
PHYSICAL REVIEW E 103, 012501 (2021)

Free energy and segregation dynamics of two channel-confined polymers of different lengths
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Polymers confined to a narrow channel are subject to strong entropic forces that tend to drive the molecules
apart. In this study, we use Monte Carlo computer simulations to study the segregation behavior of two flexible
hard-sphere polymers under confinement in a cylindrical channel. We focus on the effects of using polymers
of different lengths. We measure the variation of the conformational free energy, F , with the center-of-mass
separation distance, λ. The simulations reveal four different separation regimes, characterized by different scaling
properties of the free energy with respect to the polymer lengths and the channel diameter, D. We propose a
regime map in which the state of the system is determined by the values of the quantities N2/N1 and λ/(N1 +
N2)D−β , where N1 and N2 are the polymer lengths, and where β ≈ 0.64. The observed scaling behavior of F (λ)
in each regime is in reasonable agreement with predictions using a simple theoretical model. In addition, we use
MC dynamics simulations to study the segregation dynamics of initially overlapping polymers by measurement
of the incremental mean first-passage time with respect to λ. For systems characterized by a wide range of λ in
which a short polymer is nested within a longer one, the segregation dynamics are close to that expected for two
noninteracting one-dimensional random walkers undergoing unbiased diffusion. When the free-energy gradient
is large, segregation is rapid and characterized by out-of-equilibrium effects.

DOI: 10.1103/PhysRevE.103.012501

I. INTRODUCTION

The overlap of two polymer chains leads to a reduction
in the total conformational entropy and thus an increase
in the free energy. Often described as an “entropic force,”
the gradient in the free energy tends to drive the polymers
apart to reduce the loss in entropy [1,2]. When the poly-
mers are confined to anisometric spaces with dimensions
small compared to the bulk radius of gyration this inter-
polymer entropic repulsion is generally enhanced [3,4]. A
notable example is polymer confinement in nanochannels,
where the entropic force causes the polymers to segre-
gate along the axis of the channel. This process has been
the subject of numerous theoretical and computer simula-
tion studies in recent years [4–23]. Most of these studies
have examined the segregation behavior of flexible linear
polymers [4–9,11,12,14,16,19,20], though some have also in-
vestigated the behavior of ring polymers [10,13,15,17,18,21].
In addition, the effects of of bending rigidity [14,19], macro-
molecular crowding [15,18,21], and electrostatics [22,23] on
the segregation dynamics and thermodynamics have been ex-
amined in detail.

A key motivation for theoretical studies of entropy-driven
separation of confined polymers is to elucidate the role that
entropy plays in the process of chromosome segregation in
self-replicating bacteria [4,24–27]. Experiments have shown
that the newly formed arms of a chromosome segregate as
duplication proceeds while the terminus region remains at the
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center of the nucleoid [28]. Modelling the chromosome as a
polymer chain, Jun and Mulder showed that entropic demix-
ing alone could account for such behavior [4]. Though some
experimental studies have yielded results that are hard to rec-
oncile with a purely entropic segregation mechanism [25,29–
33], more recent studies have reported results consistent with
this hypothesis [25,27,34–37]. Though a full understanding of
the process is lacking [28] it appears likely that entropic forces
contribute to driving segregation, perhaps in conjunction with
other mechanisms [25,27,38].

Another motivation for theoretical studies of separation of
confined polymers arises from recent advances in nanofluidic
technology that facilitate the study in vitro of the physical
behavior of multiple polymers confined to small spaces. A
recent study by Capaldi et al. used fluorescence microscopy
to study the dynamics and organization of two differentially
stained λ-DNA molecules confined to rectangular nanocav-
ities [39]. They also examined the confinement of a single
λ-DNA molecule with a plasmid, which is a small circular
DNA molecule typically found in bacteria outside the nu-
cleoid. Such systems provide simple models of prokaryotic
organisms that may help clarify the role of entropy as a demix-
ing mechanism. They may also be useful for understanding
the organization of multiple chromosomes inside a eukaryotic
cell nucleus. In addition to contributing to understanding bi-
ological processes, insight provided by such experiments has
important technological relevance. For example, the mixing or
partitioning properties of multiple chains confined to channels
or cavities may affect the performance of nanofluidic devices
used for polymer manipulation and separation [40,41].

Our recent work on confinement effects of multiple-
polymer systems has focused on the calculation of the overlap
free energy of polymers inside channels and elongated cavities
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using Monte Carlo simulation methods [19,21]. Specifically,
we have examined the variation of the free energy with respect
to the polymer separation distance as well as other vari-
ables. Such free-energy functions are closely connected to the
polymer mixing or segregation tendencies and the separation
dynamics. As a measure of separation, we use the distance
between the polymer centers of mass along the channel, in part
because such a quantity is experimentally measurable [39].
Our goal has been to fully characterize these functions with re-
spect to the key system parameters. These parameters include
the confinement dimensions, polymer length, bending rigid-
ity, the density of crowding agents, and the chain topology.
We have shown that the scaling properties of the free-energy
functions are reasonably consistent with predictions based on
standard scaling theories in polymer physics. Thus far, we
have considered only systems characterized by a high degree
of symmetry, e.g., two identical linear or ring polymers con-
fined to a cylindrical channel.

The purpose of the present study is to extend this work to
examine the behavior of systems characterized by an asym-
metry in the lengths of the polymers. This is expected to be
relevant to the operation of nanofluidic devices for manipula-
tion and analysis of DNA and other polymers. As in our other
studies on this topic [19,21], we examine the behavior of two
self-avoiding hard-sphere chains confined to a hard-walled
channel. In addition to measuring and characterizing the free-
energy functions, we also use MC dynamics simulations to
investigate the segregation dynamics and interpret the results
in light of the calculated free energies. The free-energy results
are analyzed and interpreted using standard scaling theory
methods. Generally, the results are in semiquantitative agree-
ment with most predictions, though scaling exponents deviate
slightly from theoretical values due to finite-size effects and
deficiencies in the theoretical model. In addition, the segrega-
tion dynamics behavior align with expectations based on the
equilibrium free-energy functions, though out-of-equilibrium
effects are evident at separation distances corresponding to
strong entropic forces.

II. MODEL

We examine a system of two flexible polymer chains con-
fined to an infinitely long channel. Each polymer is modeled
as freely jointed chain of hard spheres, where each spherical
monomer has a diameter σ . The pair potential for nonbonded
monomers is thus unb(r) = ∞ for r � σ , and unb(r) = 0
for r > σ , where r is the distance between the centers of
the monomers. Pairs of bonded monomers interact with a
potential ub(r) = 0 if 0.9σ < r < 1.1σ and ub(r) = ∞ oth-
erwise. The polymer length is given in terms of the number
of monomers of each polymer, N1 and N2, where we choose
N2 � N1.

The polymers are confined to a hard-wall cylindrical chan-
nel that is aligned along the z axis. The channel has an
effective diameter D such that each monomer interacts with
the wall of the tube with a potential uw(r) = 0 for r < D and
uw(r) = ∞ for r > D, where r is the distance of the monomer
center from the central axis of the cylinder. Thus, D is the
diameter of the cylindrical volume accessible to the centers

of the monomers, and the actual diameter of the cylinder is
D + σ .

