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Unzipping of a double-stranded block copolymer DNA by a periodic force
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Using Monte Carlo simulations, we study the hysteresis in unzipping of a double-stranded block copolymer
DNA with −AnBn− repeat units. Here A and B represent two different types of base pairs having two and three
bonds, respectively, and 2n represents the number of such base pairs in a unit. The end of the DNA are subjected
to a time-dependent periodic force with frequency (ω) and amplitude (g0) keeping the other end fixed. We find
that the equilibrium force-temperature phase diagram for the static force is independent of the DNA sequence.
For a periodic force case, the results are found to be dependent on the block copolymer DNA sequence and on
the base pair type on which the periodic force is acting. We observe hysteresis loops of various shapes and sizes
and obtain the scaling of loop area both at low- and high-frequency regimes.
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I. INTRODUCTION

Single-molecule manipulation techniques, which are now
used routinely to study individual molecules by applying
mechanical forces in the pico-newton ranges, have greatly
increased our understanding of molecular interactions in bi-
ological molecules [1]. The unzipping of a double-stranded
DNA (dsDNA) by an external force, exerted by different en-
zymes or molecular motors in vivo, has biological relevance
in processes like DNA replication and RNA transcription
[2]. The unzipping transition has been studied for over two
decades, both theoretically [3–8] and experimentally [9–11],
by applying an external pulling force on the strands of the
DNA. The dsDNA unzips to two single strands abruptly when
the force exceeds a critical value showing the first-order na-
ture of the phase transition [3,4,6–8]. If biomolecules are
subjected to a periodic forcing, they can unbind and rebind
with a hysteresis in their force-distance isotherms. The study
of hysteresis in unbinding and rebinding of biomolecules can
provide useful information about the kinetics of conforma-
tional transformations, the potential energy landscape, and
controlling the folding pathway of a single molecule and in
force sensor studies [12–16].

In recent years, the behavior of a dsDNA under a periodic
force has been studied using Langevin dynamics simulation of
an off-lattice coarse-grained model for a short homo-polymer
DNA chains [17–21] and Monte Carlo simulations on a rela-
tively longer chain of a directed self-avoiding walk model of
a homo-polymer dsDNA on a lattice [22–24]. In both types
of studies, a dynamical phase transition was found to exist,
where the DNA can be taken from the zipped state to an un-
zipped state with an intermediate dynamic state. It was found
that the area of the hysteresis loop, Aloop, which represents
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the energy dissipated in the system, depends on the frequency
of the periodic force. At higher frequencies, it decays with
frequency as Aloop ∼ 1/ω, whereas at lower frequencies, it
scales with the amplitude g0 and frequency ω of the oscillating
force as Aloop ∼ gα

0ω
β . The values of exponents α and β are,

however, found to be different in these studies.
In this paper, we consider a hetero-polymer DNA as a

block copolymer DNA, in which the heterogeneity is con-
sidered in the form of repeated blocks, AnBn or BnAn, where
2n is the block length, and A and B are different types of
base pairs with two- and three-hydrogen bonds, respectively.
One end of this DNA sequence is subjected to a pulling force
while the other end is kept anchored. We considered both the
constant and the periodic pulling force cases. The unzipping
of a block copolymer DNA by a constant pulling force is
found to be a first-order phase transition. The equilibrium
phase boundary separating the zipped and the unzipped phases
does not depend on the DNA sequence and is found to follow
the same exact expression, as obtained for the homo-polymer
DNA case [6,8,22], but with a different effective base pair
energy. The results for the unzipping of a block copolymer
DNA subjected to a periodic force are, however, found to be
sequence dependent. For sequences of higher block lengths,
the results also depend on whether the periodic force is acting
on A-type or B-type base pairs.

The paper is organized as follows: In Sec. II we define our
model and simulation details. We also define the quantities of
interest we are studying in this paper. Section III is devoted
to discussion of our results for both the static and the periodic
pulling force cases. We summarize the results of this paper in
Sec. IV.

