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Evaluating diffusion resistance of a constriction in a membrane channel
by the method of boundary homogenization
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In this paper we analyze diffusive transport of noninteracting electrically uncharged solute molecules through
a cylindrical membrane channel with a constriction located in the middle of the channel. The constriction is
modeled by an infinitely thin partition with a circular hole in its center. The focus is on how the presence of the
partition slows down the transport governed by the difference in the solute concentrations in the two reservoirs
separated by the membrane. It is assumed that the solutions in both reservoirs are well stirred. To quantify the
effect of the constriction we use the notion of diffusion resistance defined as the ratio of the concentration differ-
ence to the steady-state flux. We show that when the channel length exceeds its radius, the diffusion resistance
is the sum of the diffusion resistance of the cylindrical channel without a partition and an additional diffusion
resistance due to the presence of the partition. We derive an expression for the additional diffusion resistance as
a function of the tube radius and that of the hole in the partition. The derivation involves the replacement of the
nonpermeable partition with the hole by an effective uniform semipermeable partition with a properly chosen
permeability. Such a replacement makes it possible to reduce the initial three-dimensional diffusion problem to
a one-dimensional one that can be easily solved. To determine the permeability of the effective partition, we take
advantage of the results found earlier for trapping of diffusing particles by inhomogeneous surfaces, which were
obtained with the method of boundary homogenization. Brownian dynamics simulations are used to corroborate
our approximate analytical results and to establish the range of their applicability.
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I. INTRODUCTION

Consider diffusion transport of electrically uncharged so-
lute molecules through a membrane channel connecting two
reservoirs separated by the membrane. We will assume that
the solute molecules are point particles and that the transport
is governed by the difference in the solute concentrations on
the two sides of the membrane, denoted by �c. When the
solutions in both reservoirs are well stirred, and the solute
molecules do not interact with each other inside the channel,
the steady-state solute flux J through the channel is propor-
tional to �c and can be written as

J = �c

Rdif
, (1.1)

where Rdif is the channel diffusion resistance [1]. For a cylin-
drical channel of length L and radius a, this flux is given by

Jcyl = πa2D
�c

L
, (1.2)

where D is the solute diffusivity in the
channel, and hence the diffusion resistance,

Rcyl
dif , is

Rcyl
dif = �c

Jcyl
= L

πa2D
. (1.3)

This paper deals with the steady-state flux through a cylin-
drical channel of length L and radius a with an infinitely thin
partition, located in the middle of the channel; the partition has
a hole of radius b, b < a, in its center, as schematically shown
in Fig. 1. The above relations, Eqs. (1.1)–(1.3), correspond
to the case of no partition, where a = b. The presence of the
partition slows down the transport. The focus is on how the
slowdown depends on the geometric parameters of the system.
To answer this question we derive approximate analytical
expressions for the steady-state flux and diffusion resistance
as functions of the geometric parameters a, b, and L,

J = πa2D

L + πa2

2b M(ξ )
�c (1.4)

and

Rdif = �c

J
= L

πa2D
+ 1

2bD
M(ξ ), (1.5)
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FIG. 1. Sketch of a cylindrical channel of length L and radius a
with an infinitely thin partition, located in the middle of the channel;
the partition has a hole of radius b, b < a, in its center.

where ξ = b/a and function M(ξ ) is given by

M(ξ ) = (1 − ξ 2)2

1 + 1.37ξ − 0.37ξ 4
. (1.6)

The expressions in Eqs. (1.4) and (1.5) are the main analytical
results of this work.

The expression in Eq. (1.5) presents the diffusion resis-
tance as a sum of the diffusion resistance of the cylindrical
channel without a partition, Eq. (1.3), and an additional diffu-
sion resistance due to the presence of the partition, denoted by
δRdif ,

Rdif = Rcyl
dif + δRdif , (1.7)

where

δRdif = 1

2bD
M(ξ ). (1.8)

When b = a (cylindrical channel), ξ = 1 and M(ξ ) = 0. As
a consequence, δRdif = 0, and Eq. (1.4) reduces to the ex-
pression for the flux through the cylindrical channel without a
partition, Eq. (1.2). As ξ increases from zero (b = 0) to unity
(b = a), function M(ξ ) monotonically decreases from unity
to zero. Thus, as the hole radius tends to zero, the additional
diffusion resistance diverges, and its asymptotic behavior is
given by δRdif = 1/(2bD), b → 0.