III. METHODS

In most simulations we measure the variation of the free
energy with λ, the distance between the polymer centers
of mass along the cylinder axis. We employ Monte Carlo
simulations with the Metropolis algorithm together with the
self-consistent histogram (SCH) method [42]. To implement
the SCH method, we carry out many independent simulations,
each of which employs a unique “window potential” of the
form:

Wi(λ) =

⎧⎪⎨
⎪⎩

∞, λ < λmin
i

0, λmin
i < λ < λmax

i

∞, λ > λmax
i

, (1)

where λmin
i and λmax

i are the limits that define the range of
λ for the ith window. Within each window of λ, a proba-
bility distribution pi(λ) is calculated in the simulation. The
window potential width, �λ ≡ λmax

i − λmin
i , is chosen to be

sufficiently small that the variation in F does not exceed a
few kBT . The windows are chosen to overlap with half of the
adjacent window, such that λmax

i = λmin
i+2. The window width

was typically in the range �λ = 2σ–4σ . The SCH algorithm
was employed to reconstruct the unbiased distribution, P (λ),
from the pi(λ) histograms. The free energy follows from the
relation F (λ) = −kBT lnP (λ) + const. We choose the con-
stant such that F (λ = ∞) = 0.

In some simulations we consider polymers with centers of
mass that overlap along the channel and measure the variation
of the free energy with ζ ≡ X1 − X2, where ζ is the difference
in the spans of the two polymers along the channel, X1 and X2.
The SCH method is implemented for ζ in exactly the same
manner as for λ. Specifically, we use window potentials of
the form of Eq. (1) for ζ such that trial MC moves that yield
values of ζ outside the range of the window are rejected. The
resulting collection of probability distributions pi(ζ ) are used
with the SCH algorithm to reconstruct the underlying distribu-
tion P (ζ ) that yields the free energy, F (ζ ) = −kBT lnP (ζ ).

Polymer configurations were generated by carrying out
single-monomer moves using a combination of translational
displacements and crankshaft rotations. In addition, whole-
polymer displacements and reptation moves of each polymer
along the channel axis were also employed to increase the
efficiency of sampling pi(λ). Each trial move was rejected if
it resulted in overlap between particles or between a particle
and a confinement surface or if it led to a violation of the
bonding constraints; otherwise it was accepted. Measurements
of the various quantities were carried out every 100 MC cycles
over a run time whose duration was O(107 − 108) MC cycles.
A single MC cycle corresponds to attempting each of the
following coordinate changes once, on average: (1) move-
ment of a single randomly chosen monomer by translation
or crankshaft rotation, (2) whole-polymer displacement of a
randomly selected polymer along the channel by changing all
the z coordinates by the same random value, and (3) reptation
at a randomly chosen end of a randomly selected poly-
mer. After initializing the particle positions, the simulation
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proceeded through an equilibration period prior to sampling
data. Since the polymer configurations were initially chosen
for convenience to be linear and aligned along the channel,
such an equilibration period is necessary for the system to
relax out of this highly artificial initial state. As an illus-
tration, for two identical polymers of length N1 = N2 = 300
in a D = 6 cylindrical channel, the system was equilibrated
for 1 × 107 MC cycles, following which a production run of
4 × 107 MC cycles was carried out. Equilibration and produc-
tion run times were typically chosen to be greater for longer
polymer systems.

In addition to free-energy calculations, Monte Carlo dy-
namics simulations were used to study the segregation
dynamics of the two confined polymers. The MC dynamics
method is chosen here since the Langevin dynamics method
is inapplicable to molecular models with discontinuous po-
tentials. Provided the random trial moves are local and do
not lead to chain crossing, the random motions of indi-
vidual monomers can be viewed as discretized realizations
of a stochastic dynamical process such as that described
by a Langevin equation [43]. Consequently, for this model
diffusion obeys Rouse scaling of the diffusion coefficient,
i.e., D ∝ 1/N . Though MC dynamics does not provide an
absolute timescale or enable probing the short-time dynam-
ical behavior such as bond vibration, it can be effective
in determining scaling exponents associated with polymer
dynamics on longer time scales [44]. As in Ref. [19] we
choose to simulate polymer motion solely through random
monomer displacement. The coordinates of a randomly cho-
sen monomer were displaced by an amount �rα for α =
x, y, z. Each coordinate displacement was randomly chosen
from a uniform distribution in the range [−0.14σ, 0.14σ ]. The
acceptance criteria are the same as described above for the
free-energy calculations, with the exception that the potential
of Eq. (1) is not applied. The range chosen for the distribution
of the single-monomer trial displacements yields acceptance
ratios slightly below 50%, corresponding to efficient sampling
of configurations during the simulation. In effect, this choice
also calibrates the timescale. The polymer configurations were
initially constrained to λ = 0 while the polymer chains were
equilibrated. Following equilibration, the constraint was re-
moved and the polymers underwent segregation along the
channel. The main quantity we measure is the incremental
mean first-passage time (IMFPT), τ , defined as the first time
the polymers are separated by a given value of λ. The IMFPT
was originally introduced to characterize dynamics in polymer
translocation simulations [45,46]. During the segregation pro-
cess we measure the degree of overlap of the polymers as well
as their extension lengths. We simulated typically 100–200
segregation events to calculate averages of these quantities.

For both the free-energy calculations and the MC dynamics
simulations we calculate the mean extension lengths, X1 and
X2, of each polymer along the channel. We also measure
the mean overlap distance Lov, which is the range of posi-
tions along the channel occupied by part of the contours of
both chains. These quantities are illustrated in Fig. 1, which
shows a snapshot of a system of two partially overlapping
polymers. Note that Lov is more generally defined as follows.
With reference to the illustration in Fig. 1, it is the difference
between the z coordinate of the rightmost monomer of the

FIG. 1. Snapshot of two polymers with lengths N1 = 80 and
N2 = 40 in a cylindrical tube of diameter D = 4. The polymer ex-
tension lengths, X1 and X2, the overlap distance, Lov, and the distance
between polymer centers of mass, λ, are each labeled in the figure.

longer (blue) polymer and the leftmost monomer of the shorter
(red) polymer. Clearly, when the polymers overlap, Lov is the
overlap distance shown in the figure. However, if the polymers
do not overlap, then Lov < 0, and its magnitude is simply the
distance along the z axis between the nearest pair monomers,
one on each polymer.

In the results presented below, distances are measured in
units of σ , energy is measured in units of kBT , and time is
measured in MC cycles.

IV. RESULTS

A. General features of the free-energy functions

Let us first examine the general qualitative features of the
free-energy functions. As an illustration, Fig. 2 shows the
variation of the free energy with respect to the center-of-mass
distance λ for polymers of length N1 = 400 and N2 = 200
confined to a channel of diameter D = 4. The graph also
shows the variation of the extension lengths, X1 and X2, as well
as the overlap distance, Lov, with λ. Four different regimes are
labeled, each corresponding to a physically distinct state.

In regime I at low center-of-mass separation (λ � 50), the
free energy and the overlap and extension lengths are all
constant with respect to λ. This regime corresponds to the
“nesting” of the shorter polymer within the longer polymer.
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FIG. 2. Free energy vs λ for polymers of length N1 = 400 and
N2 = 200 confined to a cylinder of diameter D = 4. Overlaid on the
graph are the extension lengths of the polymers, X1 and X2, as well as
the overlap distance, Lov, as defined in the text. The vertical dashed
lines denote approximate boundaries of the four regimes described
in the text.

012501-3



JAMES M. POLSON AND QINXIN ZHU PHYSICAL REVIEW E 103, 012501 (2021)

In this case, changing the center-of-mass distance changes
neither extension length nor the overlap length (which is equal
to X2). At λ ≈ 50, the system undergoes a transition to regime
II, which is characterized by a drop in F . At the transition,
the extension of the longer polymer abruptly decreases at the
transition while that for the shorter polymer slightly increases.
This regime corresponds to partial overlap of the polymers
along the channel (as illustrated in Fig. 1). As λ decreases,
the overlap distance decreases, as does each of the extension
lengths.

