig. 4(b). Additionally, in the long time, the
MSDs exhibit nearly a power-law dependence on the time ei-
ther for different β f or for different R; see Figs. 4(a) and 4(b),
respectively.

In addition to the diffusive behaviors, our simulations show
that the varying confinement parameters have an obvious
influence on the dynamic phase behaviors of the system.
This manifests as distinct features in the structural evolutions
in explosions from those shown in the typical explosion as

demonstrated in Fig. 1. For examples, for a larger β f , say
β f = 2, the expanding system only displays two kinds of
dynamic structures including expanding particle rings [see
Figs. 5(a) and 5(b) at at the early stage] and expanding circu-
lar stripes with or without a ringlike arrangement of clumps
[see Figs. 5(c)–5(f) at the late stage]. The entire explosion
sequence can be seen in Supplementary Movie S2 [46]. While
for large R, say R = 65, the initial state of the system shows
a gear-like cluster with fringed outer rims evenly arranged
along the circumference, as shown in Fig. 6(a). In this case,
the Coulomb-type explosion patterns can be observed in the
internal part of the cluster structure with higher particle densi-
ties; see Fig. 6(b). Then these dynamic particle rings transition
into expanding circular stripes with the explosion, as shown
in Figs. 6(c) and 6(d), while the rims in the edge transform
gradually into a complex reticulation structure with nearly
homogeneous voids through expanding and bifurcating in the
explosion [see Figs. 6(b) and 6(c)]. This suggests that his-
tory or memory effect plays an important role in the pattern
selection and evolution of the system, which also indicates
new directions for future investigations. The entire explosion
sequence for the initial gear-like cluster can be seen in Sup-
plementary Movie S3 [46].

IV. CONCLUSION

In conclusion, we numerically study the nonequilibrium
behaviors of classic particles with competing interactions
confined in a two-dimensional logarithmic trap. We reveal
a quench-induced dynamics for an equilibrium single-
clump system undergoing expansion, displaying various
dynamic structures manifesting as persistent dynamic rings,
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circular stripes, and a ringlike arrangement of clumps, as
well as reticulation structures depending on confinement
strength and trap size. These are attributed to the time-
dependent competition between interparticle repulsions and
attractions under a circular confinement. Moreover, in the
collectively diffusive motions of the particles, our simulations
show that the emergence of dynamic structural transformation
coincides with a diffusive mode transition from superdif-
fusion to subdiffusion. Our work could prove useful in
understanding the pattern selection and evolution in various

chemical and biological systems in addition to modulated
systems [1,22,56] and add a possible route to tailoring the
morphology of pattern forming systems by using explosion
protocols.
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(2019).

[18] C. Reichhardt, C. J. Olson Reichhardt, I. Martin, and A. R.
Bishop, Phys. Rev. Lett. 90, 026401 (2003).

[19] C. Reichhardt, C. J. Olson, I. Martin, and A. R. Bishop,
Europhys. Lett. 61, 221 (2003).

[20] C. J. Olson Reichhardt, C. Reichhardt, I. Martin, and A. R.
Bishop, Physica D (Amsterdam, Neth.) 193, 303 (2004).

[21] X. B. Xu, H. Fangohr, Z. H. Wang, M. Gu, S. L. Liu, D. Q. Shi,
and S. X. Dou, Phys. Rev. B 84, 014515 (2011).

[22] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851
(1993).

[23] T. Giamarchi and P. Le Doussal, Phys. Rev. Lett. 76, 3408
(1996).

[24] A. Imperio and L. Reatto, Phys. Rev. E 76, 040402(R)
(2007).

[25] A. J. Archer, Phys. Rev. E 78, 031402 (2008).
[26] D. McDermott, C. J. Olson Reichhardt, and C. Reichhardt,

Soft Matter 10, 6332 (2014).
[27] C. A. Wei, X. B. Xu, X. N. Xu, Z. H. Wang, and M. Gu, Physica

C (Amsterdam, Neth.) 548, 55 (2018).
[28] K. Nelissen, B. Partoens, and F. M. Peeters, Phys. Rev. E 71,

066204 (2005).
[29] F. F. Munarin, K. Nelissen, W. P. Ferreira, G. A.

