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Firing statistics in the bistable regime of neurons with homoclinic spike generation
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Neuronal voltage dynamics of regularly firing neurons typically has one stable attractor: either a fixed point
(like in the subthreshold regime) or a limit cycle that defines the tonic firing of action potentials (in the
suprathreshold regime). In two of the three spike onset bifurcation sequences that are known to give rise to
all-or-none type action potentials, however, the resting-state fixed point and limit cycle spiking can coexist in
an intermediate regime, resulting in bistable dynamics. Here, noise can induce switches between the attractors,
i.e., between rest and spiking, and thus increase the variability of the spike train compared to neurons with only
one stable attractor. Qualitative features of the resulting spike statistics depend on the spike onset bifurcations.
This paper focuses on the creation of the spiking limit cycle via the saddle-homoclinic orbit (HOM) bifurcation
and derives interspike interval (ISI) densities for a conductance-based neuron model in the bistable regime. The
ISI densities of bistable homoclinic neurons are found to be unimodal yet distinct from the inverse Gaussian
distribution associated with the saddle-node-on-invariant-cycle bifurcation. It is demonstrated that for the HOM
bifurcation the transition between rest and spiking is mainly determined along the downstroke of the action
potential—a dynamical feature that is not captured by the commonly used reset neuron models. The deduced
spike statistics can help to identify HOM dynamics in experimental data.
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I. INTRODUCTION

Spike trains recorded from nerve cells vary in their degree
of regularity. Some emit regular tonic pulses like Purkinje
cells; others show very irregular spike trains, such as “stut-
tering cells” or “irregular spiking cells” [1–5]. The ubiquitous
irregularity of action-potential (AP) firing in nerve cells has
been noted early on [6], and the functional implications are
debated. In some cases, noise has been deemed an obstacle
for reliable responses [7], while other studies have conversely
highlighted its beneficent involvement in creating fast or
information-optimal responses [8]. Indeed, nervous systems
may well have in store both: situations where irregularity
is facilitating neuronal function [9], and others where it is
detrimental. While the functional debate is still on, the phe-
nomenology of irregular spiking has not been completely
characterized, let alone its mechanisms quantitatively under-
stood.

The spike patterns emitted by a neuron are influenced by
the synaptic and intrinsic fluctuations in conjunction with
the neuron’s intrinsic dynamics. Thus, two major sources
of irregularity are conceivable: Some irregular neurons are
simply subject to strong fluctuations, caused by intrinsic ion-
channel noise or by synaptic bombardment, which increase
their interspike interval (ISI) variability [10]. For others, the
deterministic dynamics shows a bistability with coexistence
of resting state and spiking. This leads to increased variability
even at moderate noise levels. For an exemplary voltage trace
of the latter case see Fig. 1(a). The goal of this paper is to char-

acterize the spiking statistics of such a bistability that arises at
a saddle-homoclinic-orbit (HOM) bifurcation [see Figs. 1(b)
and 1(c)]. The HOM bifurcation is a universal element of the
fundamental bifurcation structure of all conductance-based
neuron models [11,12]. HOM excitability shows to some ex-
tent an intermediate behavior between the classical type I and
type II excitability [13,14].

The bistability of HOM neurons leads to a hysteresis in
the firing-rate versus input curve [see Fig. 1(d)]: Ramping up
the input current, I , the neuron stays at rest until the resting
state loses stability at Isn. Conversely, when ramping down the
input current, the neuron remains spiking until the limit cycle
(LC) disappears at Ihom. The region of bistability extends from
Ihom to Isn. Consequently, noise-free deterministic neurons are
easily probed experimentally for hysteresis effects by ramp
currents which may then serve as an indicator for bistable
membrane states. In experiments, many biological neuron
types, however, may evade this kind of screening due to their
high degree of stochasticity, in particular when their intrin-
sic noise causes them to constantly jump between attraction
domains, resulting in a “mixed state” that is insensitive to
the direction of parameter change. Yet, the change in inter-
spike interval statistics and the switching probability between
the two attractors that is derived in this paper can still provide
insight into the presence of bistability. As both measures can
be estimated from recordings of biological neurons, they can
be used to differentiate neurons in which the irregularity is
solely due to noise from those in which the irregularity is
enhanced by a bistability of the intrinsic dynamics. This might
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FIG. 1. Bistability in homoclinic neurons. (a) Voltage trace of a
homoclinic neuron (model definition in Sec. VI, with gating time
constant of τn = 0.16 ms) driven with I = 4.4 μA/cm2 and a noise
strength of σ = 24 mV/