II. MODEL

We define hetero-polymer DNA as a block copolymer
DNA of type (AnBn)M , where A and B are two different types
of base pairs, 2n is the total number of base pairs in a block
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FIG. 1. Schematic diagram of a heterogeneous dsDNA of the
type (B4A4)2, where A and B represents base pairs having three and
two hydrogen bonds, respectively. One end of the DNA is anchored
at the origin (O and O′), and the strands on the free end are subjected
to a time-dependent periodic force with frequency ω and amplitude
g0.

unit, also be called block length, and M = N/2n represents
the total number of blocks in the DNA of length N . We
consider block lengths 2n = 4, 8, 16, 32, 64, 128, and 256.
The two strands of the DNA are represented by two directed
self-avoiding random walks on a (d = 1 + 1)-dimensional
square lattice. The walks starting from the origins O and O′,
which are a unit distance apart, are restricted to go towards
the positive direction of the diagonal axis (z direction) with-
out crossing each other. The directional nature of the walks
takes care of the self-avoidance. Whenever the complemen-
tary bases are a unit distance apart they gain energy of −2ε

(ε > 0) for the base pair of type A and −3ε for the base pair
of type B. Here we have assumed that ε (ε > 0) represents the
strength of a hydrogen bond.

Two strands of the DNA at one end are always kept fixed at
origins O and O′, and the other end monomers are subjected
to a time-dependent periodic force g(t )

g(t ) = g0| sin(ωt )|, (1)

where g0 is the amplitude and ω is the frequency. The
schematic diagram of the model is shown in Fig. 1.

In this paper we consider the following two cases: (1)
the base pairs having two hydrogen bonds are anchored at
the origins and the time-varying force is applied on the base
pairs that are bound by three hydrogen bonds, represented by
(AnBn)M , and (2) the opposite case, i.e., the base pairs having
three hydrogen bonds are anchored at the origins and the force
is acting on monomers that are bound by two hydrogen bonds
[represented by (BnAn)M]. While the equilibrium results for
both the cases are found to be the same, the nonequilibrium
results show marked differences.

We perform Monte Carlo simulations of the model using
the Metropolis algorithm. The strands of the DNA undergo
Rouse dynamics that consists of local corner-flip or end flip

moves that do not violate mutual avoidance [25]. The elemen-
tary move consists of selecting a random monomer from a
strand, which itself is chosen at random, and flipping it. If
the move results in the overlapping of two complementary
monomers, thus forming a base pair between the strands, it is
always accepted as a move. The opposite move (i.e., unbind-
ing of monomers) is chosen with the Boltzmann probabilities
η = exp (−2ε/kBT ) or η = exp (−3ε/kBT ) for base pairs of
types A and B, respectively. If the chosen monomer is unbind,
which remains unbind after the move is performed is always
accepted. The time is measured in units of Monte Carlo steps
(MCSs). One MCS consists of 2N flip attempts, which means
that on average, every monomer is given a chance to flip.
Throughout the simulation, the detailed balance is always
satisfied and the algorithm is ergodic in nature. It is always
possible, from any starting DNA configuration, to reach any
other configuration by using the above moves. We let the
simulation run for 2000π/ω MCSs, so that the system reaches
the stationary state before taking measurements. Throughout
this paper, we have chosen dimensionless quantities. The
quantities having dimensions of energy are measured in units
of ε, and the quantities that have dimensions of length are
measured in terms of the lattice constant a. In this paper we
have taken kB = 1, ε = 1, and a = 1.

The separation between the end monomers of the two
strands, x(t ), changes under the influence of the applied ex-
ternal force g(t ) and is monitored as a function of time t . The
time averaging of x(t ) over a complete period

Q = ω

π

∮
x(t ) dt (2)

can be used as a dynamical order parameter [26]. From the
time series x(t ), we obtain the extension x(g) as a function of
force g and average it over 10 000 cycles to obtain the average
extension 〈x(g)〉 as a function of g. For systems far away from
equilibrium, the average extension, 〈x(g)〉, for the forward and
backward paths for the periodic force is not the same, and
we see a hysteresis loop. The area of hysteresis loop, Aloop, is
defined by

Aloop =
∮

〈x(g)〉 dg (3)

and depends upon the frequency ω and the amplitude g0 of
the oscillating force. This quantity also serves as another
dynamical order parameter.

