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We find that a moderate intrinsic twisting rate (ITR) can induce a bistable state for a force-free two-
dimensional intrinsically curved filament. There are two different configurations of equal energy in a bistable
state so that the filament is clearly different from its three-dimensional counterpart. The smaller the ITR or the
larger the intrinsic curvature (IC), the clearer the distinction between two isoenergetic configurations and the
longer the filament. In bistable states, the relationship between length and ITR is approximately a hyperbola and
relationship between IC and critical ITR is approximately linear. Thermal fluctuation can result in a shift between
two isoenergetic configurations, but large bending and twisting rigidities can prevent the shift and maintain the
filament in one of these two configurations. Moreover, a filament can have a metastable state and at a finite
temperature such a filament has the similar property as that of a filament with bistable state.

DOI: 10.1103/PhysRevE.103.012410

I. INTRODUCTION

Many filamentary materials, such as dsDNA and nan-
otubes, exhibit finite intrinsic (spontaneous) twisting rate
(ITR) [1–34] and/or finite intrinsic curvature (IC) [14–40].
For instance, it is well known that a dsDNA molecule has a
large ITR [2,3]. Moreover, special sequence orders favor a
finite IC for a short dsDNA chain [16–19]. An example is
that tandem sequence repeats of adenine tracts can yield a
constant IC in dsDNA [17–19]. It has also been reported that,
with a long range correlation in sequence, dsDNA develops a
macroscopic (intrinsic) curvature so that the wormlike chain
(WLC) model fails to account for its thermal property since
the WLC is free of IC and ITR [2,4–6,29]. This should be not
a surprise since the long range correlation in sequences tends
to make neighbor sequences have similar bending so leads
a finite IC. Meanwhile, an intrinsically curved and twisted
macroscopic filament is also ubiquitous since a helical spring
requires both a finite ITR and a finite IC [24]. These intrinsic
parameters are crucial to the structures and functions of fil-
aments [1–24,24–43]. Free of ITR and IC, the natural shape
of a filament is a straight line and at a finite temperature (T )
the extension of a microscopic filament is a smooth function
of stretching force [2,4–6,14]. In contrast, with a finite and
constant IC alone the natural shape of a filament is a circle
and its extension can subject to a discontinuous transition
under a stretching force in both two-dimensional (2D) and
three-dimensional (3D) spaces [42,43]. Moreover, it has been
reported that an intrinsically curved and twisted filament can
form a stable helix and under an applied force the extension
of the helix can subject to a discontinuous transition [22–24].
ITR and IC also affect considerably the size or persistence
length (lp) of a microscopic filament [41]. lp represents an
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effective statistical segment length of a coarse-grained model
in which one replaces the filament by the trace of a random
walk [21]. In other words, lp is approximately the non-
deformable length of a filament, and the mean end-to-end
distance and radius of gyration of a long filament are propor-
tional to lp so that a proper magnitude of lp is crucial to the
function of semiflexible biopolymers [1–14,18–37,39,40].

Moreover, many filaments such as semiflexible biopoly-
mers in vivo are in general subjected to various constraints,
such as being absorbed on the substrate or moving in a crowd
environment. Meanwhile, many devices are in 2D or quasi-2D
forms, such as a computer display. A 2D or constrained sys-
tem often exhibits different property from its 3D counterpart.
Therefore, the property of filaments under confinement or
in 2D environment has attracted a lot of attentions recently
[11,12,44–54].

Theoretical model for a 2D filament usually assumes that
the filament is constrained in an ideal 2D plane so that models
the filament as a curve of zero cross section and ignores the
effect of ITR. However, in practice there is not such an ideal
system, and a 2D filament is in fact geometrically constrained
or absorbed on a wall or a substrate so that it is uneasy to
prohibit the distortion of its cross section. Therefore, ignore
ITR completely in 2D case is unreasonable. A finite IC favors
a curved shape so tends to reduce the size of either a 2D or
3D filament, but a finite ITR favors a helical shape so tends to
enhance the size of a 3D filament [41]. In particular, we should
emphasize that in either 3D or ideal 2D case, the natural con-
figuration of a filament, a helix or a circle, is unique so there is
not bistable state (BS). Can the cooperation and competition
between ITR and IC result in something new and useful in
2D case? In this paper we explore this problem and discover a
new bistable mechanism, i.e., a moderate ITR can induce a BS
or a bistablelike state (BLS) for a force-free 2D intrinsically
curved filament. A BS in this work means that free of external
force, i.e., in its natural state, a filament has two distinct stable
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configurations of the same energy. Meanwhile, a BLS means
that free of external force, besides a ground state configu-
ration (GSC, i.e., the configuration with the lowest energy),
the filament has also a metastable configuration with a local
minimum energy. Our results reveal that at a finite T , BS and
BLS may be indistinguishable so should be equal important.

Bistable materials are ubiquitous and have widely applica-
tions such as memory, oscillators, multi vibrators or switches.
Moreover, owing to the low energy costing in maintaining col-
ored or colorless state, bistable materials have been regarded
as a viable alternative of new display and biomaterial has been
considered as a potential material to achieve the goal [55–58].
Therefore, the discovery of a new bistable system and the
property of the new system should be very interesting.

The paper is organized as follows. In the next section we
set up the model. The Sec. III presents the static equations
for GSC and their solutions. The Sec. IV explores the bistable
states. The Sec. V studies the effect of a finite T . Finally, the
conclusions and discussions conclude the paper in Sec. VI.