√
s ( σ 2

2 is the voltage diffusion constant
in millivolt per second). (b) The homoclinic regime is reached by
decreasing the timescale of the gating variable, τn. Going from the
SNIC to the homoclinic regime, the neuron passes the codimension-2
SNL bifurcation, which is common to all class-1 excitable neurons.
The SNL bifurcation thus acts as a gate to the bistable, homoclinic
spiking regime (shaded area). (c) Phase plots (gating variable vs
voltage) of neurons in different dynamical regimes; see panel (b) for
parameter-space organization. (d) Horizontal transversal of the bi-
furcation diagram in (b) below the SNL point. Bistability of rest and
spiking leads to hysteresis in the frequency-input curve of homo-
clinic neurons. Within the bistable region, noise can switch between
rest and spiking.

be particularly interesting when relating single-cell dynamics
to the up- and downstates observed at network level. Previ-
ously, up- and downstates on the single-cell level are modeled
by a bistability of two fixed points in the membrane volt-
age [15–18]. The here considered setting is different, with a
bistability between a fixed point of the membrane voltage (the
resting state), and the limit cycle (spiking dynamics), yet if the
upstate shows fast spiking behavior this would be difficult to
distinguish from the two-fixed-points case.

In the space spanned by the three fundamental parameters
of conductance-based neuron models (i.e., membrane leak,
capacitance, and input current), a two-dimensional manifold
of HOM bifurcations unfolds from the degenerate Bogdanov-
Takens cusp point, which was proven to generically occur
in these models [19]. Starting with a model showing the
common saddle-node on invariant cycle (SNIC) bifurcation
at the creation of the spiking limit cycle, a decrease of the

separation of timescales between voltage and gating kinetics
switches the limit cycle creation to a HOM bifurcation along
with the emergence of a bistability [12] [see Fig. 1(b)]. The
switch in the bifurcation that creates the spiking limit cy-
cle happens at the codimension-two saddle-node loop (SNL)
bifurcation.1 It can be induced by many fundamental param-
eters in neuronal systems ranging from leak conductance,
to capacitance and temperature changes, to modifications of
extracellular potassium concentration [11]. Most importantly
for the present paper, between the HOM and the SN branch
emerging from the SNL bifurcation there exists a region of
bistability. Besides HOM neurons, bistability between rest and
spiking also occurs in neuron models that undergo a subcrit-
ical Hopf bifurcation, followed by a fold of limit cycles at
their firing onset. The spike statistics of these neuron models
has previously been explored numerically [25,26]. The spike
statistics for SNIC neurons [upper part of the bifurcation
diagram in Fig. 1(b)] is well characterized both for the ex-
citable dynamics, i.e., I < Isn (fluctuation driven [10]), and the
limit cycle dynamics, where I > Isn (mean driven [27]). The
statistics in the bistable region of HOM neurons, however, is
less studied and will be explored in this paper. The derivation
of the associated interspike interval statistics fills a gap of
knowledge and provides the means to differentiate alternative
underlying bifurcation structures using spike statistics. In par-
ticular, the following analysis focuses on the situation where
the perturbing noise is weak such that the time evolution is
still dominated by the attractors of the nonlinear dynamical
system, with noise only switching between them.