At λ ≈ 80, the system undergoes transition into
regime III, where the curvature of F (λ) changes from positive
to negative. Significantly, the polymers have essentially
no longitudinal overlap (Lov ≈ 0), and the extension
lengths each increase with λ. This regime corresponds to
nonoverlapping polymers that are longitudinally compressed
and pressed against each other. Varying λ controls the degree
of compression of the chains, each of which behaves like
an entropic spring with a free energy that rises rapidly with
increasing compression.

At λ ≈ 145 the system undergoes a final transition to
regime IV, which corresponds to no physical contact be-
tween the polymers. Lov becomes increasingly negative with
λ, indicating a growing space between the polymers. As ex-
pected, the extension lengths and the free energy are invariant
with respect to λ here. Qualitatively similar behavior for all
four regimes was observed for polymers of equal length in
Ref. [21], where it is described and explained in greater detail.
The key differences here are a wider nesting regime, unequal
values of X1 and X2, and a slight increase in X2 at the I-II
regime boundary.

B. Nesting regime

Let us now examine regime I in detail. In this regime, the
centers of mass are close enough that the shorter polymer
is completely nested within the longer polymer. (Note: An
exception to this rule occurs when the polymer lengths differ
by only a small amount, as will be discussed in Sec. IV C.) In
addition, the free energy is constant and equal to the value of
the free-energy barrier height, which we define �F ≡ F (λ =
0) − F (λ = ∞). Since we choose F (∞) = 0, it follows that
�F = F (λ = 0). Figure 3(a) shows the scaling of �F with
N2 for fixed N1 = 300 and for various channel diameters. In
each case, �F increases linearly with N2, and the slope of
the linear functions increases with decreasing D. Figure 3(b)
shows the variation of �F with D for fixed N1 = 300 and
for N2 = 50−300. For arbitrary N2, we find that �F ∼ D−α ,
where α is in the narrow range of α ≈ 1.81–1.84 for all cases
except N2 = 50. Consequently, the λ-invariant free energy in
regime I scales as F ∝ N2D−α , where α ≈ 1.82.

Let m1 and m2 be the average number of monomers that
lie in the overlap range for any separation λ. Figure 4(a)
shows variation of m1 and m2 with λ for a case where N1 =
300, N2 = 200, and D = 6. In the case of partial overlap in
regime II, we see that m1 ≈ m2 and that both increase as
the separation decreases. On further decreasing λ, the system
enters regime I, and the values of m1 and m2 diverge. Since the
shorter polymer is now completely nested inside the longer
polymer, it follows that m2 = N2 = 200. On the other hand,
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FIG. 3. (a) Free-energy difference �F vs polymer length N2 for
two polymers for the case of N1 = 200. Results for various channel
diameters are shown. The solid lines show fits to a linear function.
(b) �F ≡ F (λ = 0) − F (λ = ∞) vs channel diameter D for two
polymers of length N1 = 200 and N2 confined to an infinitely long
cylindrical channel. Results are shown for various values of N2. The
solid lines show fits to a power law �F ∼ D−β . The best-fit scal-
ing exponents are β = 1.84 ± 0.01 for N2 = 300, β = 1.82 ± 0.02
for N2 = 250, β = 1.81 ± 0.01 for N2 = 200, β = 1.81 ± 0.01 for
N2 = 150, β = 1.81 ± 0.02 for N2 = 100, and β = 1.73 ± 0.03 for
N2 = 50.

number of monomers from the longer polymer in the overlap
region abruptly decreases to a constant value that satisfies
m1 < m2. The inset of Fig. 4(a) shows that both the value of
m1 as well as the overlap distance Lov both increase linearly
with increasing N2. The exception is the limiting case where
N2 = N1 = 300.

Figure 4(b) shows the variation of Lov and m1 with D in
regime I for the case where N1 = 300 and N2 = 200. In both
cases, power-law scaling is observed. The overlap distance
scales as Lov ∼ D−0.75, while m1 has a much weaker depen-
dence on D, with a scaling of m1 ∼ D−0.175.

To understand the scaling behavior of Figs. 3 and 4 we use
a simple theoretical model that is based on two approxima-
tions. First, the scaling behavior of the free energy is assumed
to correspond to the predictions of the blob model in the de
Gennes confinement regime [47]. A second approximation
is that introduced by Jung et al. to approximate the free
energy of overlapping confined chains [10]. In this picture,
the effect of longitudinal overlap on the conformational be-
havior of the two channel-confined polymers is approximately
the same as that of confining the overlapping portions of
the chains to virtual tubes of reduced cross-sectional areas.
The overlapping portion of polymer 1 is pictured as confined
to a virtual tube of diameter D1 = D

√
ξ , where ξ < 1, while

the overlapping portion of polymer 2 is likewise confined to
a virtual tube of diameter D2 = D

√
ξ0 − ξ . Jung et al. used

this model to describe the conformational behavior of of a
ring polymer confined to a channel. Since the ring polymer
was modeled as two completely overlapping linear polymers
of equal length, D1 = D2. Neglecting lateral interpenetration
requires the cross-sectional areas of the virtual tubes sum to
equal that of the actual channel. Together, these assumptions
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FIG. 4. (a) Variation of m1, m2, and Lov with λ for a system with
N1 = 300, N2 = 200, and D = 6. As noted in the text, m1 and m2

are the mean number of monomers of each polymer that lie in the
overlap region. The dashed lines denote the approximate boundaries
of the four overlap regimes. The inset shows the variation of m1 and
Lov with N2 for fixed N1 = 300 and D = 6. (b) Variation of Lov and
m1 with channel diameter for the case where N1 = 300, N2 = 200.
The solid lines are fits to power laws.

imply that ξ = 1
2 and ξ0 = 1. Choosing ξ0 � 1 effectively

allows for some lateral interpenetration, while ξ0 − ξ �= ξ

(i.e., D1 �= D2) allows for unequal virtual tube sizes, which
is clearly required for regime I, where m1 �= m2. Note that ξ

and ξ0 are assumed to be independent of D.
In Appendix A we show that this theoretical model predicts

that the free-energy barrier height scales as

�F ∝ N2D−1/ν f (m1/N2; ξ0), (2)

where f (m1/N2; ξ0) is defined in Eq. (A7). Thus, the model
correctly predicts the linear scaling of �F with respect to N2

observed in Fig. 3(a). The model also predicts that �F ∼
D−1.70, where we use the Flory exponent value ν ≈ 0.588.
Thus, the predicted scaling exponent is close to measured
exponent of ≈ 1.82 obtained from fits to the data in Fig. 3(b).
A similar discrepancy was observed for equal-length linear
and ring polymers in our previous study [21].

The origin of the discrepancy between the values of the
measured and predicted scaling exponent is likely a combina-
tion of two factors. The first is a breakdown in the blob-model
scaling behavior for the narrow channel widths and polymer

lengths considered here. As noted in Ref. [48] such scaling
requires that D and N be sufficiently large that both the
number of monomers per blob, g ∼ D1/ν , and the number
of blobs, nblob = N/g, be large compared to unity. A second
factor is a breakdown in the validity of the approximation
used to estimate the overlap free-energy function in Eq. (2).
The accuracy of this approximation was measured directly in
Ref. [21], and the simulations revealed quantitative inaccu-
racies arising from finite-size effects. Additional insight into
this discrepancy is provided by Eq. (A8) in Appendix A,
where the theory predicts that m1 should be independent of
the channel width. This contradicts the results in Fig. 4(b),
which shows a weak but nonnegligible dependence of m1 on
D. In addition, the overlap length is predicted to scale as Lov =
X2 ∝ N2D(ν−1)/ν

2 = N2(D
√

ξ0 − ξ )(ν−1)/ν ∝ D−0.70. The pre-
dicted scaling exponent is close to the value measured from
the data in Fig. 4(b), though once again the discrepancy is
nonnegligible.