II. MODEL

A. Continuous model

In elastic continuous theory, the configuration of a fila-
ment can be described by a triad of unit vectors {ti(s)}i=1,2,3

[9,21,23], where t3 = ṙ(s) is the unit tangent to the locus of
centerline r(s) of the filament, t1 and t2 are oriented along the
principal axes of the cross section, s is the arclength of the cen-
terline and the symbol “̇ “represents the derivative with respect
to s. The triad obeys the generalized Frenet equations, ṫi =
ω × ti, where ω = ω1t1 + ω2t2 + ω3t3 is a vector in which
ω1 and ω2 are components of curvature c(s) or c2 = ω2

1 + ω2
2,

and ω3 is the twisting rate. Introducing Eulerian angles, we
can write [1,7–9,24,59]

t1 = (cos φ cos ψ − cos θ sin φ sin ψ,

sin φ cos ψ + cos θ cos φ sin ψ, sin θ sin ψ ), (1)

t3 = (sin φ sin θ,− cos φ sin θ, cos θ ), (2)

ω1 = sin θ sin ψ φ̇ + cos ψ θ̇, (3)

ω2 = sin θ cos ψ φ̇ − sin ψ θ̇, (4)

ω3 = cos θ φ̇ + ψ̇, (5)

and t2 = t3 × t1. The main advantage of using Euler angles is
that it is relative easier to find some exact results, as we can
see in the next section.

In 2D case, three ωis are no longer independent and we can
let θ = π/2, the angle between t3 and x axis is then π/2 − φ,
so

t3 = (sin φ,− cos φ, 0), (6)

r(s) =
(∫ L

0
sin φds,−

∫ L

0
cos φds, 0

)
, (7)

ω1 = sin ψφ̇, ω2 = cos ψφ̇, ω3 = ψ̇. (8)

Applying a uniaxial force f (along x axis) at the end of
the filament, the energy density owing to the force is -f·t3 =
− f sin φ, so the elastic energy density of an isotropic filament
with a finite IC (with components ζ1 and ζ2) and ITR (ζ3) can
be written as [9,21,23]

E = 1

2

3∑
i=1

bi(ωi − ζi )
2 − f sin φ (9)

= 1

2
[b1(φ̇ − c0 cos(ψ − α0))2 + b1c2

0 sin2(ψ − α0)

+ b3(ψ̇ − ζ3)2 − 2 f sin φ], (10)

where b1 is the bending rigidity, b3 is the twisting rigidity,
L is the contour length of the centerline and is a constant
so that the filament is inextensible. The magnitude of IC

= c0 =
√

ζ 2
1 + ζ 2

2 so we let ζ1 = c0 sin α0 and ζ2 = c0 cos α0.

The total energy of the filament is E = ∫ L
0 Eds. ζi can be

s dependent but for simplicity we assume that they are s
independent, so from Eq. (10) we know that α0 is irrelevant
thus we will ignore it henceforth. bi and ζi represent intrinsic
properties of a filament so are independent of T . The end at
s = 0 of the filament is fixed at r = 0. When ζ1 = ζ2 = 0, it
becomes the wormlike rod chain (WLRC) model. Moreover,
when ζ1 = ζ2 = b3 = 0, it is reduced into the WLC model.
We should stress that the elastic model can describe both
macroscopic and microscopic filaments.

In 3D space and at f = 0, the centerline of the GSC given
by Eq. (9) is a helix of pitch= 2π/(c2

0 + ζ 2
3 ) [14,24] so the

length of one turn is Lh = 2π/

√
c2

0 + ζ 2
3 .

Due to its slender shape, a semiflexible biopolymer is
usually modeled as a filament and elastic models, such as
WLC and WLRC models, have been applied to describe suc-
cessfully the configurations and entropic elasticity of some
semiflexible biopolymers [2,4–7,14]. A typical example is
dsDNA and for a long dsDNA chain at room temperature
T = Tr = 298 K, b1 = lpkBT ≈ 50kBTr · nm, b3 ≈ 75kBTr ·
nm and ζ3 ≈ 2π/(10.5 ∗ 0.34)nm−1 = 1.76 nm−1 [2,3] with
kB the Boltzmann constant and lp ≈ 50nm at Tr . However,
we should note that these parameters are solution and sample
dependent [29,60–62]. For short (<1000 basepairs) dsDNA
chain, lp can be even model dependent and different models
can result in very different lp for a same sample [62].

B. Discrete model

The results from the continuous model indicate that the ex-
istence of BS is usually accompanied by a significant change
in end-to-end distance. However, the end-to-end distance of a
microscopic filament may be sensitive to T since if the energy
barrier between two isoenergetic configurations is comparable
to kBT , then the filament can shift between isoenergetic con-
figurations frequently. Such a shift may be rather important
for the practical applications but it is difficult to estimate
the energy barrier in the continuous model. Meanwhile, in
general the continuous model represents the limit case of a
long filament so that its conclusion may be invalid or de-
mand a correction for a short microscopic filament. But the
results obtained from the continuous model reveal that the
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BS always occurs at a short filament so that whether the
same phenomenon occurs at a microscopic system demands
a clarification. Therefore, we discretize the model and per-
form Monte Carlo simulation with the Metropolis algorithm
[63]. In discrete model, a filament consists of N straight and
inextensible rods of length d0 joined end to end. Replacing
φ(s) by φi, ψ (s) by ψi, φ̇(s) by (φi+1 − φi )/d0, ψ̇ (s) by
(ψi+1 − ψi )/d0, the reduced energy becomes

ET ≡ E/kBT

= 1

2

N−1∑
i=1

[k1(φi+1 − φi − c0 cos ψi )
2 + k1c2

0 sin2 ψi

+ k3(ψi+1 − ψi − ζ3)2], (11)

where ki ≡ bi/d0kBT . We also scale the length by d0, i.e., let
d0 = 1 so L = N and

xN = x(L) =
N∑

i=1

sin φi, yN = y(L) = −
N∑

i=1

cos φi. (12)