Section II introduces the model for which in Sec. III the
interspike interval density is derived. To this end, the stochas-
tic trajectories are projected onto the unstable manifold of
the saddle (see Sec. III A). In this coordinate system the
statistics of intermittent silence, burst firing, and switching
between these regimes are calculated in Secs. III E, III D, and
III B, respectively. Estimation of the probability of switching
is discussed and the relation to ISI moments is presented in
Sec. IV. A comparison to a second kind of bistability is drawn
in Sec. V B and the emergence of multimodal ISI densities
as a means of distinguishing between them is addressed (see
Sec. V).

II. CONDUCTANCE-BASED NEURON MODEL WITH
HOMOCLINIC BISTABILITY

In the bistable regime, transitions between two stable at-
tractors can be induced by noise fluctuations. The associated
transition probability between the two attractors as well as
the resulting spike statistics is derived in the following for
a generic class of conductance-based neuron models with
additive white noise and the limit cycle spike emerging from
a HOM bifurcation. The analysis focuses on HOM neurons
that are close to the SNL bifurcation, which allows for useful
assumptions as introduced later.

1 This codimension-2 bifurcation is known as a saddle-node sep-
aratrix loop [20], saddle-node homoclinic orbit [21], noncentral
homoclinic loop to a saddle node [22], orbit flip bifurcation [23],
or saddle-node loop in some neurobiological context [24].
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FIG. 2. Depicted are left and right eigenvectors of the saddle as
well as the limit cycle (solid line) and the separatrix (dashed line).
(a) At the HOM bifurcation, the homoclinic orbit overlaps with the
separatrix. (b) For higher input amplitudes, the separatrix is shifted
away from the limit cycle.

The present analysis considers an n-dimensional
conductance-based neuron model with one voltage
dimension, the membrane voltage v, and a set of n − 1
ion channel gates ai. The dynamics of the state vector
x = [v, a1, . . . , an−1]� ∈ IRn is given by

ẋ = F(x) + D(x)ξ(t ). (1)

The additive noise D(x)ξ originates from a diffusion approx-
imation of either synaptic or intrinsic noise sources. The
voltage dynamics follows a current-balance equation F1(x) =
[I − Iion(x)]/Cm, with membrane capacitance Cm, and the
gates have first order kinetics (see also Appendix A for model
details). Details on the simulations are also stated in Appendix
A.

The analysis assumes that the model shows a HOM bifur-
cation from which the limit cycle spike emerges. A large class
of conductance-based neuron models can be tuned into this
regime [11]. In HOM neurons, the limit cycle (corresponding
to tonic firing) arises at I = Ihom from a homoclinic orbit to
the saddle, and at I = Isn > Ihom saddle and stable node (corre-
sponding to the neuron’s resting state) collide in a saddle-node
bifurcation. For inputs in between, with Ihom < I < Isn, the
stable node and the limit cycle coexist as two stable attractors
(see Fig. 1). The state space is divided into the basins of
attraction of the fixed point and the limit cycle by a separatrix
(Fig. 2).

The analysis furthermore assumes that the noise strength
is chosen small enough such that the spike shape is in first
order not affected (the typical small noise approximation).
With this, jumping between spiking and resting state is only
possible close to the separatrix. While the separatrix is non-
local, the following analysis shows that salient properties of
its stochastic transition are given by the linearized dynamics
around saddle and stable node.

The linearized dynamics around fixed points are given by
the Jacobian of Eq. 1, J (x) = ∂F(x)

∂x , which has n eigenvalues
λ1, . . . , λn. For neuronal models undergoing a HOM onset
bifurcation, the Jacobian at the saddle has one simple, posi-
tive, real eigenvalue corresponding to the unstable direction,
denoted by λ1 ∈ IR. The other eigenvalues correspond to stable
directions, such that

λ1 > 0 > λ2 � . . . � λn. (2)
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FIG. 3. Equivalent double-well potential. (a) At the saddle (◦),
r2 is tangent to the stable manifold. Its orthogonal complement is l1,
onto which the node (•) and the minimum distance of the limit cycle
(dLC) are projected. (b) Simulated particle density in the projected
coordinate y.