III. RESULTS AND DISCUSSION

In this section we discuss the results obtained for both the
static and the dynamic cases. Let us first take the static case.

A. Static case (ω = 0)

In the static case, this model can be solved exactly using the
generating function and the exact transfer matrix techniques.
If the partition function of the dsDNA of length n with sep-
aration x between monomers of the strands is represented by
Dn(x), in the fixed distance ensemble, then Dn(x) satisfies the
recursion relation:

Dn+1(x) = [Dn(x + 1) + 2Dn(x) + Dn(x − 1)] × C, (4)
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where

C =
{

1 + (e2βε − 1)δx,1, for base pair type A

1 + (e3βε − 1)δx,1, for base pair type B.
(5)

The above recursion relation can be iterated N times, with an
initial condition D0(x) = δx,1 to obtain the partition function
of the DNA of length N . The recursion relation [Eq. (4)]
with a single base pairing energy (say, ε) for each base pair
such that C = [1 + (eβε − 1)δx,1] has been solved exactly via
the generating function technique [6–8] to obtain the exact
unzipping phase diagram. In this method, the singularities of
the generating function are calculated. The phase of the DNA
is given by the singularity closest to the origin, and when
the two singularities cross each other a phase transition takes
place. Taking the following form for the generating function
for Dn(x):

D̂(z, x) =
∑

n

znDn(x) = κx(z)Y (z), (6)

and used in the above recursion relation [Eq. (4) with
initial condition D0(x) = δx,1], we obtain κ (z) = (1 − 2z −√

1 − 4z)/(2z) and Y (z) = 1/{1 − z[2 + κ (z)]eβε}. The sin-
gularities of κ (z) and Y (z) are 1/2 and z2 = √

1 − e−βε −
1 + e−βε, respectively. The zero force melting, which comes
from z1 = z2, takes place at a temperature Tm = ε/ ln(4/3).
In the large length limit, Dn(x) can be approximated as
DN (x) ≈ κx(z2)/zN+1

2 , with the free energy βF = N ln z2 −
x ln κ (z2). The average force required to maintain the sepa-
ration x, in a fixed distance ensemble, is then given by

g(T ) = ∂F

∂x
= −kBT ln κ (z2). (7)

In the fixed force ensemble, the generating function can be
written as

G(z, β, g0) =
∑

x

e2βg0x
∑

n

znDn(x) =
∑

x

e2βg0xκx(z)Y (z)

= Y (z)

1 − κ (z)e2βg0
, (8)

which has an additional force-dependent singularity z3 =
1/[2 + 2 cosh(2βg0)]. The phase boundary comes from z2 =
z3 and is given by

gc(T ) = kBT cosh−1

[
1

2

1√
1 − e−βε − 1 + e−βε

− 1

]
, (9)

which is same as the phase boundary obtained in the fixed
distance ensemble [Eq. (7)]. In the above expression, ε is
the only free parameter, which can be tuned. For the block
copolymer DNA case, in every block, we have n base pairs
each of types A and B, giving the total base pairing energy
(2ε + 3ε)n. Since the total energy of the block remains the
same irrespective of the sequence (AnBn)M or (BnAn)M , we
seek if an effective base pairing energy ε = 5ε/2 in Eq. (10)
can give us the exact phase boundary for the block copolymer
DNA as obtained by iterating the recursion relation Eq. (4).
The phase diagram of unzipping of a block copolymer DNA
(with ε = 5ε/2) is shown in Fig. 3(a) by solid lines.