In statistical mechanics, the mean or the thermal average
of a physical quantity B(φi, ψi ) is defined as the average with
Boltzmann weights over all possible conformations [63]:

〈B〉 = 1

Z

∫
dφ1 · · · dφN dψ1 · · · dψN B(φi, ψi )e

−ET , (13)

Z =
∫

dφ1dφ2 · · · dφN dψ1dψ2 · · · dψN e−ET . (14)

In simulations, we use hinged-hinged boundary conditions
(BCs) and equilibrate every sample for 3 × 106 Monte Carlo
steps (MCS) before performing average. The hinged-hinged
BCs mean that φ(0), φ(L), ψ0 = ψ (0) and ψL = ψ (L) are
free. The thermal average for a sample are taken from 2 ×
107 to 108 MCS. Moreover, the initial configuration of every
sample is randomly set to avoid bias.

III. STATIC EQUATIONS FOR GSC AND THE GENERAL
SOLUTIONS

A. Static equations

In general, the effect of T for a macroscopic filament can
be combined into bi and ζi so we can disregard the thermal
fluctuation. Moreover, when the thermal fluctuation is neg-
ligible, such as at low T or for a short filament with large
bending and twisting rigidities, a microscopic filament will
stay in its GSC. Therefore, to find GSC is crucial in many
cases. Extremizing E , the standard variational method results
in the following static equations for the GSC,

∂E
∂φ

− d

ds

∂E
∂φ̇

= ∂E
∂ψ

− d

ds

∂E
∂ψ̇

= 0, (15)

and hinged-hinged BCs at s = 0 and s = L,

∂E/∂φ̇ = ∂E/∂ψ̇ = 0. (16)

Explicitly, they are

b1φ̈ + b1c0 sin ψψ̇ − f cos φ = 0, (17)

b3ψ̈ − b1c0 sin ψφ̇ = 0, (18)

and at both s = 0 and s = L

φ̇ − c0 cos ψ = 0, ψ̇ − ζ3 = 0. (19)

When c0 = 0, ψ and φ are decoupled and Eqs. (18) and
(19) lead to ψ = ζ3s so that ψ makes no contribution to
both E and GSC. In this case, the property of the filament
has been well studied [48,49]. However, when ζ3 = 0 it is
straightforward to find ψ = 0 and the solution of φ is the
same as that of an ideal 2D filament which has also been well
studied [28,29,49,50].

B. The general solutions

Equations (17)–(19) are nonlinear differential equations so
that they may have multiple solutions. It is a hard task to solve
these equations rigorously when f , c0 and ζ3 are all finite.
However, we can solve these equation rigorously so to find
BS at f = 0. In this case, Eqs. (17)–(19) can be integrated
once to obtain

φ̇ = c0 cos ψ, ψ̇ = ±
√

B1 + B0 sin2 ψ, (20)

where B0 = b1c2
0/b3, B1 = ζ 2

3 − B0 sin2 ψ0, and ψL = nπ ±
ψ0 with an integer n. Different n therefore offers different
branches of solution and clearly a large n allows a large L. But
note that no all branches are GSC since some of them may be
in local minimum or maximum energy state. Therefore, to find
GSC it is also necessary to compare the energies of different
branches. In fact, both numerical calculations and computer
simulations suggest that there are at most two GSCs.

From Eqs. (10) and (20), we know that φ does not con-
tribute explicitly to E in GSC but it determines the shape of
GSC. Moreover, Eq. (20) and so ψ dependents only on two
parameters, B0 and ζ3, so that some properties of GSC are
independent of individual b1, b3 and c0. In contrast, φ and E
also dependent on c0. Meanwhile, since right sides in Eq. (20)
are periodic functions, the negative sign in Eq. (20) and n < 0
do not offer any distinct result so we ignore them henceforth.

When B1 = 0, the solution of Eq. (20) is√
B0s = log[| tan(ψ/2)/ tan(ψ0/2)|] and

√
B0L =

−2 log[| tan(ψ0/2)|]. We can expect the similar results
when |B1/B0| << 1 and we do not find BS in these cases.

In another limit when B0 � B1,
√

B1 + B0 sin2 ψ ≈ ζ3 so
from Eq. (20) we obtain ψ ≈ ζ3s + ψ0. In this case since in
general ζ3L 	= nπ , the BC leads to ψL = ζ3L + ψ0 = nπ −
ψ0 so ψ0 = (nπ − ζ3L)/2 and n = Int(Lζ3/π ) with Int(v)
being the integer part of v. Consequently,

φ(s) = c0

ζ3
[sin(ζ3s + ψ0) − sin ψ0] + π/2. (21)

We also do not find BS in this case.
When B1 	= 0, Eq. (20) can be integrated into

s =
∫ ψ

ψ0

dv√
B0 sin2 v + B1

, (22)

L =
∫ ψL

ψ0

dv√
B0 sin2 v + B1

. (23)

If B1 < 0 or ζ3 is very small, then sin2 ψ0 	= −B1/B0,
since otherwise ζ3 = 0. In this case, n = 0 or n > 1 or
ψ0 < 0 or ψL = π + ψ0 � π is prohibited since otherwise
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FIG. 1. L vs ψ0 obtained from Eq. (24) when B1 < 0. B0 =
0.067, ζ3 = 0.05 (red dashed), 0.1 (solid black) and 0.2 (green
dotted); B0 = 0.1, ζ3 = 0.05 (blue dash-dotted), 0.1 (cyan dash-dot-
dotted), and 0.2 (magenta shot-dashed). All ψ0s begin from B1 ≈ 0.
The unit of length is nm so that the units of both c0 and ζ3 are nm−1,
and the unit of B0 is nm−2.