The associated orthonormal left and right eigenvectors are de-
noted by lk and rk , k ∈ [1, . . . , n], respectively, with l j · rk =
δ jk [see Fig. 3(a)]. Analytical expressions of l1 and r1 are
given in Appendix B for the saddle-node fixed point, and in
Appendix C for the saddle fixed point.

The statistical properties of the bistable dynamical regime
are not yet sufficiently characterized and will be explored in
subsequent sections.

III. INTERSPIKE INTERVAL

The following analysis considers the spike train of a HOM
neuron in the bistable region, with Ihom < I < Isn, subjected
to white noise sufficiently strong to induce jumps between
the two basins of attraction, e.g., Fig. 1(a). Between two
consecutive spikes, the dynamics can either remain in the
basin of attraction of the limit cycle, or it can visit the basin
of attraction of the fixed point before eventually returning
to the limit cycle. On average, visiting the fixed point will
induce longer interspike intervals, because the escape from
the resting state requires time in addition to the duration of
the limit cycle.

Because the driving stochastic process is white, the pro-
cess of subsequently occurring interspike intervals is renewal,
as will be argued in Sec. III B. The total interspike interval
density is then a mixture of trajectories that remain on the
limit cycle, and such trajectories with intermittent visits to
the fixed point. The interspike interval densities of these two
possibilities are denoted as (i) the probability pLC(t ) that an
interspike interval results from a trajectory staying exclusively
on the limit cycle dynamics and (ii) the probability pFP(t ) that
an interspike interval is composed of some time spent near the
resting state in addition to the time required for the limit cycle
spike following the escape of the fixed point.

The total interspike interval density is a mixture of both
kinds of trajectories:

pisi(t ) = (1 − � ) pLC(t ) + � pFP(t ), (3)

where the factor 1 − � determines the proportion of intervals
for which the dynamics resides entirely on the limit cycle side
of the separatrix, while � is the proportion of intervals that
include time spent on the fixed-point side of the separatrix.
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In the following, � is called the mixing factor or splitting
probability. For increasing values of � , visits to the fixed
point become more frequent. In spike trains, this is visible
as a larger proportion of long interspike intervals. The phe-
nomenon of neurons showing strong ISI variability, with a
ratio of long versus short interspike intervals, is sometimes
termed stochastic bursting, stuttering, irregularly spiking, or
missing spikes in the experimental literature [2,4,5].

In the following, the “ingredients” to approximate the in-
terspike interval density in Eq. (3) are provided. The mixing
factor � is derived in Sec. III B, and the probabilities pLC(t )
and pFP(t ) are derived in Secs. III D and III E, respectively. To
this aim, the system is transformed into a coordinate system
that facilitates the analysis (Sec. III A).

A. Projecting crossings of the separatrix
on a double-well problem

The observation that most crossings of the separatrix
happen along the downstroke of the AP permits us in
the following to project the crossings of the separatrix
onto a one-dimensional problem. More specifically, the
high-dimensional problem of stochastic transitions through
the (n − 1)-dimensional separatrix is reduced to a one-
dimensional double-well escape problem of which the occu-
pancy statistics are known [28].

The separatrix between rest and spiking corresponds to the
stable manifold of the saddle fixed point. At the saddle, the
tangent space of the separatrix is

T =
{

n∑
k=2

αkrk : αk ∈ IR

}
. (4)

The orthogonal complement is given by the left eigenvector
l1 ∈ T ⊥ [see Fig. 3(a) for a two-dimensional example].