Motivation for this study comes from the recognition
that practically all protein channels of biological membranes
studied so far contain the so-called constrictions in their
water-filled pores. Indeed, examination of the high-resolution
crystal structures of biological ion channels demonstrates that
the pore geometries are very different from those of regular
cylinders. Even relatively large and, therefore, poorly ion-
selective channels, which have beta-barrel scaffolds as their
major structural motif, are no exemptions. For the beta barrel
itself a cylinder is indeed a good approximation, but these
channels have certain structural elements that reside inside
the barrel and create constrictions. In the case of bacterial
porins, these structural elements are formed by the loops
connecting beta strands of the barrel, which fold back into the
pore leading to a significant local reduction of the pore cross
section [2,3]. Another important example, an archetypical
beta-barrel channel VDAC—voltage dependent anion channel
of the outer mitochondrial membrane—also has a profound
constriction, which is formed by the N-terminal alpha helix of
the VDAC molecule [4–6]. The helix, located approximately
halfway through the VDAC water-filled pore, reduces the

beta-barrel effective diameter of about 3.0 nm by the helix
diameter of 1.2 nm.

The geometry with a constriction is also a common fea-
ture of the highly ion-selective channels of neurophysiology.
These channels, with mostly alpha-helical structures, discrim-
inate between different ions with the help of a selectivity
filter represented by the narrowest part of the pore. The
size of the filter aperture is close to that of a dehydrated
ion, which is a prerequisite underlying the mechanism of
their action [7,8]. However, consideration of ionic transport
is beyond the scope of the present study as it must include,
in addition to entropic interactions, important electrostatic
interactions [9,10].

It is worth mentioning that the studies of the effect of the
constriction on various transport processes have a long history.
Theoretical analysis of this class of problems was initiated by
Maxwell and Lord Rayleigh in the nineteenth century [11,12].
One of the results of the present work is a simple formula
for the diffusion resistance of a channel with the constriction,
modeled as an infinitely thin partition with a circular hole in
its center, Eq. (1.8). The formula covers the entire range of
the hole radius and is derived by reducing the initial three-
dimensional diffusion problem to a one-dimensional one. This
is achieved by replacing the reflecting partition with the hole
by an effective uniformly permeable partition. To determine
the permeability of the effective partition we take advantage of
the result found earlier [13] for trapping of particles diffusing
in a cylindrical tube terminated by a reflecting wall containing
an absorbing disk in its center. This result was obtained with
the method of boundary homogenization. The accuracy of the
approximation based on the replacement of the partition with
a hole by a uniform partition and the range of applicability of
such a replacement were established by comparing the predic-
tions of our analytical approach with the results of Brownian
dynamics simulations.

The outline of this paper is as follows. The expressions for
the flux and diffusion resistance, Eqs. (1.4) and (1.5), are de-
rived in the following Sec. II. The range of their applicability
is established in Sec. III. Then in Sec. IV we discuss the rela-
tion of the expression for the additional diffusion resistance,
Eq. (1.8), with corresponding results derived in a different
field by a completely different method. Some concluding re-
marks are made in the final Sec. V.

II. THEORY

To derive the expressions in Eqs. (1.4) and (1.5),
we take advantage of an approximate one-dimensional
description of the solute dynamics in the channel, which,
as shown in Sec. III, is applicable when the channel is long
enough. The point is that sufficiently far away from the
partition, located in the middle of the channel, the solute is
uniformly distributed over the channel cross section, and its
concentration depends only on the coordinate x measured
along the channel axis, c(x). In this case, we can introduce
the one-dimensional steady-state concentration c1(x),
defined as

c1(x) = πa2c(x), (2.1)
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which satisfies

−D
dc1(x)

dx
= J. (2.2)

Although the concentration near the partition is not uniformly
distributed over the cross section, nevertheless, it is assumed
that Eq. (2.2) is also applicable in this region. Solving this
equation, we obtain

c1(x) =
{

c1−(x) = πa2cL − J
D (x − xL ), xL � x < (xL + xR)/2

c1+(x) = πa2cR + J
D (xR − x), (xL + xR)

/
2 < x � xR

, (2.3)

where cL and cR are the solute concentrations in the left (L)
and right (R) reservoirs, and xL and xR are the coordinates of
the left and right boundaries of the channel.