The exact transfer matrix technique can be used to ob-
tain many other equilibrium properties which are based on

thermal averaging for a finite system size. In this technique,
the partition function DN (x) for the DNA of length N , at
any temperature, can be obtained numerically by iterating the
above recursion relation [i.e. Eq. (4)] N times, with an ini-
tial condition D0(1) = 1. The equilibrium average separation
between the end monomers, 〈x〉eq, can then be obtained by

〈x〉eq =
∑

x x DN (x)eβg0x∑
x DN (x)eβg0x

. (10)

In Fig. 2 we have plotted the scaled extension 〈x〉/N , as a
function of constant pulling force g for different chain lengths
N = 256, 512, and 1024 at T = 1.5 obtained by iterating the
recursion relation Eq. (4) for the heterogeneous sequences
(A16B16)M [Fig. 2(a)], in which the base pair of type A is
anchored at the origin and an external force g is applied on
the base pair type B, and (B16A16)M [Fig. 2(c)], which is the
opposite of the above. From the figure, we can clearly see that
the DNA is in the zipped phase at lower g values and in the un-
zipped phase when g exceeds a critical value gc. Furthermore,
as the length N of DNA increases, the transition becomes
sharper. In the thermodynamic limit, it would become a step
function at a critical value gc. The point of intersection of
these isotherms for various lengths is very close to the critical
force gc. We use the finite-size scaling, shown in Figs. 2(b)
and 2(d), to extract the value of critical force gc. The critical
force, gc = 3.31 ± 0.05 (at T = 1.5), is found to be same for
the both sequences (A16B16)M and (B16A16)M implying that, at
equilibrium, it does not matter whether the DNA is unzipped
from the end having base pairing with three hydrogen bonds
(stronger) or the base pairing with two hydrogen bonds.
This is because the unzipping transition is a first-order phase
transition. The critical forces obtained at various temperatures
using the transfer matrix method are shown in Fig. 3(a) by
points. They match exactly with the analytical results given
by Eq. (7). The same exact transfer matrix technique could
also be used to obtain the melting temperature of the DNA.
We again iterate the recursion relations now at zero force
value g = 0 and obtain the equilibrium separation between
strands at the free end as a function of temperature. We use
chain lengths N = 1024, 2048, and 4096, and the finite-size
scaling of the form

〈x〉 = NdG[(T − Tm)Nφ], (11)

to obtain the melting temperature Tm. A nice collapse
is obtained for d = 0.52 ± 0.02, φ = 0.48 ± 0.02 and
Tm = 8.45 ± 0.25 for sequence(A16B16)M [shown in
Fig. 3(b)]. We have tried various other sequences and
found that the melting temperatures for all the heterogeneous
sequences allowed in our model are the same. The melting
temperature obtained by the transfer matrix method is also
shown in Fig. 3(a) by a diamond.

B. Dynamic case

In the previous section, we have seen that the unzipping of
a block copolymer DNA in equilibrium does not depend on
whether the force acts on the base pairs of type A or type B.
However, for the time-dependent periodic force, we find that
the unzipping depends on which base pairs are unzipped first.
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FIG. 2. Scaled extension 〈x〉/N , as a function of constant pulling force g, obtained using the exact transfer matrix approach, for different
chain lengths N = 256, 512, and 1024 at T = 1.5 for (a) the heterogeneous sequence (A16B16)M . (b) 〈x〉/Nd as a function of (g − gc )Nφ

showing a nice collapse of data for gc = 3.31 ± 0.05, d = 0.97 ± 0.05, and φ = 1.0 ± 0.02. (c) For the heterogeneous sequence (B16A16)M .
(d) Collapse of data shown in (c) for gc = 3.31 ± 0.05, d = 1.0 ± 0.05, and φ = 1.0 ± 0.02. The line joining the data points in plots (a) and
(c) is just a guide for the eye.

In Fig. 4 we have plotted the time variation of external
force g(t ) and scaled extension x(t )/N for the DNA of length
N = 256 with respect to time t for five consecutive cycles
when it is subjected to a periodic force of amplitude g0 = 5 at
two different frequencies ω = 6.28 × 10−3 and 1.57 × 10−3