We suspect that the difference between the predicted and
measured scaling exponents arises from the assumption that
the factors ξ and ξ0 are independent of D. While incorpo-
ration of such a dependence could improve the theory, there
are no obvious physical arguments to suggest any particular
functional form. Despite these limitations, the reasonably ac-
curate predictions suggest that the theoretical model provides
a decent understanding of the overlap free-energy scaling be-
havior. Calculations presented in Ref. [21] suggest that using
constant values of the quantities ξ and ξ0 may be justified but
only in the limit of much larger N and D. As noted in that
study, no single value of the rescaling factor yields predictions
of high quality for the polymer lengths and channel width
employed here [21].

C. Nesting free-energy function for λ = 0

Let us consider further the system behavior in the nest-
ing regime in the case of overlapping centers of mass, i.e.,
λ = 0. This state was examined in detail by Minina and
Arnold [16,17] for the case of two polymers of equal length.
They noted that the separation kinetics of polymers that begin
at λ = 0 show an initial lag time, which they attributed to a
free-energy barrier associated with the nesting of one polymer
within the other. We examined the scaling behavior of this
free-energy barrier previously for two identical polymers [21].
Here we extend that study and examine the effects of small
differences in the lengths of the polymers on the barrier.

Following Ref. [21] we calculate the free energy at λ = 0
as a function of ζ ≡ X1 − X2, i.e., the difference in the ex-
tension lengths of the polymers. When N1 = N2, it is equally
likely that either polymer is nested inside the other. Con-
sequently, two identical free-energy minima are observed
separated by a small free-energy barrier [16,17,21]. Such a
symmetric free-energy function is shown in Fig. 5(a) in the
case of N1 = N2 = 200 for D = 4. As N2 is decreased to
values below N1, the double-well structure is initially pre-
served, though the free energy at the minimum at lower ζ

tends to increase relative to the minimum at higher ζ . Thus,
provided N2 is not too much less than N1, the longer polymer
nested inside the shorter polymer represents a metastable state
separated from the global free-energy minimum (where the
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FIG. 5. (a) Free energy vs extension length difference ζ ≡ X1 −
X2 for polymers with overlapping centers of mass. Results are shown
for D = 4, N1 = 200 and for various values of N2. (b) Prediction of
the nesting free energy using the theory developed in Appendix A.
The scaling factors for the axes are defined with respect to the curve
for N1 = N2 = 200: (i) F0 ≡ Fnest (0) and (ii) ζ0 is the value of ζ at
the right minimum of Fnest .

roles of the polymers are reversed) by a free-energy barrier.
The height of the barrier decreases with decreasing N2 until it
almost disappears at N2 = 180.

Some understanding of the origins of the trends observed
in Fig. 5(a) is provided by the theoretical model developed
by Minina and Arnold [16,17]. They employed essentially
the same two approximations as were used to elucidate the
scaling behavior observed in Fig. 3 above: (i) using the de
Gennes blob model to describe the scaling of the free energy
and extension lengths of channel-confined polymers and (ii)
assuming that the effect of overlap on the free energy is
the same as that of separately confining each polymer to a
different virtual tube, the sum of whose cross-sectional areas
is equal to that of the real channel [10]. In Appendix B we
modify their theory to accommodate polymers of unequal
length. The theoretical predictions are shown in Fig. 5(b).
As the theory employs scaling relations with undetermined
prefactors, the axes have been scaled by factors as defined
in the caption to avoid confusion. Although the shape of the
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FIG. 6. (a) Free energy vs λ for polymers confined to a cylin-
der of diameter D = 6. One polymer length is fixed to N1 = 200.
Results for various values of the polymer length N2 (� N1) are
shown. (b) F vs λ for polymers of length N1 = 300 and N2 = 200
for various cylinder diameters. (c) F ′ ≡ F/(N1 + N2)D−1.82 vs λ′ ≡
λ/(N1 + N2)D−0.64 using the data in panel (a). (d) As in (c) except
using the data in panel (b). The vertical dashed lines in panels (c) and
(d) mark the approximate boundary at λ′

b ≈ 0.31 between regimes II
and III for N2 � 100.

free-energy barrier is poorly described by the theory, the key
qualitative behavior is well reproduced. In particular, as the
length asymmetry increases (i.e., N2 decreases while N1 is
held fixed), the position of the free-energy minima both shift
to higher ζ , and the free energy of the negative-ζ minimum in-
creases relative to that of the positive-ζ minimum. In addition,
the metastable state eventually disappears as N2 decreases. As
before, quantitative discrepancies arise from the nature of the
approximations employed.

D. Scaling behavior of F(λ)

Thus far we have focused on the behavior of the system
solely in regime I. We now examine the scaling properties of
F (λ) over the full range of λ across all regimes. Figure 6(a)
shows free-energy functions for N1 = 300 and D = 6 and for
various values of the length N2. The linear increase of �F
with N2 has already been discussed at length in Sec. IV B. The
increasing width of the free-energy barrier with increasing N2

can be understood as follows. In the case of isolated polymers
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with large λ, the extension lengths are each proportional to
the contour length. Thus, as the polymers are brought closer
together, the center-of-mass distance λ corresponding to the
point where the polymers make contact (i.e., at the bound-
ary of regime III and IV) is shorter for smaller N2. Another
trend is the decreasing width of regime I as N2 increases and
approaches N1. To understand this trend, we note that the tran-
sition to regime II occurs at the value of λ where the location
of the nested polymer’s left (right) boundary along the channel
reaches the left (right) boundary of the longer polymer. This
occurs when λ = (X1 − X2)/2 = (X1 − c2N2)/2, since X2 ∝
N2 in the nesting regime and where c2 is the proportionality
constant. Thus, the value of λ at this transition decreases with
increasing N2, thereby reducing the width of regime I. Finally,
the boundary between regimes II and III evident from the
inflection point in the functions disappears for N2 � 100.

Figure 6(b) shows free-energy functions for N1 = 300 and
N1 = 200 for various values of the cylinder diameter D. As
D increases, we note that the barrier height and width both
decrease. The latter trend is due to the fact that reducing the
confining tube width also reduces the extension of the poly-
mers. Consequently, the polymer center-of-mass separation
distance at the II-III and III-IV regime boundaries is smaller
for larger D.

The quantitative nature of the scaling of F (λ) with respect
to N2 and D can be elucidated by considering the scaled
variables F ′ ≡ F/(N1 + N2)D−α and λ′ ≡ λ/(N1 + N2)D−β .
Figures 6(c) and 6(d) show the results such a transformation
on the free-energy functions of Figs. 6(a) and 6(b), respec-
tively, using exponents of α = 1.82 and β = 0.64. The results
are revealing. In Fig. 6(c), all of the functions for the various
values of N2 collapse to a universal curve, except at low λ′,
where the system is in regime I. The universal curve can
be defined as the function for N1 = N2. Define λ′

b to be the
value of λ′ at the boundary between regimes II and III for this
curve. Clearly, the boundary is at λ′

b ≈ 0.31, and is marked
on the graph with a dashed line. Now define λ′

∗ as the value
of λ′ at which the regime-I plateau meets the universal curve.
We see that λ′

∗ increases as the polymer length N2 decreases.
In the case where N2 � 100, λ′

∗ < λ′
b, which simply implies

that regime II exists for this range of N2. On the other hand,
for N2 � 100, λ′

∗ > λ′
b. This means that regime II is absent

for these shorter polymer lengths, and thus the system passes
directly from the nesting regime (I) to the compressed regime
(III). In Fig. 6(d), all of the scaled free-energy functions for
different D and fixed N2 collapse to a universal curve in all
regimes, including regime I.