For spike onset at I = Ihom, the separatrix overlaps with the
homoclinic orbit, as both align per definition with the stable
manifold of the saddle. For I > Ihom, the limit cycle detaches
from the saddle. The separatrix follows the limit cycle, until it
eventually diverges (see Fig. 2). Along the spike downstroke,
both the limit cycle and the separatrix remain parallel to the
tangent space T for a significant part of the loop (for details
see Appendix E). Most relevant crossings of the separatrix
happen in this region of the state space because (i) due to
the slow dynamics in the state space around the saddle the
limit cycle trajectory spends most of the time close to the
saddle fixed point and (ii) the distance between limit cycle and
separatrix is minimal along the spike downstroke, allowing
even weak noise deviations to switch the dynamics between
rest and spiking.

In principle, multiple crossings back and forth across the
separatrix are possible, but the final decision is taken when
closing in on the saddle. In the vicinity of the saddle, trajecto-
ries on the limit cycle side of the tangent space T will follow
limit cycle dynamics, while trajectories on the other side of the
tangent space T will visit the stable fixed point. The decision
on which side of the separatrix a sample path is at a particular
time can thus be read from a projection onto l1 ∈ T ⊥:

y(t ) = l1 · (x(t ) − xs), (5)

where, for simplicity, the dynamics is recentered to the saddle
at xs, such that the saddle is in the projected coordinates
located at ys = 0. The position of the stable node is yn =
l1 · (xn − xs) [see Fig. 3(a)]. In the following, the convention
is used that y > 0 corresponds to the limit cycle side, while
y < 0 implies the fixed-point side, corresponding to the rest.

The following analysis uses the minimum distance of the
deterministic limit cycle dynamics to the separatrix:

dLC = argmin
x∈	

{l1 · (x − xs)} (6)

[see Fig. 3(a)]. Here 	 denotes the invariant set of the limit
cycle. As mentioned above, the minimal distance is typically
reached during the downstroke of the action potential. dLC is
the distance in the l1 direction of the projection along T of the
closest point of the limit cycle to the separatrix.

The projection aims to collapse the decision, whether or
not the fixed point is visited, into one dimension such that the
theory of double-well potentials can be applied to calculate
the occupancy statistics. A histogram of the projected values,
y(t ), from a simulation shows a bimodal density in Fig. 3(b).
Such bimodal density also appears in the Brownian motion
of a particle in a double-well potential. This motivates the
here presented approach to reduce the properties of stochastic
bursting in a high-dimensional neuron model to a double-well
problem:

ẏ = −U ′(y) + σ ξ (t ). (7)

y(t ) here results from the projection of the dynamics onto the
normal direction to the separatrix, as introduced above.

Approximations for the potential U (y) and the noise
strength σ will be discussed for the different quantities that
are calculated in the following sections.

B. Splitting probability

For uncorrelated noise, the series of spike-time events is
a renewal process. After each spike, during the downstroke
when the trajectory is close to the separatrix, the noise in the
system operates akin to a (biased) coin flip that determines if
the fixed point is visited, or if immediately another round trip
on the limit cycle is taken. Hence, the consecutive decisions
from which distribution the spike times are drawn, i.e., pLC(t )
or pFP(t ), are Bernoulli trials [leading to a geometric distribu-
tion for the number of spikes per burst; see Eq. (21)]. Indeed,
the statistics is reduced to calculating a single parameter:
The splitting probability (or mixing factor) in a double-well
potential.

The splitting probability in a double-well potential de-
scribes the probability of a particle that starts at a position
in relation to the barrier to end up in one of the attractors
first. In the present case the particle is initially injected dLC

away from the separatrix [see Fig. 3(a)]. The probability of
crossing the barrier and reaching the fixed point is denoted
as � . This probability can be found by solving the backward
Fokker-Planck equation with the appropriate boundary con-
ditions [28]. The solution can be expressed in terms of the
steady state density ps(y) as

� (dLC) =
∫ ∞

dLC
p−1

s (y)dy∫ ∞
yFP

p−1
s (y)dy

. (8)
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Here, the splitting probability depends on the distance be-
tween limit cycle and separatrix, dLC, which will be related to
the system parameters in Sec. III C.