The one-dimensional concentrations on the two sides of
the partition are not equal. To find the concentration jump
on the partition, we treat the partition with the hole as a ho-
mogeneous semipermeable one, characterized by the effective
permeability P. This is a key step in the approximate reduc-
tion of the initial three-dimensional problem to the equivalent
one-dimensional one. The concentration difference on the two
sides of the partition and the flux J are related by the condition

J = P{c1−[(xL + xR)/2] − c1+[(xL + xR)/2]}, (2.4)

where c1±((xL + xR)/2) are the solute concentrations on the
+ and − sides of the partition given by Eq. (2.3),

c1−[(xL + xR)/2] = πa2cL − J

2D
L (2.5)

and

c1+[(xL + xR)/2] = πa2cR + J

2D
L. (2.6)

We take that the partition permeability P is one half of the
effective trapping rate κ of solute molecules diffusing in a
cylinder of radius a and trapped by a circular absorbing disk
of radius b located in the center of the otherwise reflecting
wall normal to the cylinder axis, P = κ/2.

An approximate expression for κ is obtained in Ref. [13]
by the method of boundary homogenization. This method
exploits the fact that the steady-state concentration of solute
molecules diffusing to the absorbing disk sufficiently far away
from the wall containing this disk is uniform over the cylinder
cross section. As a consequence, one cannot distinguish be-
tween the flux to the absorbing disk on the otherwise reflecting
wall and the flux to a partially absorbing uniform wall with a
properly chosen trapping rate κ . An approximate expression
for κ obtained in Ref. [13] is

κ = 4Db

πa2
f (ξ ), (2.7)

where ξ = b/a and function f (ξ ) is given by

f (ξ ) = 1 + 1.37ξ − 0.37ξ 4

(1 − ξ 2)2 . (2.8)

Function M(ξ ) defined in Eq. (1.6) is the inverse of function
f (ξ ),

M(ξ ) = 1

f (ξ )
. (2.9)

Substituting c1±[(xL + xR)/2] given in Eqs. (2.5) and (2.6)
into Eq. (2.4) and solving the resulting linear equation for the
flux J , we find

J = πa2P

1 + PL
/

D
�c = πa2D

L + 2D
/
κ

�c. (2.10)

Finally, using the expression for κ in Eq. (2.7), we recover the
results in Eqs. (1.4) and (1.5). Application of the approach
based on boundary homogenization is justifiable when the
channel is long enough. We establish what “long enough
channel” means, as well as the range of applicability of the
obtained results, in the following Sec. III.

III. RANGE OF APPLICABILITY

In this section, we take advantage of three-dimensional
Brownian dynamics simulations to find the range of appli-
cability of the approximate one-dimensional description of
the solute dynamics in the channel used in Sec. II to derive
the results in Eqs. (1.4) and (1.5). In our simulations we
compute the mean first-passage time of a solute molecule
between the channel ends. In the presence of the partition this
time is longer than its counterpart in the cylindrical channel
without a partition. As we will see, the increase of the mean
first-passage time is proportional to the diffusion resistance of
the partition δRdif .

To find the mean first-passage time consider the same
cylindrical channel of length L and radius a, but now termi-
nated by reflecting and absorbing boundaries at xL = 0 and
xR = L, respectively. The mean lifetime of a solute molecule
starting from the left (reflecting) boundary, which is the mean
first-passage time from the left to the right boundary, denoted
by τcyl, is given by [14]

τcyl = L2

2D
. (3.1)

In the presence of an infinitely thin partition with a hole this
mean first-passage time increases and can be written as

τ = τcyl + δτ, (3.2)

where δτ is the delay time. When (1) the partition is in the
middle of the channel, (2) its hole, located in the center of the
partition, is circular and has radius b, and (3) the channel is
long enough, the delay time is given by

δτ = L

κ
= πa2L

4bD
M(ξ ). (3.3)
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This is derived at the end of this section using the same
approach based on the method of boundary homogenization
as in Sec. II.