The results above suggest the following scaling for the free
energy for regimes II, III, and IV:

F (λ) = (N1 + N2)D−α f (λ/(N1 + N2)D−β ), (3)

where f () is a universal function and where α ≈ 0.64 and β ≈
1.82. (Since F = 0 in regime IV, the scaling is automatically
satisfied here.) This is consistent with the case of symmetric
systems with N1 = N2 ≡ N , for which we previously showed
that F (λ) = ND−α f (λ/NDβ ) with approximately equal ex-
ponent values [21]. In the case of regime I, we have already
noted in Sec. IV B that F is independent of λ and scales as

F ∝ N2D−α. (4)
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FIG. 7. Proposed regime map for two polymers of length N1 and
N2 (� N1) separated by center-of-mass distance λ confined to a cylin-
drical channel of diameter D. The II-III and III-IV phase boundaries
are vertical lines, as shown. However, the I-II and I-III boundaries
are only qualitatively illustrated. Simulations with N1 = 300 yield
an exponent of β ≈ 0.64. In regimes II, III, and IV, the free-energy
functions scale according to Eq. (3), and in regime I the free energy
satisfies Eq. (4).

For N1 = 300 and N2 = 200 the fit to the data in Fig. 3(b)
yielded α ≈ 1.84, which is very close to the value of α =
1.82 that best collapses the curves in Fig. 6(d). Although
the scaling relations were obtained from analysis of data
for N1 = 300, the results do not change for other values of
N1. In Appendix C, this is illustrated by a comparison of
free-energy functions calculated for N1 = 200, 300, and 400.
The boundary between regimes I and II and the boundary
between regimes I and III are determined by the condition
the free energy in Eqs. (3) and (4) are equal. This leads
to the condition that f (λ′) ∝ (1 + (N2/N1)−1)−1, where λ′ ≡
λ/(N1 + N2)D−β and where the proportionality constant is the
same as in Eq. (4). Thus, the I-II and I-III regime boundaries
are uniquely determined by the quantities λ′ and N2/N1, as
implicitly true in Eq. (3) for the II-III and III-IV boundaries.

Figure 7 shows a “phase diagram” illustrating the approx-
imate boundaries separating the four scaling regimes. Our
previous study [21] covered the special case of N2/N1 = 1,
which corresponds to a horizontal line at the very top of this
diagram. Clearly, the present study extends the characteriza-
tion of the system to cover a much larger region of parameter
space. Of special note is the disappearance of the partial over-
lapping regime for N2/N1 � 0.3, i.e., for a sufficiently large
polymer size asymmetry. This behavior has a simple analog
in the phase behavior of substances like CO2 or water, i.e., the
disappearance of a liquid phase on heating a solid at a fixed
pressure below that of the triple-point pressure so that the solid
sublimes directly to a gas.

In order to understand the regime map of the system de-
scribed above, we follow an approach similar to that in our
previous study [21]. Since we have already explained the
scaling of regime I in Sec. IV B, and since the scaling of
F = 0 in regime IV follows Eq. (3) trivially, we need only
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deal with regimes II and III. We begin with the latter. Recall
that regime III corresponds to the case where the polymers
are compressed and in contact, but not overlapping. Here the
two polymers behave much like a single channel-confined
polymer in a compressed state. Employing the renormalized
Flory theory of Jun et al. [49], the free energy for a single
linear polymer of length Lext is

F = AL2
ext/(N/g)D2 + BD(N/g)2/Lext, (5)

where A and B are constants of order unity and g ∼ D1/ν is
the number of monomers in a compression blob of diameter
D. Noting λ = Lext/2 (i.e., assuming uniform compression) it
is easily shown that

F (λ) = (N1 + N2)D−1/νw[λ/(N1 + N2)D1−1/ν], (6)

where w(x) = 4Ax2 + B/2x. This is consistent in form with
the scaling of Eq. (3), with scaling exponents of α = 1/ν

and β = 1/ν − 1. Using ν = 0.588, this corresponds to a
prediction of α = 1.70 and β = 0.70, which are close to the
measured values of α = 1.82 and β = 0.64.

To understand the scaling of F (λ) in regime II, we use the
same theoretical models developed in Appendices A and B
to understand the scaling of the free-energy barrier height.
Specifically, we employ the blob scaling model together with
the approximation introduced by Jung et al. [10] to account for
the conformational behavior of overlapping chains in chan-
nels. The calculation is presented in Appendix D. In Eq. (D4),
we find that F/(N1 + N2)D−1/ν ∝ m/(N1 + N2), where m ≡
m1 = m2 is the number of overlapping monomers per poly-
mer. In order for Eq. (3) to be satisfied in regime II, we expect
m/(N1 + N2) to be a universal function of λ/(N1 + N2)D1−1/ν

independent of the values of N1 and N2. As described in
the Appendix, the observed variation of m/(N1 + N2) with
λ/(N1 + N2)D1−1/ν does show some slight dependence on N2

and N1 (though not on D), but this appears to be negligi-
ble over the range of λ corresponding to regime II. As for
regime III the scaling exponents for Eq. (3) are predicted to
be α = 1/ν ≈ 1.70 and β = 1/ν − 1 ≈ 0.70. Again, the de-
viations between the predicted and measured exponents arise
from the nature of the approximations used.

E. Segregation dynamics

We now consider the dynamics of polymers segregating
from an initial state of maximum overlap at λ = 0. Several
other simulation studies have investigated the segregation dy-
namics of comparable systems. In the present work, our goal
is to elucidate the relationship, if any, between the dynamics
and the equilibrium free-energy functions. This extends the
range of calculations carried out in our previous study [19],
which considered only the case of polymers of equal length.

Figure 8(a) shows the variation of the IMFPT with λ for
the case of segregating polymers. Results are shown for a
confinement tube diameter of D = 4, N1 = 200 and for var-
ious values of N2. As a useful reference, Fig. 8(b) shows
the free-energy functions for each of the systems consid-
ered in Fig. 8(a). At low λ, we find that τ obeys a power
law of the form τ ∼ λμ, where μ ≈ 2.1. This dynamical
regime approximately corresponds to regime I of the free-
energy functions, i.e., the regime in which F is invariant with
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FIG. 8. (a) Incremental mean-first-passage time τ vs λ for seg-
regating polymers. Results are shown for D = 4, N1 = 200 and for
various values of N2. The inset shows the variation of τ † with λ,
where τ † is the mean first-passage time for the system to enter the
middle dynamical regime, as explained in the text. (b) Free energy
functions for the systems described in (a).

respect to λ. In addition, at any separation distance λ in this
regime τ increases with increasing N2. A simple explanation
for these trends follows from modeling the polymers as two
independent 1D random walkers with diffusion coefficients
D1 and D2. In this case, the distance between the two walkers
satisfies a diffusion equation with effective diffusion coeffi-
cient Deff = D1 + D2. Starting from a separation λ0 = 0, the
first-passage time required to reach a separation of ±λ for
this simple diffusion is τ = λ2/[24(D1 + D2)] [50]. Thus, the
noninteracting-walkers model predicts an exponent of μ = 2,
which is close to the observed value. Since D2 ∝ 1/N2, it
follows that τ will increase as the N2 increases, consistent with
the results.