Farias, and F. M. Peeters, Phys. Rev. E 77, 031608
(2008).

[30] Y. H. Liu, L. Y. Chew, and M. Y. Yu, Phys. Rev. E 78, 066405
(2008).

[31] Y. H. Liu, Z. Y. Chen, M. Y. Yu, and A. Bogaerts, Phys. Rev. E
74, 056401 (2006).

[32] Y. H. Liu, B. X. Chen, and L. Wang, Chin. Phys. Lett. 23, 1540
(2006).

[33] Y. H. Liu and Z. Y. Chen, J. Phys.: Condens. Matter 19, 356213
(2007).

[34] L. Q. Costa Campos, C. C. de Souza Silva, and
S. W. S. Apolinario, Phys. Rev. E 86, 051402
(2012).

[35] L. Q. Costa Campos, S. W. S. Apolinario, and H. Löwen, Phys.
Rev. E 88, 042313 (2013).

[36] L. Q. Costa Campos and S. W. S. Apolinario, Phys. Rev. E 91,
012305 (2015).

[37] X. B. Xu, Z. H. Wang, X. N. Xu, G. Y. Fang, and M. Gu,
J. Chem. Phys. 152, 054906 (2020).

[38] D. McDermott, C. J. Olson Reichhardt, and C. Reichhardt,
Soft Matter 12, 9549 (2016).

[39] T. Neuhaus, M. Marechal, M. Schmiedeberg, and H. Löwen,
Phys. Rev. Lett. 110, 118301 (2013).

[40] H. Wabnitz, L. Bittner, A. R. B. De Castro, R. Döhrmann, P.
Gürtler, T. Laarmann, W. Laasch, J. Schultz, A. Swiderski, K.
Von Haeften, T. Möller, B. Faatz, A. Fateev, J. Feldhaus, C.
Gerth, U. Hahn, E. Saldin, E. Schneidmiller, K. Sytchev, K.
Tiedtke, R. Treusch, and M. Yurkov, Nature (London) 420, 482
(2002).

[41] A. E. Kaplan, B. Y. Dubetsky, and P. L. Shkolnikov, Phys. Rev.
Lett. 91, 143401 (2003).

[42] T. Ditmire, Phys. Rev. A 57, R4094 (1998).
[43] A. V. Straube, A. A. Louis, J. Baumgartl, C. Bechinger, and