B0 sin2 v + B1 = B1 < 0 at v = iπ with i being an integer.
Therefore, the solution has only one branch with n = 1, ψL =
π − ψ0, and

L = 2
∫ π/2

ψ0

dv√
B0 sin2 v + B1

. (24)

Numerical calculations reveal that L obtained from Eq. (24)
is a single-value function of ψ0 and decreases monotonically
with increasing ψ0, as shown in Fig. 1 with two different
B0 (=0.067 and 0.1) and three different ζ3 (= 0.05, 0.1,
and 0.2). There is no BS in this case. Since B0 sin2 v +
B1 � B0 sin2 ψ0 + B1 = ζ 2

3 , we can also find L < π/ζ3 from
Eq. (24).

However, when B1 > 0 Eqs. (22) and (23) can be rewritten
as

√
B1s = [F (ψ |γ ) − F (ψ0|γ )], (25)

√
B1L = F (ψL|γ ) − F (ψ0|γ ), (26)

F (ψ |γ ) ≡
∫ ψ

0

dv√
1 − γ sin2 v

, (27)

where γ = −B0/B1, F (x|γ ) is the elliptic integral of the first
kind, and ψ0 is determined by Eq. (26) at a specified L. It
follows that ψ = am(s′|γ ) with s′ = √

B1s + F (ψ0|γ ) and
am(x|γ ) is amplitude for Jacobi elliptic function.

IV. BISTABLE STATES

From the discussions in Sec. III B, we know that when
|B1/B0| � 1 or B1/B0 � 1 or B1 � 0, there is only one
branch of solution for the static equations and the GSC of the
filament is unique so that there is no BS.

FIG. 2. L vs ψ0 obtained from Eq. (26) when B0 = 0.000267 but
with different ζ3 and n (=0 in left and 1 in right). The same color for
the data with the same parameters. ζ3 = 0.013 (black), 0.02 (red),
and 0.055 (green). Three horizontal dashed straight lines indicate the
corresponding ψ0 for BSs when c0 = 0.02. The corresponding GSCs
are displayed in Fig. 3. The units are the same as that in Fig. 1.

However, multiple n or multiple branches of solution is
possible with a proper choice of parameters so L can be
no longer a single-value function of ψ0. In other words, at
a given L a filament can have several ψ0 associated with
different configurations but some of these configurations may
have the same E . We find that the isoenergetic configurations
can occur only when n = 0, ψL = −ψ0 > 0 and n = 1, ψL =
π − ψ0 > 0. In other words, it can have only two isoenergetic
configurations. This is because at a specified L, in general, the
larger the n, the larger the ψL − ψ0 so the larger the ψ̇ and the
higher the E .

For convenience, in this section the lines of the same color
in all figures (Figs. 2–8) represent the configurations with the
same parameters, i.e., in the same BS.

Our calculations show that for an individual branch, either
n = 0 or 1, L is still a monotonic function of ψ0, as shown
in Fig. 2 for the filaments with B0 = 0.000267 (corresponds
to b1 = 50, b3 = 75 and c0 = 0.02, i.e., the same b1 and
b3 as that of a long dsDNA) and ζ3 = 0.013, 0.02, 0.055.
When ζ3 is small, the relations between L and ψ0 for two
branches can be quite different, shown as black or red lines
in Fig. 2. But beginning from a moderate ζ3 (=0.055), the
relations between L and ψ0 becomes two parallel straight
lines. Note that to determine E also needs to specify c0 and
the GSC is determined by a comparison of Es among different
branches. For instance, in Fig. 2, when c0 = 0.02 the two
different ψ0 for GSC of a same filament are given by the
crossovers between three horizontal dashed straight lines and
corresponding curves with the same colors.

Moreover, the larger the c0 or the smaller the ζ3, the larger
the L and the larger the difference between two GSCs. Such
a difference can also be characterized by the end-to-end dis-
tance rL =

√
x2(L) + y2(L). Four typical GSCs are displayed

in Fig. 3. From Fig. 3, we can see that it is rather easy to
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FIG. 3. GSCs in BS. The same color for the data with the same
parameters. For black lines, B0 = 0.000267, c0 = 0.02, ζ3 = 0.013,
L = 300, Lh = 263.4, and (1) rL = 21.7 (solid, n = 0); (2) rL =
225.4 (dashed, n = 1). For red lines, B0 = 0.000267, c0 = 0.02,
ζ3 = 0.02, L = 163, Lh = 222.1, and (3) rL = 112.0 (dotted, n = 0);
(4) rL = 151.8 (dash-dotted, n = 1). For green lines, B0 = 0.000267,
c0 = 0.02, ζ3 = 0.055, L = 58, Lh = 107.4, and (5) rL = 56.0 (dash-
dot-dotted, n = 0); (6) rL = 57.6 (short-dashed, n = 1). For purple
lines, B0 = 0.08, c0 = 0.2, ζ3 = 0.19, L = 28, Lh = 22.8, and (7)
rL = 3.56 (short-dashed, n = 0); (8) rL = 21.13 (short-dotted, n =
1). The units are the same as that in Fig. 1.

distinguish two isoenergetic configurations in a BS at a rel-
ative small ζ3, shown as black, red, and purple lines in the
figure. But at a large ζ3, to distinguish them becomes uneasy,
shown as green lines in the figure. The meaning of “large”
or “small” of ζ3 is dependent on B0 and c0, and a small B0

but a large c0 favor a large ζ3. Since ζ3 ≈ 1.76 for a dsDNA,
ζ3 = 0.19 for the purple lines in Fig. 3 is much smaller than
that of dsDNA but c0 = 0.2 is already rather large. Therefore,
DNA may be no a proper candidate for the BS material.
Meanwhile, in BS n = 0 always gives an opened ringlike
configuration and L is always shorter than that of a closed
chain or there is not self-crossover though it can have L > Lh,
shown as the black and purple lines in Fig. 3.