The variation of τ with separation distance changes
abruptly at a N2-dependent value of λ after which it in-
creases at a much slower rate. Following this stage, there
is a second transition at a higher value of λ, after which τ

increases rapidly once more with separation distance. The
middle regime corresponds roughly to regimes II and III of
the free-energy functions. Thus, it corresponds to the region in
which the short polymer has left the nested stage and is either
partially overlapping with the long polymer or else is not
overlapping but is in contact and compressed. Significantly,
these regimes correspond to the rapid decrease in the free
energy. The gradient of F can be considered an effective force
that drives the polymers apart. While the system is subject to
this effective force, any additional increase in the separation
distance is achieved in much less time than is the case in its
absence, leading to the observed behavior. Once the polymers
are no longer in contact (i.e., regime IV) the separation dy-
namics are once again governed by the much slower process
of unbiased diffusion, resulting in a more rapid increase in τ

with λ.
Another interesting trend is the variation of τ with the

length of the short polymer, N2, in the middle dynamical
regime. Unlike the case at low λ where τ increases mono-
tonically with N2, this is clearly not the case here. To clarify
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FIG. 9. Extension lengths and overlap distance vs λ. The graph
compares the results obtained from equilibrium simulations with
those obtained from a MC dynamics simulation for segregating poly-
mers that initially overlap such that λ = 0. Results are shown for
N1 = 400, N2 = 200, and D = 4.

this trend, we define τ † as the mean first-passage time for
when the polymers reach a separation distance corresponding
to the onset of the middle dynamical regime. The variation of
τ † with N2 is shown in the inset of Fig. 8(a). The variation
is nonmonotonic and has a maximum τ † at N2 ≈ 60. The
origin of this behavior stems from two competing trends. First,
we note that τ † is approximately the time required for the
system to reach the boundary between regimes I and II shown
in Fig. 2. As noted in Sec. IV D this occurs at λ ≈ (X1 −
X2)/2 = (X1 − c2N2)/2. Thus, the separation distance at this
boundary increases as N2 decreases. In turn, this will tend to
cause the time τ † to increase. On the other hand, decreasing
N2 also increases D2 and therefore also the relative diffusion
rate D1 + D2. This effect will tend to decrease τ †. Evidently,
at high N2 the first effect dominates, while the second effect
dominates at low N2, thus resulting in the maximum.

As noted above, the two transitions in the segregation
kinetics occur near the I-II and III-IV regime boundaries of
the corresponding free-energy functions. A close inspection
reveals that the first transition in the kinetics occurs at a sep-
aration distance that is consistently larger than the I-II regime
boundary. For example, for N2 = 150, the transition occurs at
λ ≈ 20, while the I-II regime boundary is located at λ ≈ 14.
To understand this apparent discrepancy it is useful to examine
once again the variation of the extension lengths and overlap
distance with λ. In particular, we compare the behavior of
these functions calculated during the segregation simulations
with those calculated during the (equilibrium) calculations
of the free-energy functions. Figure 9 shows the two sets
of results calculated for a system with N1 = 400, N2 = 200,
and D = 4. In regime I, the curves for each extension length
calculated using the two methods overlap, and likewise for
Lov. This is also true in regime IV, where the polymers are
no longer in physical contact. However, there is a significant
difference between the two sets of results in the intermediate
regimes. This indicates that segregation is not a quasistatic

process in this segregation stage, which explains the small
discrepancies between the results of Figs. 8(a) and 8(b). For
example, the transition associated with leaving the nesting
state occurs at slightly a higher λ value in the results from the
dynamics simulations relative to the equilibrium case, consis-
tent with trends discussed above in relation to the behavior of
the IMFPT.

Another noteworthy difference is the absence of any clear
transition in the dynamics results associated with the regime
II-III boundary of the free-energy function. The reason that
the two sets of results diverge in this region is straightfor-
ward: it corresponds roughly to the regime where the driving
force is greatest. Thus, the polymers are driven apart at a rate
that is fast relative to that of the internal relaxation and out-
of-equilibrium effects become significant. Once the driving
force reduces to zero and unbiased diffusion dominates, then
quasiequilibrium is restored.

We conclude with the following two observations concern-
ing the relation between the segregation dynamics and the
free-energy functions. First, the separation kinetics in the nest-
ing regime, where the system is in quasiequilibrium, exhibits
behavior consistent with the flat free-energy function for that
regime. Second, a rapid increase in the separation rate occurs
at λ very close to values corresponding to steep gradients in
the free energy. Since out-of-equilibrium effects are present
during this stage, the equilibrium free energy cannot be used
in any quantitative analysis of the dynamics. However, the
free energies do provide information on where such a rapid
increase in the segregation rate is expected to occur.

V. CONCLUSIONS

In this study we have used MC simulations to study the
physical behavior of two flexible hard-sphere polymer chains
confined to infinitely long channels. Building on our previous
studies of symmetric polymer or channel systems [19,21], we
consider the effects of asymmetry in the polymer length. The
main focus was the measurement and characterization of the
variation of the free energy F with respect to the center-of-
mass separation along the channel, λ. For the case where
the polymer centers of mass are constrained to overlap, we
also measure F with respect to extension length difference ζ .
In addition, we used MC dynamics simulations to study the
segregation dynamics of initially overlapping polymers.

A summary of the key findings is as follows. The free-
energy functions F (λ) exhibited the same four regimes
[(I) nested, (II) partially overlapping, (III) compressed and
nonoverlapping, and (IV) separated] as observed in our pre-
vious studies on polymer segregation [19,21]. In Fig. 7 we
propose a regime map in which the state of the system
is determined by the ratio of the polymer lengths, N2/N1,
and the scaled separation distance, λ′ ≡ λ/(N1 + N2)D−β .
For sufficiently small N2/N1, regime II disappears and the
system passes directly from regime I to III as λ′ increases.
In regimes II, III and IV, the free-energy functions satisfy
the scaling F (λ) = (N1 + N2)D−α f [λ/(N1 + N2)D−β], where
α ≈ 1.82. and β ≈ 0.64. In regime I, where the short polymer
is nested inside the larger one, F is constant with respect to
λ and satisfies F ∝ N2D−β , where β ≈ 0.64. A simple theory
constructed using de Gennes blob scaling and a previously
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proposed model to describe the conformational behavior of
overlapping polymers in channels [10] yields scaling behavior
consistent with the observed behavior and predicts exponents
of α = 1/ν ≈ 1.70 and β = 1 − 1/ν ≈ 0.70. The small dis-
crepancies arise from a combination of finite-size effects and
deficiencies in the theoretical model of Ref. [10]. Regime I is
also characterized by dynamics that are surprisingly similar
to those expected for two noninteracting 1D random walkers
undergoing unbiased diffusion. When the system crosses into
regimes II and III, a rapid segregation occurs with out-of-
equilibrium conformational behavior.

Our study has revealed a few intriguing effects in systems
of polymers confined to channels related to the asymmetry in
the contour lengths. The most notable are associated with the
proposed “phase diagram” sketched in Fig. 7. In future work,
it would be of interest to verify that the measured scaling
of the free energy and the regime boundaries are preserved
for much larger polymer systems and to develop theoretical
models that yield more accurate predictions for the scaling
exponents. In the future, we also plan to study the effects of
other asymmetries, such as differences in polymer topology
(e.g., ring and linear polymers), as well as asymmetries in the
two lateral dimensions of the confining channel (e.g., using
channels with rectangular cross sections).