R. P. A. Dullens, Europhys. Lett. 94, 48008 (2011).
[44] A. V. Straube, R. P. A. Dullens, L. S. Geier, and A. A. Louuis,

J. Chem. Phys. 139, 134908 (2013).

012604-8

https://doi.org/10.1126/science.267.5197.476
https://doi.org/10.1021/jp807770n
https://doi.org/10.1103/PhysRevB.42.6658
https://doi.org/10.1103/PhysRevLett.70.1477
https://doi.org/10.1103/PhysRevE.49.2225
https://doi.org/10.1103/PhysRevLett.82.4679
https://doi.org/10.1103/PhysRevLett.92.016801
https://doi.org/10.1103/PhysRevB.88.094515
https://doi.org/10.1103/PhysRevE.82.041502
https://doi.org/10.1103/PhysRevB.83.014501
https://doi.org/10.1088/0953-8984/26/11/115702
https://doi.org/10.1088/1361-648X/aad14f
https://doi.org/10.1039/C6SM01400C
https://doi.org/10.1039/C9SM01179J
https://doi.org/10.1103/PhysRevLett.116.098301
https://doi.org/10.1021/acs.langmuir.8b03382
https://doi.org/10.1103/PhysRevLett.90.026401
https://doi.org/10.1209/epl/i2003-00222-0
https://doi.org/10.1016/j.physd.2004.01.027
https://doi.org/10.1103/PhysRevB.84.014515
https://doi.org/10.1103/RevModPhys.65.851
https://doi.org/10.1103/PhysRevLett.76.3408
https://doi.org/10.1103/PhysRevE.76.040402
https://doi.org/10.1103/PhysRevE.78.031402
https://doi.org/10.1039/C4SM01341G
https://doi.org/10.1016/j.physc.2018.02.005
https://doi.org/10.1103/PhysRevE.71.066204
https://doi.org/10.1103/PhysRevE.77.031608
https://doi.org/10.1103/PhysRevE.78.066405
https://doi.org/10.1103/PhysRevE.74.056401
https://doi.org/10.1088/0256-307X/23/6/051
https://doi.org/10.1088/0953-8984/19/35/356213
https://doi.org/10.1103/PhysRevE.86.051402
https://doi.org/10.1103/PhysRevE.88.042313
https://doi.org/10.1103/PhysRevE.91.012305
https://doi.org/10.1063/1.5140816
https://doi.org/10.1039/C6SM01939K
https://doi.org/10.1103/PhysRevLett.110.118301
https://doi.org/10.1038/nature01197
https://doi.org/10.1103/PhysRevLett.91.143401
https://doi.org/10.1103/PhysRevA.57.R4094
https://doi.org/10.1209/0295-5075/94/48008
https://doi.org/10.1063/1.4823501


NONEQUILIBRIUM PATTERN FORMATION IN … PHYSICAL REVIEW E 103, 012604 (2021)

[45] H. Fangohr, A. Price, S. Cox, P. A. J. de Groot, G. J. Daniell,
and K. S. Thomas, J. Comput. Phys. 162, 372 (2000).

[46] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.103.012604 for the modulated system un-
dergoing expansion by applying a sudden jump of confinement
strength: Movie S1, from βs = 15.1 to β f = 0.1 at R = 50;
Movie S2, from βs = 15.1 to β f = 2 at R = 50; and Movie S3,
from βs = 15.1 to β f = 0.1 at R = 65.

[47] C. P. Royall, Soft Matter 14, 4020 (2018).
[48] H. J. Zhao, V. R. Misko, and F. M. Peeters, New J. Phys. 14,

063032 (2012).
[49] I. M. Sokolov, Soft Matter 8, 9043 (2012).

[50] J. H. Jeon, A. V. Chechkin, and R. Metzler, Phys. Chem. Chem.
Phys. 16, 15811 (2014).

[51] E. Hatta, J. Phys. Chem. B 112, 8571 (2008).
[52] X. Q. Shi and Y. Q. Ma, Nat. Commun. 4, 3013 (2013).
[53] H. E. Ribeiro and F. Q. Potiguar, Physica A (Amsterdam, Neth.)

462, 1294 (2016).
[54] A. S. Bodrova, A. V. Chechkin, A. G. Cherstvy, H. Safdari, I. M.

Sokolov, and R. Metzler, Sci. Rep. 6, 30520 (2016).
[55] V. O. Kharchenko and I. Goychuk, Phys. Rev. E 87, 052119

(2013).
[56] A. J. Koch and H. Meinhardt, Rev. Mod. Phys. 66, 1481

(1994).

012604-9

https://doi.org/10.1006/jcph.2000.6541
http://link.aps.org/supplemental/10.1103/PhysRevE.103.012604
https://doi.org/10.1039/C8SM00400E
https://doi.org/10.1088/1367-2630/14/6/063032
https://doi.org/10.1039/c2sm25701g
https://doi.org/10.1039/C4CP02019G
https://doi.org/10.1021/jp801764z
https://doi.org/10.1038/ncomms4013
https://doi.org/10.1016/j.physa.2016.06.139
https://doi.org/10.1038/srep30520
https://doi.org/10.1103/PhysRevE.87.052119
https://doi.org/10.1103/RevModPhys.66.1481