From Eq. (20), we can know that when c0 and ζ3 are very
small, B0 and B1 are also small so that ψ is almost a constant
and φ is a linear function of s, consequently the filament is
in a ringlike shape and no BS. A moderate ζ3 results in s
dependent ψ , shown as black and red lines in Fig. 4. But when
ζ3 is sufficient large, ψ is close to a straight line, shown as
green lines in Fig. 4. The relations between L and ζ3 in BS
are displayed in Figs. 5 and 6 and can be approximately fitted
by L = 3.3/ζ3, but the smaller the ζ3, the larger the deviation
from this approximation.

Since there is not BS at ζ3 = 0 or at a very small ζ3, there
exists a critical ITR ζ3 = ζc and BS appears when ζ3 > ζc.
Figure 7 displays some typical relations between c0 and ζc.
From Fig. 7, we can find that the relations are almost linear
and the larger the b3, the smaller the ζc. This is due to a large
b3 strengthens the role of ζ3. Meanwhile, the larger the c0,

FIG. 4. ψ vs s in BS when B0 = 0.000267. The same color for
the data with the same parameters. L = 300 and ζ3 = 0.013 for
solid black (n = 0) and dashed-black (n = 1) lines; L = 163 and
ζ3 = 0.02 for red-dotted (n = 0) and red dash-dotted (n = 1) lines;
L = 58 and ζ3 = 0.055 for green dash-dot-dotted (n = 0) and green
short-dashed (n = 1) lines. The units are the same as that in Fig. 1.

the larger the ζc. This is also a natural result since c0 favors a
circle so at a large c0 it requires a large ζ3 to open the circle.

In above calculations we focus on the GSC since it can
be obtained directly from the static equations together with a
comparison of energies in different configurations. However,
owing to the multiple solutions of static equations, even the
filament has a unique GSC, it is still possible to exist some
metastable solutions if these solutions have local minimum

FIG. 5. L vs ζ3 in BS when b3/b1 = 1.5. c0 = 0.02 (solid black
square), 0.05 (empty red square), 0.1 (solid green circle), and 0.2
(empty blue circle). The solid black lines are given by L = 3.3/ζ3.
The inset presents the data with larger range in L. The units are the
same as that in Fig. 1.
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FIG. 6. L vs ζ3 in BS when b3/b1 = 1 and 1/2 (inset). c0 = 0.02
(solid black square), 0.05 (empty red square), 0.1 (solid green circle),
and 0.2 (empty blue circle). The solid black lines are given by L =
3.3/ζ3. The units are the same as that in Fig. 1.

energies. At least, if the parameters (bi, c0, ζ3, and L) of a
filament are close to that of a bistable filament, then one of
the solutions must give a metastable state since its E must be
very close to that of the GSC. These metastable states may be
as important as the GSC because they may have some special
properties and thermal fluctuation may favor these states. But
how to identify the metastable state is yet a problem because
it is uneasy to justify whether the solution has the maximum
or the local minimum E .

We should stress that it does not need any external force or
costs no energy to obtain and maintain the BS, i.e., we find a
natural BS. Moreover, though to compare with the results at a
finite T we adopt nm as the unit of length in this section, in

FIG. 7. ζc vs c0 when b3/b1 = 1.5 (square), 1 (circle), and 1/2
(triangle). The solid straight line is given by ζc = 0.52c0; the dashed
straight line is given by ζc = 0.64c0; the dotted straight line is given
by ζc = 0.96c0. The units are the same as that in Fig. 1.

FIG. 8. 〈rN 〉 and 〈ET 〉/N vs sample counts when c0 = 0.2, ζ3 =
0.19 and N = 28. Black square for 〈rN 〉 when k1 = 12 and k3 = 6;
red circle for 〈rN 〉 when k1 = 100 and k3 = 50; green triangle for
〈rN 〉 when k1 = 200 and k3 = 100. Blue diamond for 〈ET 〉/N when
k1 = 200 and k3 = 100. The units are the same as those described in
the caption of Fig. 1.

fact such a unit is unnecessary owing to that BS is dependent
on the ratio b1/b3. In other words, all conclusions in this
section are still correct if we replace nm by arbitrary unit of
length and it is also unnecessary to care about the values of b1

and b3 separately.

V. EFFECTS OF THERMAL FLUCTUATION

The results in Sec. III ignore the thermal fluctuation so
the stability of the BS may be problematic for a microscopic
filament with a small energy barrier between two isoenergetic
configurations. Moreover, the filament with a BS is always
short so it may be out of the continuous model. It is also
significant to justify whether the metastable state exists or
not. Therefore, to clarify these questions we perform MC
simulation on the discrete model.

Since this section focuses on a microscopic object, the
unit of length is taken as nm so that the units of k1 and k3

are nm, the units of c0 and ζ3 are nm−1, and the units of
b1 and b3 are kBTr · nm. Our results show that both isoen-
ergetic configurations in a BS can be observed at a finite
T , and large kis help to keep the filament to stay in one of
two configurations. However, the thermal fluctuation can mix
two isoenergetic configurations when kis are small or L(= N )
is large. Moreover, BLS can exist and it may be uneasy to
distinguish BLS and BS at a finite T .