It must be noted that this study and others like it are still
very far removed from the long-term goal of accurately quan-
tifying the degree to which entropic forces drive chromosome
segregation in bacteria. Given the inherent complexity of such
a biological system, the models are likely too simplistic for
that ambitious goal, even with further refinements. A more
realistic direction is modeling the behavior of “cleaner” in
vitro systems such as DNA and other polymers confined to
nanofabricated channels and cavities, as examined recently
for example in Ref. [39]. We anticipate further such experi-
mental examinations of systems of multiple polymers under
confinement, the relevance of which is aligned more with
development of nanofluidic devices for DNA manipulation
and analysis. Accurate modeling of even these “simpler” sys-
tems is still challenging. At the very least, this requires using
much longer, semiflexible chains that better describe polymers
such as λ-DNA used in experiments. The type of asymmetry
examined in this study may well be relevant to such future
experiments.
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APPENDIX A: FREE ENERGY OF OVERLAPPING
POLYMERS IN REGIME I

In this Appendix, we develop a theoretical model for
the free-energy barrier height, �F , for channel-confined
polymers of unequal chain length. The model is used to
help understand the scaling properties of �F presented in
Sec. IV B. We follow the approach taken by Minina and
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FIG. 10. Illustration of the various quantities described in the text
of Appendix A for the case of ζ ≡ X1 − X2 > 0. For the other case,
where ζ ≡ X1 − X2 < 0, the polymer 1 (red) would be nested inside
of polymer 2 (blue).

Arnold in Refs. [16] and [17], which considered the special
case of equal chain length.

Consider two polymers confined to a channel of diameter
D in the case where polymer 2 of length N2 is nested in a
polymer 1 of length N1. Thus, the extension length difference
satisfies ζ ≡ X1 − X2 > 0. Employing the model of Jung et al.
to describe overlapping polymers under confinement [10],
the overlapping portions of the polymers effectively occupy
separate virtual tubes of diameter D1 and D2, both of which
are less than D. We write D1 = D

√
ξ and D2 = D

√
ξ0 − ξ . In

the case where lateral interpenetration is excluded, the sum
of the cross sectional areas of the virtual tubes equals that
of the real channel, which implies ξ0 = 1. This choice was
made in Refs. [16] and [17]. The quantity ξ is a measure of
the fraction of the channel cross section effectively occupied
by polymer 1, while ξ0 − ξ measures the same for polymer
2. Note that the extension length of polymer 2, X2, is also the
distance along the channel over which the polymers overlap
and, thus, the length of the two virtual tubes. The portion
of polymer 1 outside this range is confined solely to the real
tube of diameter D. Using the de Gennes blob theory (i.e., the
extension length of polymer of length N confined to a tube of
width D is X ∝ ND(ν−1)/ν), it follows that

m1D(ν−1)/ν
1 = N2D(ν−1)/ν

2 , (A1)

where m1(� N1) is the number of monomers of polymer 1
that lie within the span of 2, and where the scaling prefactors
have canceled. The various quantities are illustrated in Fig. 10.
Using the relation between virtual tube diameters and D intro-
duced above, it is easily shown that

ξ (m1/N2) = ξ0

[
1 +

(m1

N2

)2ν/(ν−1)]−1

. (A2)

Employing once again the de Gennes blob theory, the free
energy of polymer 2 is

F2 = N2D−1/ν

2 = N2D−1/ν (ξ0 − ξ )−1/2ν . (A3)

The free energy of polymer 1 has contributions from the
overlapping and nonoverlapping (“overhang”) portions of the
chain:

F1 = (N1 − m1)D−1/ν + m1D−1/νξ−1/2ν . (A4)

Note that the scaling prefactors have been omitted from
Eqs. (A3) and (A4).
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It follows that the free energy in regime I relative to that of
regime IV is

�F = F1(m1) + F2(m1) − (N1 + N2)D−1/ν, (A5)

where the third term is the free energy in regime IV, where
the polymers are sufficiently separated to not interact. From
Eqs. (A2)–(A4), it follows that

�F (m1/N2) = N2D−1/ν f (m1/N2; ξ0), (A6)

where

f (x; ξ0) = ξ (x)−1/2νx + [ξ0 − ξ (x)]−1/2ν − x − 1 (A7)

Neglecting fluctuations, the value of x ≡ m1/N2 is determined
by minimization of f . Numerical determination of the mini-
mum yields the linear relation of x and ξ with respect to ξ0:

x ≡ m1/N2 = 0.79747 + 0.1ξ0

ξ = −0.10903 + 0.53072ξ0 (A8)

in the range of ξ0 = 1–1.4. For the case of a nested polymer
of length N2 = 200, this corresponds to values ranging from
m1 = 179.51 and ξ = 0.42348 for ξ0 = 1 to m1 = 187.51 and
ξ = 0.63576 for ξ0 = 1.4. Note that m1 < N2 and ξ > ξ0 − ξ .
This implies that in the overlap regime the nested polymer
is more longitudinally compressed and occupies a greater
fraction of the cross-sectional area than that of the overlapping
portion of the longer polymer.

APPENDIX B: NESTING FREE-ENERGY
FUNCTION FOR λ = 0

Figure 5(a) shows the variation of the free energy with re-
spect to the extension length difference, ζ = X1 − X2, for two
polymers of similar contour length and overlapping centers
of mass (i.e., λ = 0). In this Appendix, we derive expres-
sions that can be used to account for this behavior. As in
Appendix A, we follow the approach taken by Minina and
Arnold [16,17], who considered the special case of polymers
of equal length. For simplicity, we consider only the case of
ξ0 = 1.

In Appendix A, we considered the case of ζ = X1 − X2 >

0. There, the conformational free energy can be written as the
sum

F (m1) = F1(m1) + F2(m1), (B1)

where

F1 = (N1 − m1)D−1/ν + m1D−1/νξ−1/2ν (B2)

and

F2 = N2D−1/ν

2 = N2D−1/ν (1 − ξ )−1/2ν . (B3)

In addition,

ξ (m1) =
[
1 +

(m1

N2

)2ν/(ν−1)]−1

. (B4)

Note these relations follow from Eqs. (A4), (A3), and (A2) for
ξ0 = 1. The difference in extension lengths, ζ , is the total span
of the portion of polymer 1 located outside the region spanned
by polymer 2. This is given by

ζ (m1) = (N1 − m1)D(ν−1)/ν, (B5)

where we omit the prefactor. As both F and ζ are param-
eterized by m1 the relationship between F and ζ is easily
calculated.

Now consider the case where polymer 1 is nested within
polymer 2, in which case ζ ≡ X1 − X2 < 0. In addition, m1 =
N1 and m2(< N2) are the number of monomers of each poly-
mer within the span of polymer 1. Following the approach
described above, it is easily shown that

ξ (m2) = ξ0

[
1 +

( N1

m2

)2ν/(ν−1)]−1

, (B6)

and the contributions to the free energy from both
polymers are

F1 = N1D−1/νξ−1/2ν (B7)

and

F2 = (N2 − m2)D−1/ν + m2D−1/ν (1 − ξ )−1/2ν . (B8)

Thus, the total free energy,

F (m2) = F1(m2) + F2(m2), (B9)

is a function of the quantity m2. Since X2 > X1, the extension
length difference is the negative of the distance spanned by the
portion of polymer 2 outside the range spanned by polymer 1:

ζ (m2) = −(N2 − m2)D(ν−1)/ν . (B10)

Since both F and ζ are functions of the variable m2, the
relationship between F and ζ is once again easily calculated.