According to Eqs. (3.3) and (1.8) the delay time is propor-
tional to the additional diffusion resistance,

δτ = πa2L

2
δRdif . (3.4)

We take advantage of this to establish the range of applicabil-
ity of our approach by comparing the delay time δτ predicted
by the theory, Eq. (3.3), with its counterpart δτsim obtained
from three-dimensional Brownian dynamics simulations. In
the simulations we determine the mean first passage time of
a diffusing point particle from the reflecting to the absorbing
boundary, denoted by τsim, defined as

τsim = 1

N

N∑
i=1

ti, (3.5)

where N = 25 000 is the number of diffusing particles used
in our simulations, whose starting points are uniformly dis-
tributed over the reflecting boundary, and ti is the lifetime of
the i th particle. We find δτsim by subtracting from τsim the
mean particle lifetime τcyl in the channel without a partition,
Eq. (3.1),

δτsim = τsim − τcyl. (3.6)

Then we use Eq. (3.3) to find M(ξ ). In our simulations the par-
ticle trajectory can freely cross the hole in the partition in both
directions, while its crossing the reflecting part of the partition
or the side wall of the cylinder is treated as an elastic collision.
When running the simulations, we take a = 1, D = 1, and
the time step �t = 10−6, so that

√
2D�t = √

2 × 10−3 �
bmin, where bmin is the minimum size of the hole, bmin = 0.1.

The results for a relatively long channel, L = 2a, are shown
in Fig. 2 by the open circles. One can see that the values
of M(ξ ) inferred from the simulations agree well with those
predicted by our approximate one-dimensional description,
Eq. (1.6), shown by solid curve. The relative errors (in per-
cent) in the theoretically predicted delay times, Eq. (3.3), are
compared to their counterparts obtained from the Brownian
dynamics simulations in Table I for channels of lengths L/a =
0.25, 0.5, 0.75, 1, 2, 3, 4, and 5, with partitions having holes
of radii b/a = 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. One can see that
for sufficiently long channels, L � a, the relative error is less
than 4%. Thus, the theory based on the boundary homoge-
nization holds when the channel length exceeds its radius. For
shorter channels, the theory fails since the reduction to the
one-dimensional description is no longer valid. The problem
is essentially multidimensional in this case.

Concluding this section, we derive the expressions in
Eqs. (3.1)–(3.3). To this end, consider a particle diffusing in a
long cylindrical channel of length L and radius a terminated
by reflecting and absorbing boundaries at x = 0 and x = L,
respectively. In the middle of the channel there is an infinitely
thin partition with a circular hole of radius b < a in its center.
To derive the expression for the mean lifetime of a particle
starting from the reflecting boundary, we use the approximate
one-dimensional description of the solute dynamics in the
channel discussed in Sec. II. Let G(x, t ) be the propagator of

0.0 0.2 0.4 0.6 0.8 1.0
ξ

0.0

0.2

0.4

0.6

0.8

1.0

M(ξ)

FIG. 2. Function M(ξ ), solid curve drawn according to Eq. (1.6),
compared to M(ξ ) values, open circles, calculated using Eq. (3.3)
with δτ obtained from Brownian dynamics simulations, δτ = δτsim,
for D = 1, a = 1, and L = 2.

a particle that starts from x = 0 at time t = 0. This propagator
satisfies

∂G(x, t )

∂t
= D

∂2G(x, t )

∂x2
, 0 < x < L/2, L/2 < x < L,

(3.7)

subject to the reflecting and absorbing boundary conditions at
the channel ends

∂G(x, t )

∂x

∣∣∣∣
x=0

= G(L, t ) = 0, (3.8)

and the matching conditions at x = L/2,

∂G(x, t )

∂x

∣∣∣∣
x= L

2 −0

= ∂G(x, t )

∂x

∣∣∣∣
x= L

2 +0

= − κ

2D

(
G|x= L

2 −0 − G|x= L
2 +0

)
, (3.9)

TABLE I. The relative errors (in percent) in the theoretically pre-
dicted delay times, Eq. (3.3), compared to their counterparts obtained
from the Brownian dynamics simulations.

L/a

b/a 0.25 0.50 0.75 1.0 2.0 3.0 4.0 5.0

0.10 10.34 2.88 2.53 1.97 1.43 1.56 1.19 1.24
0.20 16.02 2.17 1.57 0.32 1.04 1.39 0.97 1.04
0.30 20.98 3.43 1.76 1.62 1.25 2.41 0.66 0.17
0.40 21.46 3.97 3.48 1.53 0.43 3.40 0.81 1.37
0.50 21.10 4.92 1.88 2.39 1.15 3.62 2.58 1.61
0.60 18.47 5.21 1.92 3.07 1.33 3.43 0.71 3.61
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as well as the initial condition G(x, 0) = δ(x). In Eq. (3.9) we
have taken into account the fact that the permeability of the
effective uniform partition is one half of the trapping rate κ .