at T = 4. The force increases from zero to a maximum value
of g0, which is much larger than the critical force gc needed
to unzip the DNA at equilibrium, and then decreases to zero
again. The DNA responds to this external force and starts un-
zipping slowly. We can see that there is always a lag between
the scaled extension and the force. It is easy to understand that,
for a homopolymer DNA, the time required to unzip a dsDNA
is directly proportional to its length. The larger the length of
the DNA, the more is the unzipping time. However, for a block
copolymer DNA, the unzipping time for the DNA of same
length can be quite different as it also depends on its sequence.
Figure 4(a) shows the time variation of the distance between
end monomers of the two strands for sequences of smaller
block sizes 8 [(A4B4)32 and (B4A4)32]. The scaled extension
for both sequences is almost the same. However, on increasing
the block sizes to 128 but keeping the frequency and ampli-
tude same, the scaled extension for the sequence (B64A64)2 is
more than that for the opposite sequence (A64B64)2 [Fig. 4(b)].
On increasing the block size further to 256, the scaled exten-
sion for the sequence (B128A128)1 becomes almost double that
for the opposite sequence (A128B128)1 as shown in Fig. 4(c).

This can be understood as follows. In one cycle of the pe-
riodic force with higher frequency (ω = 6.28 × 10−3), the
force changes faster and the system gets less time to relax.
Since it is easier to break base pairs with two hydrogen bonds
(type A) in comparison with base pairs with three hydrogen
bonds (type B), more base pairs are broken for the sequence
(B128A128)1 than for the sequence (A128B128)1, and we see the
higher extension. However, on lowering the frequency of the
external force to 1.57 × 10−3, the system gets enough time to
relax, and the extension between the strands become almost
comparable for both the sequences for all block sizes as shown
in Figs. 4(d)–4(f).

1. Hysteresis loops

We have seen that the extension x(t ) follows the driving
force g(t ) with a lag. When it is averaged over various cycles,
we obtain the average extension 〈x(g)〉 as a function of force
g showing a closed loop. The shape of a loop tells much about
the dynamics of the system and depends on the frequency
ω and the force amplitude g0. For the present problem, the
hysteresis loop also depends on the sequence of the block
copolymer DNA. In Fig. 5 we have plotted 〈x(g)〉 as a function
of force g at four different frequencies ω = 6.28 × 10−3,
1.57 × 10−3, 3.14 × 10−4, and 3.49 × 10−5 at force
amplitude g0 = 5 for the DNA of length N = 256 with block
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FIG. 3. (a) Critical unzipping force gc as a function of tem-
perature T for the heterogeneous sequence (A16B16)M . The line is
the exact result obtained from the generating function approach
[Eq. (10)], and the points are obtained by using finite-size scaling
of the force-distance isotherms [Eq. (11)] as obtained from the exact
transfer matrix approach. (b) Data collapse of the average distance,
〈x〉, of the heterogeneous sequence (A16B16)M for N = 1024, 2048,
and 4096. The exponents are d = 0.52 ± 0.02, φ = 0.48 ± 0.02
with melting temperature Tm = 8.45 ± 0.25.

sizes 8, 128, and 256 at T = 4. All of them show hysteresis
loops but with different shapes. The loops for DNA of smaller
block sizes, e.g., (A4B4)32 and (B4A4)32 [Figs. 5(a)–5(d)], are
almost the same, irrespective of which base pair is acted upon
by the driving force. To understand the shapes of the loop,
we first note that at higher frequency, i.e., ω = 6.28 × 10−3,
the stationary state of the DNA at g = 0 is a partially
unzipped state with an average extension 〈x(g)〉 = 35. At this
frequency, the force changes very rapidly and the strands of
the DNA do not get enough time to relax, and only a small
loop is traced by the extension between them. However, for
a relatively lower frequency ω = 1.57 × 10−3, the stationary
state of the DNA at g = 0 is a fully zipped configuration
with an average extension 〈x(0)〉 = 0. The strands now get
relatively more time to relax, and the loop area increases.
Even at this frequency, the DNA does not get fully unzipped
at the maximum force value. This is shown by the rounding of
the loop at the maximum force value. The extension increases

even though the force decreases. It reaches a maximum for
some lower force value, in the backward cycle, and then
decreases to zero when g = 0. On decreasing the frequency
further, the isotherms at higher and lower force values start
following the same curve for the forward and backward
cycles but with a loop in between whose area decreases
with decreasing frequency. The situation for the higher block
lengths are, however, different. For the sequence (A128B128)1