Using these relations, which cover both regimes of ζ > 0
and ζ < 0, we have calculated F (ζ ) for a system with N1 =
200 and D = 4 for various values of N2. The results are shown
in Fig. 5(b).

APPENDIX C: ADDITIONAL RESULTS ILLUSTRATING
THE SCALING PROPERTIES OF THE FREE ENERGY

As described in Sec. IV A, the confined-polymer system
is characterized by four scaling regimes. In Sec. IV D, we
argue that the regimes are divided by boundaries that de-
pend only the values of N2/N1 and λ/(N1 + N2)D−β , where
β ≈ 0.64. This conclusion was made on the basis of the
results of Fig. 6. The free-energy functions were shown to
collapse to a universal curve when the axes were scaled such
that F ′ ≡ F/(N1 + N2)D−α is plotted as a function of λ′ ≡
λ/(N1 + N2)D−β , where α = 1.82. Figure 6(a) and Fig. 6(b)
show the data collapse for fixed N1 = 300 and fixed D = 6 for
various values of N2. Note that this collapse is only expected
in regimes II–IV, and not for regime I, which accounts for the
observed deviation from this scaling rule at low λ. Figure 6(b)
and Fig. 6(d) show the data collapse for fixed N1 = 300 and
fixed N2 = 200 for various values of D. As expected, the data
collapse in Fig. 6(d) is valid for all regimes, including regime
I, since N2 is fixed.

Each of the free-energy functions presented in Fig. 6 cor-
responds to fixed N1 = 300. The theoretical model predicts
that the scaling boundaries in the λ′-F ′ plane do not depend
on the specific value of N1. This is equivalent to the prediction
that the scaled functions F ′(λ′) are independent of N1. To test
this invariance, we have calculated a collection of free-energy
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FIG. 11. Scaled free energy, F/(N1 + N2)D−1.82 versus scaled polymer separation, λ/(N1 + N2)D−0.64. Panels (a)–(c) each show results
for fixed N1 and fixed D for various values of N2. The results are arranged as follows: (a) N1 = 200 and D = 6, (b) N1 = 300 and D = 6, and
(c) N1 = 400 and D = 6. Panels (d)–(f) each show results for fixed N1 and N2 for various values of D. The results are arranged as follows:
(d) N1 = 200 and N2 = 150, (e) N1 = 300 and N2 = 200, and (f) N1 = 400 and N2 = 300. The vertical dashed line in each panel marks the
approximate boundary between regimes II and III.

functions for N1 = 200 and N1 = 400. Figure 11 below com-
pares the scaled functions calculated for N1 = 200, 300, and
400. For each N1, we have varied N2 at fixed D [Figs. 11(a)–
11(c)], and have also varied D for fixed N2 [Figs. 11(d)–11(f)].
The expected data collapse in the relevant regimes is observed.
[Note that this does not include regime I for Figs. 11(a)–
11(c)]. This result provides further evidence for the veracity
of our claim regarding the regime boundaries.

APPENDIX D: SCALING OF F(λ) IN REGIME II

In this Appendix, we develop a model to help understand
the scaling properties of the free-energy function F (λ) pre-
sented in Sec. IV D.

Consider the case of two partially overlapping polymers in
regime II. The polymer lengths are N1 and N2 � N1. Gener-
ally, the number of monomers of each polymer in the overlap
region, m1 and m2, need not be equal. However, we note from
Fig. 4(a) that these are indeed very close to equal in this
regime. Consequently, we define m ≡ m1 = m2. In addition,
we choose the diameters of the virtual tubes to be D1 = D2 =
D/

√
2. This corresponds to choosing ξ = 1

2 and ξ0 = 1 in
Appendix A. The choice ξ = 1

2 corresponds to the observation
that m1 = m2. Choosing ξ0 = 1 corresponds to not consid-
ering lateral interpenetration of the chains. We make this
simplification since choosing instead ξ0 > 1 changes only the

scaling prefactors and not the functional form of the scaling
nor the values of the exponents.

The free energy of a partially overlapping chain is given by

F1 = c0(N1 − m)D−1/ν + c0(N2 − m)D−1/ν

+2c0m(D/
√

2)−1/ν, (D1)

where c0 is a scaling constant. The first and second terms
account for the parts of each polymer outside the overlap
region. The third term is the contribution of the overlapping
portion of the two polymers. The free energy of two polymers
that are far apart (i.e., in regime IV) is given by

F2 = c0N1D−1/ν + c0N2D−1/ν . (D2)

The free energy in regime II relative to that of regime IV is
thus

F = F1 − F2 = c′
0mD−1/ν, (D3)

where c′
0 ≡ (21+1/2ν − 2)c0. It follows that

F

(N1 + N2)D−1/ν
= c′

0

( m

N1 + N2

)
(D4)

To determine the relationship between the free energy and
λ, we need to find the relation between m and λ. For conve-
nience, choose z = 0 to be the center of the overlap region,
and define z1(< 0) to be the center of mass of polymer 1 and
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FIG. 12. Variation of m/(N1 + N2) with λ/(N1 + N2)D1−1/ν ob-
tained by solving Eq. (D7) for the case of N1 = 300 and D = 6. The
inset shows the unscaled data.

z2(> 0) to be the center of mass of polymer 2. It follows that

z1 =
(N1 − m

N1

)(
−1

2
Lov − 1

2
L1

)
,

where L1 is the extension length of polymer 1 outside of
the overlap region. Note that L1 = c(N1 − m)D1−1/ν , where
c is a constant, and also that Lov = c′mD1−1/ν , where c′ ≡
2−1/2+1/2νc. It can then be shown that

−2z1/D1−1/ν = (c′′ − c)m + cN1 − c′′m2/N1, (D5)

where c′′ ≡ c′ − c. Likewise, it can be shown that z2 is
given by

2z2/D1−1/ν = (c′′ − c)m + cN2 − c′′m2/N2. (D6)

From Eqs. (D5) and (D6) it follows that λ ≡ z2 − z1 satisfies:

λ

(N1 + N2)D1−1/ν
= �c

( m

N1 + N2

)
+ 1

2
c

−1

2
c′′

( m

N1 + N2

)2 (N1 + N2)2

N1N2
,

(D7)

where �c ≡ c′′ − c.
In the special case where N1 = N2 ≡ N , the factor (N1 +

N2)2/N2N2 reduces to a constant, and the quadratic equation
for the variable m/(N1 + N2) ∝ m/N can be solved to yield
a relation of the form m/N = u(λ/ND1−1/ν ), as noted in
Ref. [21]. Substitution into Eq. (D4) then yields a scaling of
F (λ) consistent in form with that seen for the data presented
in Sec. IV D; that is, F (λ; N, D) = ND−1/ν f (λ/ND1−1/ν ),
where f (x) = u(x) in regime II. However, in the general case
that N1 �= N2, the resulting expression for m/(N1 + N2) has
a residual dependence on N1 and N2 beyond that implicit
in the dependence on scaled variable λ/(N1 + N2)D1−1/ν .
Consequently, the theoretical model does not exactly yield
the scaling described by Eq. (3). In practice, however, the
quantitative effect of the factor (N1 + N2)2/N2N2 is mini-
mal. Figure 12 shows results for m/(N1 + N2) vs λ/(N1 +
N2)D1−1/ν for N1 = 300 and D = 6. The curves for various
N2 all come close to collapsing to a universal curve. The
greatest deviation occurs for low λ for cases where the system
has transitioned into regime I, where these results are not
relevant. Similar results were obtained for other values of N1.
We conclude that the theoretical model produces results that
come very close to yielding the predicted scaling of Eq. (3) in
regime II.
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