The particle survival probability for time t , denoted by
S(t ), is the integral of the propagator over the particle position
x in the channel,

S(t ) =
∫ L

0
G(x, t ) dx. (3.10)

The probability density of the particle lifetime in the channel,
ϕ(t ), is

ϕ(t ) = −dS(t )

dt
. (3.11)

Using this, one can check that the mean particle lifetime is
the integral of its survival probability over time from zero to
infinity,

τ =
∫ ∞

0
tϕ(t )dt =

∫ ∞

0
S(t ) dt . (3.12)

Substituting here S(t ) in Eq. (3.10) and changing the order of
integration, we arrive at

τ =
∫ L

0
ρ(x) dx, (3.13)

where function ρ(x) is the density of the mean residence time
spent by the particle at point x,

ρ(x) =
∫ ∞

0
G(x, t ) dt . (3.14)

Integrating Eqs. (3.7)–(3.9) over time from zero to infinity,
one finds that the function ρ(x) satisfies

D
d2ρ(x)

dx2
= −δ(x) , 0 < x < L/2 , L/2 < x < L,

(3.15)

subject to the reflecting and absorbing boundary conditions at
the channel ends

dρ(x)

dx

∣∣∣∣
x=0

= ρ(L) = 0, (3.16)

and the matching condition at x = L/2,

dρ(x)

dx

∣∣∣∣
x= L

2 −0

= dρ(x)

dx

∣∣∣∣
x= L

2 +0

= − κ

2D

[
ρ

(
L

2
− 0

)
− ρ

(
L

2
+ 0

)]
. (3.17)

Solving the above equation, we obtain

ρ(x) = 1

D
(L − x) + 2

κ
H

(
L

2
− x

)
, (3.18)

where H (z) is the Heaviside step function, H (z) = 0 when
z < 0, and H (z) = 1 when z > 0. Substituting ρ(x) into
Eq. (3.13) and performing the integration, we arrive at
Eq. (3.2) with τcyl and δτ given by Eqs. (3.1) and (3.3),
respectively.

IV. DISCUSSION

In 1941, V. A. Fock, who is well known to the chemical
physics community for his work in atomic physics (Hartree-
Fock method), considered the effect of infinitely thin partition
with a circular hole in its center on the steady flow of electric
current down a long circular tube filled with a conducting
medium [15]. Fock calculated the additional electrical resis-
tance δRel due to the presence of the partition. His result in
our notations can be written as

δRel = 1

2bσ
MFock(ξ ), (4.1)

where σ is the conductivity of the medium, ξ = b/a, a and
b are the tube and hole radii, respectively, and MFock(ξ ) is
the Fock result for the function M(ξ ) defined in Eqs. (1.6)
and (2.9). Comparison of the above expression for δRel and
the expression for the additional diffusion resistance δRdif ,
Eq. (1.8), shows that the two additional resistances have the
same algebraic form. This is a consequence of the fact that
the densities of both the diffusion flux and electric current are
gradients of scalar fields (concentration and electric potential,
respectively), which satisfy the same Laplace equation, and
both satisfy reflecting boundary conditions on the walls.

Fock obtained an approximate solution for the function
MFock(ξ ) in the form of a power series expansion in ξ ,

MFock(ξ ) = 1 +
∞∑

n=1

anξ
n. (4.2)

He evaluated coefficients an in terms of the integrals of the
Bessel functions and gave numerical values of the first 12
coefficients an. Fock also proposed a simple truncated expres-
sion for MFock(ξ ),

MFock(ξ ) = 1 − 1.41ξ + 0.34ξ 3 + 0.07ξ 5, (4.3)

which gives correct values of MFock(ξ ) at ξ = 0 and ξ = 1,
MFock(0) = 1, and MFock(1) = 0. The series in Eq. (4.2) con-
verges rapidly, as ξ → 0, and very slowly, as ξ → 1. The
exact asymptotic behavior of function M(ξ ) in the second
limiting case was obtained by Leppington and Levine [there-
fore, here and in Eq. (4.4) the subscript Fock in the function
MFock(ξ ) is omitted], who showed that [16]