Figure 8 presents 〈rN 〉 and 〈ET 〉 of 100 samples with 3 sets
of k1 (= 12, 100, 200) and k3 (= 6, 50, 100) as well as the
same c0, ζ3 and L as that of the purple lines in Fig. 3, i.e., c0 =
0.2, ζ3 = 0.19 and L = N = 28. In this case, indeed 〈ET 〉 is
almost the same for all samples. For instance, 〈ET 〉/N ≈ 2.25
for all samples when k1 = 200, k3 = 100, as we can see from
the blue diamonds in Fig. 8. In contrast, the behavior of 〈rN 〉
is dependent clearly on the magnitude of ki. When kis are
rather large, 〈rN 〉 oscillates slightly around two distinct values,

012410-6



BISTABILITY INDUCED BY A SPONTANEOUS TWISTING … PHYSICAL REVIEW E 103, 012410 (2021)

FIG. 9. 〈rN 〉 and 〈ET 〉/N vs sample counts when c0 = 0.02, ζ3 =
0.013 and N = 300. Green triangle for 〈rN 〉 when k1 = 1000 and
k3 = 1500; black square for 〈rN 〉 when k1 = 10 and k3 = 15; blue
open diamond for 〈ET 〉/N when k1 = 1000 and k3 = 1500; red circle
for 〈ET 〉/N when k1 = 10 and k3 = 15. The units are the same as
those described in the caption of Fig. 1.

such as 〈rN 〉 ≈ 4.8 and 19.0 when k1 = 200 and k3 = 100,
shown as the green triangles in Fig. 8. The larger the ki, the
smaller the uncertainty of 〈rN 〉. It conforms that the filament
can have two isoenergetic but distinct configurations and the
filament can stay stable at one of two configurations at a
finite T , as well as the thermal fluctuation has small effect
in this case. In comparison, recalling that the purple lines in
Fig. 3 have rL = 3.56, 21.13 and E/L ≈ 1.33, we know that
due to the thermal fluctuation, the configuration with a small
rN expands but the configuration with a large rN contracts,
and 〈E〉 increases. However, the uncertainty in 〈rN 〉 increases
with decreasing ki. For instance, when k1 = 100 and k3 = 50,
〈rN 〉 scatters in a range 20.99 � 〈rN 〉 � 5.47, shown as the
red circles in Fig. 8. In this case, the fact that 〈ET 〉/N is
still almost the same for all samples suggests that the energy
barrier between two configurations is comparable to kbT so
that the filament can shift between two configurations and
results in a large uncertainty in 〈rN 〉. Moreover, when kis are
quite small, the energy barrier becomes smaller than kbT so
the filament is like a WLC and 〈rN 〉 converges to a unique
value, shown as the black squares in Fig. 8 when k1 = 12
and k3 = 6. In this case, 〈rN 〉 ≈ 18 so is closer to the larger
rL(= 21.13).

The finite size effect is quite serious at a finite T and
Fig. 9 displays some typical results of 〈rN 〉 and 〈ET 〉 from 100
samples with 2 sets of k1 (= 10, 1000) and k3 (= 15, 1500)
as well as the same c0, ζ3 and L as that of the black lines in
Fig. 3, i.e., c0 = 0.02, ζ3 = 0.013, L = 300, rL = 21.7, and
225.4. Again, 〈ET 〉 is almost the same for all samples, shown
as blue open diamonds and red circles in Fig. 9. Similar to
that in Fig. 8, at small kis 〈rN 〉 tends to converge to a unique
value, shown as the black squares in Fig. 9 when k1 = 10 and
k3 = 15, and average over 100 samples we obtain 〈rN 〉 ≈ 104
so is very closer to the mean of two rLs. It reveals that
two isoenergetic configurations have the same opportunity to

FIG. 10. 〈rN 〉 (solid) and 〈ET 〉/N (empty) vs sample counts in
BLS when k1 = 200, k3 = 100, and c0 = 0.2. Black square for N =
23 and ζ3 = 0.19; red circle for N = 33 and ζ3 = 0.19; green triangle
for N = 28 and ζ3 = 0.15; blue diamond for N = 28 and ζ3 = 0.22.
The units are the same as those described in the caption of Fig. 1.

appear. Whether the shift between two configurations has a
regular frequency is an intrigue topic since such a system
can become a potential high frequency oscillator so that the
dynamics of the system deserves a further study. The thermal
effect is much more serious than that for a short chain since
〈rN 〉 is clearly sample dependent in this case. Larger kis tend
to separate two isoenergetic configurations but serious thermal
effect prevents the tendency so we can see that 〈rN 〉 scatters
in a range 216.6 � 〈rN 〉 � 43.2 or it shifts between two con-
figurations up to k1 = 1200 and k3 = 1800, shown as green
triangles in Fig. 9. Moreover, if the difference between two
configurations is small, then at a finite T two configurations
become indistinguishable even the filament is not too long,
such as that presented as the green lines in Fig. 3 when
c0 = 0.02, ζ3 = 0.055, and L = 58.

We find further that there are indeed some metastable
states. Figure 10 demonstrates 〈rN 〉 and 〈ET 〉 of 100 samples
with the same k1, k3, and c0 as that of the green triangles in
Fig. 8 but slightly different N (= 23, 28, and 33) or ζ3 (=
0.15, 0.19, and 0.22). From Fig. 10 we can observe clearly
two distinct configurations, such as the red circles and the
green triangles in figure. Figure 10 also shows the shift of 〈rN 〉
between two configurations though 〈ET 〉 still keeps almost the
same for all samples. Comparing with the green triangles in
Fig. 8, we know that these metastable states should be less
stable than that obtained from the GSC since 〈rN 〉 has clearly
a larger uncertainty. These results also suggest that BLS may
be indistinguishable from BS at a finite T so that they may be
equal important in practical applications. It therefore extends
the range of parameters for BS so to make it be more feasible
to find and make some new bistable materials.