(third column in Fig. 5), the stationary state at frequency
ω = 6.28 × 10−3 is a completely zipped configuration with
an average extension 〈x(g)〉 ≈ 0 at g = 0 [see Fig. 5(i)]. This
is because the driving force is acting on base pairs with three
hydrogen bonds having higher strength, and hence only a
few base pairs are broken. Therefore the area of the loop
traced by the extension between the strands is also small. In
contrast, for the sequence (B128A128)1, the stationary state
(at the same frequency) is a partially unzipped DNA. In this
case, the driving force can break more bonds as it is acting
on the base pairs with two hydrogen bonds and therefore
is weaker than the previous case. Therefore, the average
extension 〈x(g)〉 traces a loop with larger area. On decreasing
the frequency to ω = 1.57 × 10−3, the stationary state (at
g = 0) for the sequence (B128A128)1 changes to a fully zipped
configuration [see Fig. 5(j)] as the strands now get enough
time to relax and get rezipped again for forces far below
the critical value. On decreasing the frequency further to
ω = 3.14 × 10−4 [Fig. 5(k)], the strands get equilibrated for
smaller and larger force values, and therefore the extension
starts following the equilibrium curve at these force values.
However, there is still a hysteresis curve at the transition
region that decreases on decreasing the frequency of the
force. It is found that the size of the hysteresis loop for the
sequence (B128A128)1 decreases much faster. The shape of the
loop for this sequence starts closing at the center, and the loop
divides into two smaller loops and a plateau starts emerging
[see Fig. 5(k)]. At frequency ω = 3.49 × 10−5, one of the
smaller loop completely disappears, and the other loop is also
very small [Fig. 5(l)]. The shape of loop is markedly different
for the opposite sequence (A128B128)1 at the same frequency
with considerable loop area. For sequences of intermediate
block lengths, for example, (A64B64)2 and (B64A64)2 with
block length 128 [Figs. 5(e)–5(h)], the hysteresis loops show
mixed features as seen for sequences with smaller and larger
block lengths (columns one and three of Fig. 5).

2. Loop area

We calculate the area of the hysteresis loops, shown in
Fig. 5, numerically using the trapezoidal rule. For the trape-
zoidal rule to work properly, the intervals should be uniformly
spaced. For the problem considered in this paper, the force
increases as sine function which gives us nonuniformly spaced
force values. To convert it into a uniformly spaced interval, we
divide the force interval g ∈ [0, g0], for both the rise and fall of
the cycle, into 1000 equal intervals, and then obtain the value
of 〈x(g)〉 at the end points of these intervals by interpolation
using cubic splines of the GNU Scientific Library [27]. The
loop area, Aloop, is then evaluated numerically by using the
trapezoidal rule on these intervals.

012413-5



RAMU KUMAR YADAV AND RAJEEV KAPRI PHYSICAL REVIEW E 103, 012413 (2021)

0

0.2

0.4

0

2

4

6
N = 256
g0 = 5

0

0.2

0.4

0.6

0

2

4

6

0

0.2

0.4

0.6

0 500 1000 1500 2000 2500
0

2

4

6
ω = 6.28 × 10−3

0

0.2

0.4

0.6

0.8

0

2

4

6
N = 256
g0 = 5

0

0.2

0.4

0.6

0.8

0

2

4

6

0

0.2

0.4

0.6

0.8

0 2000 4000 6000 8000 10000
0

2

4

6
ω = 1.57 × 10−3

x
(t

)/
N

(A4B4)32
(B4A4)32

x
(t

)/
N

(A64B64)2
(B64A64)2

x
(t

)/
N

t

(A128B128)1
(B128A128)1

g
(t

)

(A4B4)32
(B4A4)32

g
(t

)

(A64B64)2
(B64A64)2

g
(t

)
t

(A128B128)1
(B128A128)1

(a)

(b)

(c)

(d)

(e)

(f)
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of time t when it is subjected to a periodic force of amplitude g0 = 5 at frequency ω = 6.28 × 10−3. For the sequences (a) (A4B4)32 and
(B4A4)32, (b) (A64B64)2 and (B64A64)2, and (c) (A128B128)1 and (B128A128)1. Plots (d), (e), and (f) are same as plots (a), (b), and (c) at frequency
ω = 1.57 × 10−3. The variation of force with time, g(t ), is represented by solid lines.