M(ξ ) = 2(1 − ξ )2, ξ → 1. (4.4)

It is instructive to compare the above-mentioned results
with the expression for function M(ξ ), Eq. (1.6), obtained
using the method of boundary homogenization. As follows
from Eq. (1.6) the asymptotic behavior of M(ξ ) is given by

M(ξ ) =
{

1 − 1.37ξ, ξ → 0
2(1 − ξ )2, ξ → 1

. (4.5)

Comparison of this asymptotic behavior with those predicted
by Eqs. (4.3) and (4.4) for ξ → 0 and ξ → 1, respectively,
shows that boundary homogenization provides quite accurate
solution for function M(ξ ) in both limiting cases. Comparing
the plots of functions M(ξ ) and MFock(ξ ), given in Eqs. (4.3)
and (1.6), respectively, one can check that they are indistin-
guishable by eye over the entire range of ξ .
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V. CONCLUDING REMARKS

The main results of this work are Eqs. (1.4) and (1.5).
The former gives the steady-state flux of solute molecules
through a cylindrical membrane channel with an infinitely
thin partition located in the middle of the channel, which
has a circular hole in its center. The latter is the diffusion
resistance of such a channel, which is the sum of the diffu-
sion resistance of the cylindrical channel without a partition
and the additional diffusion resistance due to the presence of
the partition, Eqs. (1.7), (1.3), and (1.8). These expressions
have been derived using an approximate one-dimensional de-
scription of solute dynamics in the channel. In this approach
the nonuniform partition with a hole is treated as a uniform
semipermeable partition. To find its effective permeability P
we have taken advantage of the result obtained earlier [13]
for trapping of solute molecules diffusing in a cylindrical tube
terminated by a reflecting wall perpendicular to the tube axis
containing an absorbing disk in its center. Using the method
of boundary homogenization, in Ref. [13] it was shown that
trapping by an inhomogeneous terminating wall can be ap-
proximately described as that by a homogeneous partially
absorbing wall with properly chosen trapping rate κ . We have
assumed that the effective permeability is one half of this
trapping rate. Having in hand κ , given by Eq. (2.7), we can
find the permeability, P = κ/2.

The same approach based on boundary homogenization
can also be applied in the case of a partition containing a large
number, N � 1, of small holes of radius b � a. The two cases
differ only in the expressions for the effective trapping rate κ .
In the case of N � 1 this trapping rate, denoted by κN , is given
by

κN = 4Db

πa2
N fN (σ ), (5.1)

where σ = Nb2/a2 = Nξ 2 is the surface fraction of the parti-
tion occupied by holes and function fN (σ ) is

fN (σ ) = 1 + A
√

σ − Bσ 2

(1 − σ )2 . (5.2)

The coefficients A and B depend on the arrangement of the
holes on the partition. One can find the values of these coeffi-
cients for the triangular, square, and hexagonal lattices of the
holes, as well as for their random uniform distributions over
the partition in Ref. [13].

When the hole in the partition is small compared to the
channel radius, our results can be generalized to the case of
noncircular holes. This can be achieved by replacing in the
above formulas the hole radius b by an effective radius beff ,
which is a function of the area S and perimeter P of the
hole,

beff =
( SP

2π2

)1/3

. (5.3)

As shown in Ref. [17], trapping of diffusing particles by a
noncircular absorbing spot on the otherwise reflecting flat wall
to a good approximation is the same as that by a circular
disk whose radius is related to the spot area and perime-
ter by Eq. (5.3). This is true on condition that the spot is
only moderately asymmetric, and its boundaries are not too
jagged.

Our analysis of transport through a channel with a partition
utilizes known results for the effective trapping rate κ by
inhomogeneous surfaces, Eqs. (2.7) and (5.2). These results
were obtained in the theory of diffusion-limited reactions by
the method of boundary homogenization, which allows one to
get relatively simple formulas for the effective trapping rate
by inhomogeneous surfaces in highly nontrivial geometries
[13,18–24]. Here we have demonstrated how some of these
formulas can be used beyond the scope of diffusion-limited
kinetics. We believe that there are problems in different areas
of science and engineering where the results found with the
method of boundary homogenization may help to derive ap-
proximate solutions that cannot be obtained by other methods.
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