From above results, we know that to maintain the filament
in one of two distinct configurations at a finite T requires
sufficient large ki. Since ki ≡ bi/d0kBT , larger ki can be obtain
by either increasing bi or decreasing T . Moreover, the results
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from the continuous model are still valid and instructive at a
finite T .

VI. CONCLUSIONS AND DISCUSSIONS

In summary, we find a new bistable mechanism, i.e., the
couple and competition between ITR and IR can induce a BS
for a 2D filament even the filament is free of the external force
because there are multiple solutions for the static equations of
GSC. This new phenomenon is different completely from its
3D counterpart that has a unique helical GSC. There are two
configurations of equal energy in a BS and these isoenergetic
configurations, one of which is in a ringlike shape, have dif-
ferent shapes and end-to-end distances. The smaller the ITR
or the larger the IC, the more obvious the distinction between
two isoenergetic configurations and the longer the filament.
In BS, the relation between L and ITR is approximately a
hyperbola and the relation between IC and critical ITR is
approximately linear. L of a BS is always shorter than that
of a closed chain or there is no self-crossover. The Monte
Carlo simulation at a finite T suggests that the energy bar-
rier between two isoenergetic configurations in a BS may be
comparable to kBT so that the filament can shift between two
isoenergetic configurations but large k1 and k3 can prevent
such a shift and keep the filament staying in one of two config-
urations. The simulation also reveals the existence of BLS and
suggests that the BLS should be a common phenomenon for a
2D filament due to the multiple solutions is quite common for
the static equations.

The requirement of a large k1 and k3 to maintain the fil-
ament at a specified configuration at a finite T may make it
difficult to realize. To overcome this problem one can enhance
the bending and twisting rigidities or lower T or apply a small
force. Clearly a small force can help to fix the filament in one
configuration and change the direction of force can result in
a transformation between two configurations, so that applying
an appropriate force may be a more practical way to control
the configuration of the filament.

Though our findings are valid for both macroscopic and
microscopic filaments, we have to point out that it is uneasy
to realize a 2D short macroscopic filament when it has both
finite ITR and IC since its natural shape in 3D space is a
helix so requires a strong compressive force to press it to
a plane. Therefore, our findings should be more practicable
for a microscopic filament. Moreover, since 2D and 3D fil-
aments exhibit different properties, we can expect that BS
should also exist in some strongly confined systems or in
some quasi-2D systems. To realize a quasi-2D system is not
too difficult and should be more practical since the adsorptive
force from the substrate tends to compress the filament to the
surface so makes a nearly planar system, as we can see from
some experiments [17–19,29]. Finally, our findings also sug-
gest that in a crowd environment, an intrinsically curved and
twisted filament may exhibit very different property from its
3D counterpart and it should be also very important for some
macroscopic filaments, such as filaments in some composite
materials or smart materials.

[1] C. J. Benham, Phys. Rev. A 39, 2582 (1989).
[2] J. F. Marko and E. D. Siggia, Science 265, 506 (1994).
[3] C. Bouchiat and M. Mézard, Phys. Rev. Lett. 80, 1556 (1998).
[4] C. Bustamante, J. F. Marko, E. D. Siggia, and S. Smith, Science

265, 1599 (1994).
[5] J. F. Marko and E. D. Siggia, Macromolecules 28, 8759 (1995).
[6] C. Bouchiat, M. D. Wang, J. F. Allemand, T. Strick, S. M.

Block, and V. Croquette, Biophys. J. 76, 409 (1999).
[7] B. Fain, J. Rudnick, and S. Östlund, Phys. Rev. E 55, 7364

(1997).
[8] B. Fain and J. Rudnick, Phys. Rev. E 60, 7239 (1999).
[9] S. V. Panyukov and Y. Rabin, Phys. Rev. E 64, 011909 (2001).

[10] S. K. Nomidis, M. Caraglio, M. Laleman, K. Phillips,
E. Skoruppa, and E. Carlon, Phys. Rev. E 100, 022402
(2019).

[11] T. Curk, J. D. Farrell, J. Dobnikar, and R. Podgornik, Phys. Rev.
Lett. 123, 047801 (2019).

[12] S. Das and A. Cacciuto, Phys. Rev. Lett. 123, 087802 (2019).
[13] S. K. Nomidis, E. Skoruppa, E. Carlon, and J. F. Marko, Phys.

Rev. E 99, 032414 (2019).
[14] H. Yamakawa and T. Yoshizaki, Helical Wormlike Chains in

Polymer Solutions (Springer-Verlag, Berlin, 1996).
[15] A. Goriely and M. Tabor, Proc. R. Soc. London A 453, 2583

(1997).
[16] H. R. Drew and A. A. Travers, J. Mol. Biol. 186, 773 (1985).
[17] M. Dlakic, K. Park, J. D. Griffith, S. C. Harvey, and R. E.

Harrington, J. Biol. Chem. 271, 17911 (1996).

[18] W. Han, S. M. Lindsay, M. Dlakic, and R. E. Harrington, Nature
(London) 386, 563 (1997).

[19] W. Han, M. Dlakic, Y. J. Zhu, S. M. Lindsay, and R. E.
Harrington, Proc. Natl. Acad. Sci. U.S.A. 94, 10565 (1997).

[20] R. E. Goldstein, A. Goriely, G. Huber, and C. W. Wolgemuth,
Phys. Rev. Lett. 84, 1631 (2000).

[21] S. V. Panyukov and Y. Rabin, Phys. Rev. E 62, 7135 (2000).
[22] B. Smith, Y. V. Zastavker, and G. B. Benedek, Phys. Rev. Lett.