In Fig. 6 the area of the hysteresis loop, Aloop, is plotted as
a function of the frequency, ω, of the external pulling force
for sequences of various block sizes 8, 128, and 256 of block
copolymer DNA of length N = 256 at force amplitude g0 = 5
and temperature T = 4. On decreasing the frequency of the
pulling force, it is found that the loop area first increases,
reaches a maximum value at some frequency ω∗, and then
decreases with decreasing the frequency further, similar to the
hysteresis loop area behavior for a homopolymer DNA under
periodic forcing [23]. At a frequency ω∗, the natural frequency
of the block copolymer DNA matches the frequency of the
externally applied force, and we have a resonance with a
maximum loop area. For the block copolymer DNA case,
the behavior of Aloop also depends on the DNA sequence
used. For sequences of smaller block lengths, e.g., (A4B4)32

and (B4A4)32, the loop area is same, and hence ω∗ is same

for both the sequences [see Fig. 6(a)]. However, this is no
longer true for sequences of higher block sizes, where clear
differences are seen for the opposite sequences. For example,
for block length 256, we can observe that the frequency ω∗ is
higher for the sequence (B128A128)1 than its opposite sequence
(A128B128)1 [see Fig. 6(c)]. At frequencies higher than ω∗, the
former sequence shows secondary peak structures, whereas
the sequence (A128B128)1 falls off smoothly without showing
any such peaks [see inset of Fig. 6(c)]. On the lower side of
frequency ω∗, the loop area Aloop falls sharply to zero for the
sequence (B128A128)1, whereas it decreases very slowly for the
opposite sequence (A128B128)1. The secondary peaks in Aloop

are the frequencies ωp = (2p − 1)π/2N , with p = 1, 2, . . .

as integers, and are higher Rouse modes [23]. These modes
are more pronounced for the sequence (B128A128)1, where
the pulling force is applied to A-type base pairs that can be
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FIG. 5. The force g vs extension 〈x(g)〉 curves averaged over 104 cycles for the block copolymer DNA of length N = 256 and block sizes
8 (first column), 128 (second column), and 256 (third column) at frequencies ω = 6.28 × 10−3 (first row), ω = 1.57 × 10−3 (second row),
ω = 3.14 × 10−4 (third row), and ω = 3.49 × 10−5 (fourth row) at force amplitude g0 = 5 and temperature T = 4. The data shown in this plot
are obtained using Monte Carlo simulations. The line joining the points is just a guide for the eye.

broken at relatively lower force values than B-type base pairs,
and hence more base pairs are broken. The two strands thus
separated with each other can explore more configurations
and can trace a hysteresis loop [see Fig. 5(l)]. This loop has
larger area whenever the frequency of the periodic force is ωp,
i.e., higher harmonics of the natural frequency of the DNA. In
contrast, for the opposite sequence (A128B128)1, more force is
required to break B type of base pairs where force is applied,
and at higher frequencies only a few base pairs are broken, and
the loop traced by unzipped strands is very small and hence no
secondary peaks are visible.

We have plotted Aloop, versus ω for various sequences at
force amplitude g0 = 5 for block copolymer DNA of three

different lengths N = 512, 768, and 1024 in Figs. 7(a) and
7(b). The maximum value of the loop area Aloop is directly
proportional to the length of the DNA used in the simulation.
Furthermore, the resonance frequency ω∗, where Aloop is max-
imum, decreases with the length of the DNA, suggesting the
scaling form

Aloop = NdF (ωNz ), (12)

where d and z are exponents, for the loop area Aloop. When
Aloop/N , is plotted with the scaled frequency ωN (i.e., for
exponents d = 1 and z = 1), we find a nice data collapse for
sequences of all the block sizes [Figs. 7(c) and 7(d)], implying
that the loop area for the block copolymer DNA decreases
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with frequency ω as Aloop ∼ 1/ω at higher frequencies (i.e.,
ω → ∞), similar to the homopolymer case [23].