87, 278101 (2001).
[23] D. A. Kessler and Y. Rabin, Phys. Rev. Lett. 90, 024301 (2003).
[24] Z. Zhou, P.-Y. Lai, and B. Joós, Phys. Rev. E 71, 052801 (2005).
[25] A. Scipioni, C. Anselmi, G. Zuccheri, B. Samori, and P. De

Santis, Biophys. J. 83, 2408 (2002).
[26] G. Zuccheri, A. Scipioni, V. Cavaliere, G. Gargiulo, P. De

Santis, and B. Samor, Proc. Natl. Acad. Sci. U.S.A. 98, 3074
(2001).

[27] S. Rappaport and Y. Rabin, Macromolecules 37, 7847 (2004).
[28] C. Vaillant, B. Audit, and A. Arnéodo, Phys. Rev. Lett. 95,

068101 (2005).
[29] J. Moukhtar, E. Fontaine, C. Faivre-Moskalenko, and A.

Arnéodo, Phys. Rev. Lett. 98, 178101 (2007).
[30] E. L. Starostin and G. H. M. van der Heijden, Phys. Rev. Lett.

101, 084301 (2008).
[31] S. K. Nomidis, F. Kriegel, W. Vanderlinden, J. Lipfert, and E.

Carlon, Phys. Rev. Lett. 118, 217801 (2017).
[32] D. Grossman, E. Sharon, and E. Katzav, Phys. Rev. E 98,

022502 (2018).

012410-8

https://doi.org/10.1103/PhysRevA.39.2582
https://doi.org/10.1126/science.8036491
https://doi.org/10.1103/PhysRevLett.80.1556
https://doi.org/10.1126/science.8079175
https://doi.org/10.1021/ma00130a008
https://doi.org/10.1016/S0006-3495(99)77207-3
https://doi.org/10.1103/PhysRevE.55.7364
https://doi.org/10.1103/PhysRevE.60.7239
https://doi.org/10.1103/PhysRevE.64.011909
https://doi.org/10.1103/PhysRevE.100.022402
https://doi.org/10.1103/PhysRevLett.123.047801
https://doi.org/10.1103/PhysRevLett.123.087802
https://doi.org/10.1103/PhysRevE.99.032414
https://doi.org/10.1098/rspa.1997.0138
https://doi.org/10.1016/0022-2836(85)90396-1
https://doi.org/10.1074/jbc.271.30.17911
https://doi.org/10.1038/386563a0
https://doi.org/10.1073/pnas.94.20.10565
https://doi.org/10.1103/PhysRevLett.84.1631
https://doi.org/10.1103/PhysRevE.62.7135
https://doi.org/10.1103/PhysRevLett.87.278101
https://doi.org/10.1103/PhysRevLett.90.024301
https://doi.org/10.1103/PhysRevE.71.052801
https://doi.org/10.1016/S0006-3495(02)75254-5
https://doi.org/10.1073/pnas.051631198
https://doi.org/10.1021/ma048320g
https://doi.org/10.1103/PhysRevLett.95.068101
https://doi.org/10.1103/PhysRevLett.98.178101
https://doi.org/10.1103/PhysRevLett.101.084301
https://doi.org/10.1103/PhysRevLett.118.217801
https://doi.org/10.1103/PhysRevE.98.022502


BISTABILITY INDUCED BY A SPONTANEOUS TWISTING … PHYSICAL REVIEW E 103, 012410 (2021)

[33] M. Pezzulla, N. Stoop, M. P. Steranka, A. J. Bade, and D. P.
Holmes, Phys. Rev. Lett. 120, 048002 (2018).

[34] G. T. Vu, A. A. Abate, L. R. Gómez, A. D. Pezzutti, R. A.
Register, D. A. Vega, and F. Schmid, Phys. Rev. Lett. 121,
087801 (2018).

[35] S. Iijima, Nature (London) 354, 56 (1991); S. Iijima, T.
Ichihaschi, and Y. Ando, ibid. 356, 776 (1992).

[36] X. B. Zhang, Europhys. Lett. 27, 141 (1994).
[37] M.-F. Yu, M. J. Dyer, J. Chen, D. Qian, W. K. Liu, and R. S.

Ruoff, Phys. Rev. B 64, 241403(R) (2001).
[38] A. F. da Fonseca and D. S. Galvão, Phys. Rev. Lett. 92, 175502

(2004).
[39] V. R. Coluci, A. F. Fonseca, D. S. Galvão, and C. Daraio, Phys.

Rev. Lett. 100, 086807 (2008).
[40] J.-S. Wang, Y.-H. Cui, X.-Q. Feng, G.-F. Wang, Q.-H. Qin,

Europhys. Lett. 92, 16002 (2010).
[41] Z. Zhou, Phys. Rev. E 102, 032405 (2020).
[42] Z. Zhou, F.-T. Lin, C.-Y. Hung, H.-Y. Wu, and B.-H. Chen,

J. Phys. Soc. Jpn. 83, 044802 (2014).
[43] Z. Zhou, J. Phys. Commun. 2, 035008 (2018).
[44] S. C. Bae, F. Xie, S. Jeon, and S. Granick, Curr. Opin. Solid

State Mater. Sci. 5, 327 (2001).
[45] N. Iwai, K. Nagai, and M. Wachi, Biosci. Biotechnol. Biochem.

66, 2658 (2002).
[46] B. Maier, U. Seifert, and J. O. Radler, Europhys. Lett. 60, 622

(2002).
[47] Z. Gitai, N. Dye, and L. Shapiro, Proc. Natl. Acad. Sci. U.S.A.

101, 8643 (2004).
[48] A. Prasad, Y. Hori, and J. Kondev, Phys. Rev. E 72, 041918

(2005).

[49] Z. Zhou, Phys. Rev. E 76, 061913 (2007).
[50] Z. Zhou and B. Joós, Phys. Rev. E 80, 061911 (2009).
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