To obtain the scaling behavior at lower frequencies, we
have plotted Aloop, for sequences of various block lengths
obtained for a block copolymer DNA of length N = 512, with
respect to (g0 − gc)αωβ , at three different force amplitudes
g0 = 5.0, 6.5, and 8 in the low-frequency regime (i.e., ω →
0). In the above expression we have subtracted the critical
force gc needed to unzip the block copolymer DNA for the
static force case [gc(T = 4) = 3.0467 . . .]. A similar type of
scaling was found earlier for the unzipping of a homopolymer
DNA using Brownian dynamics [17,20] and Monte Carlo sim-
ulations [23]. The exponents α and β are, however, found to
be different for these studies. The earlier studies on Brownian
dynamics simulations suggested α = 1/2 and β = 1/2 [17],
which were later modified to α = 0.33 and β = 1/2 [20]. On
the other hand, the exponents obtained for the Monte Carlo
studies were α = 1 and β = 5/4 [23]. In Figs. 8(a) and 8(b)
we have plotted the scaled data for three sequences (A4B4)64,
(A64B64)4, and (A128B128)2 and the data for the opposite se-
quences (B4A4)64, (B64A64)4, and (B128A128)2, respectively.

For all these sequences, we obtain a nice collapse for values
α = 1.0 ± 0.05 and β = 1.25 ± 0.05, the same as the expo-
nents obtained in earlier Monte Carlo studies for the unzipping
of a homopolymer DNA by a periodic force [23].

IV. CONCLUSIONS

To summarize, in this paper we have studied the unzipping
of a block copolymer DNA subjected to a periodic force with
amplitude g0 and frequency ω using Monte Carlo simulations.
We obtained results for the static force case and found that
the equilibrium results do not depend on the block copolymer
DNA sequence, and the temperature-dependent phase bound-
ary gc(T ), separating the zipped and the unzipped phases,
could be obtained by replacing the binding energy in the exact
expression previously obtained for the homopolymer DNA
case, by an effective average binding energy per block of the
block copolymer DNA sequence. For the dynamic case, the
system, however, is not in equilibrium, and results depend on
the amplitude and frequency of the periodic force as well as
on the DNA sequence. We monitor the separation between the
strands of the block copolymer DNA as a function of time
at various frequencies and force amplitudes. The averaged
separation 〈x〉 plotted as a function of force value g shows
a hysteresis loop. The shape of the hysteresis loops is found
to be dependent on the frequency of the periodic force and
the sequence of block copolymer DNA. For sequences of
shorter block lengths, e.g., (A4B4)32 and (B4A4)32, the loops
are found to be the same, with equal area, irrespective of
periodic force acting on A- or B-type base pairs at all fre-
quencies. However, for longer block lengths, e.g., (A128B128)1

and (B128A128)1, the shape of the loops strongly depends on
whether the periodic force is applied on A- or B-type base
pairs. We also obtain the area of the hysteresis loops, Aloop

as a function of frequency ω. The resonance frequency, ω∗,
at which the loop area Aloop is maximum is higher for the
sequence (B128A128)1. For frequencies higher than ω∗, the loop
area for the sequence (B128A128)1 is always more than that
for the opposite sequence (A128B128)1. Another difference is
the oscillatory behavior of the Aloop seen for the sequence
(B128A128)1, whereas it is absent for the opposite sequence.
For frequencies lower than ω∗, we find that the rate at which
Aloop decreases with frequency also depends on the block
length. The loop area for the sequence (B128A128)1 is found
to decrease much faster than the sequence (A128B128)1. In the
lower frequency regime Aloop scales as Aloop ∼ (g0 − gc)αωβ

with exponents α = 1 and β = 5/4 same as the exponents
obtained for periodic forcing of a homopolymer DNA studied
earlier [23], whereas in the higher frequencies, the loop area
Aloop is found to scale with frequency as Aloop ∼ 1/ω [18,23].
The differences in exponents observed in Brownian dynamics
simulations and the current study require further investigation
and will be the subject of a future study.
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