The Fokker-Planck equation for the stochastic dynamics
of the one-dimensional projected variable y(t ) can always be
written in potential form corresponding to Eq. (7):

∂t p(y, t ) = ∂y[U ′(y)p(y, t )] + σ 2

2
∂2

y p(y, t ).

The stationary solution ps to this equation can then be ex-
pressed in terms of the potential U (y) as

ps(y) = N exp

(
−U (y)

2σ 2

)
.

Assume that the injection point is not too far from the separa-
trix which is at ys = 0, and that the potential is sufficiently
symmetric around the separatrix. The latter assumption is
correct in the vicinity of the saddle-node bifurcation present
in the neuron models considered here. When U (y) is smooth,
it is possible to assume that for small dLC,

U (y) ≈ U (0) + 1
2U ′′(0)d2

LC. (9)

Assuming σ is small, the limit at y = y f p tends to −∞. With
Eq. (9), Eq. (8) changes into an expression involving Gaussian
integrals. During the downstroke, the projected limit cycle dy-
namics near the separatrix is approximated by Eq. (7), where
the potential in the direction of l1 is U (y) = − λ1

2 y2, such that
U ′′(0) = −λ1. The “mixing noise” in that dimension is ap-
proximated by σ 2 = σ 2

m = l1 · Dsl1, with the diffusion matrix
evaluated at the saddle, Ds = D(xs). Together this yields

� = 1

2

[
1 − erf

(
dLC

√
λ1

2σm

)]
. (10)

Here, erf (·) denotes the error function. If the injection occurs
at the separatrix, which corresponds to the situation when the
spiking limit cycle is born from the homoclinic orbit (Fig. 2),
the probability of ending up on either side of the separatrix
is 1/2. For increasing distance, the probability of visiting the
fixed point decays [see inset in Fig. 4(a)], such that repetitive,
burst-like, limit cycle excursions become more likely.

C. Limit cycle distance to the separatrix

The limit cycle originates from a homoclinic orbit at I =
Ihom. As can be seen from the quadratic dynamics in the center
manifold of the saddle node, the saddle, and thus the sepa-
ratrix, moves as a square-root function of the input current.
The limit cycle position is more invariant (see Appendix D).
Using Eq. (6), the distance of the limit cycle to the saddle in
the center manifold, and thus to the separatrix, is

dLC =
√

l11

aCm
(
√

Isn − Ihom − √
Isn − I ), (11)

where l11 is the entry of the left eigenvector l1 that corre-
sponds to the voltage dimension [29]. The factor a is the
curvature term of the nullclines, and can be determined by
[30,31]

a = 1
2 · l1Hr1r1, (12)

FIG. 4. Comparison of theoretical prediction (lines) and numer-
ical simulations (markers) for different gating time constants τn =
0.155, 0.16, and 0.165ms. (a) Distance between limit cycle and
separatrix, dLC, vs input current as given by Eq. 11. (b) Mixing factor
� as a function of dLC. (c) 1 − � vs input current.

where H is the Hessian matrix of the deterministic dynamics.
Figure 4(a) depicts the analytical dLC from Eq. (11) and

the simulated distance of the limit cycle to the separatrix as
a function of the input current. For values of I away from
the saddle node, Ihom < I 
 Isn, the relation is rather linear.
Hence, near the onset of bistability, the limit cycle distance
can be approximated by

dLC ≈
√

l11

2aCm

I − Ihom√
Isn − Ihom

. (13)

With these expressions for the distance dLC, the mixing factor
� can be calculated according to Eq. (10). For comparison,
the mixing factor � is evaluated in stochastic simulations.
To this end, the relative time spent on the side of the stable
fixed point and of the limit cycle is detected by recording a
spike when a voltage threshold of −10 mV is crossed from
below, and recording a visit to the fixed point when a two-
dimensional threshold is crossed (crossing the voltage value
of the saddle from above and the value of the n variable
5% above the value corresponding to the node). The com-
parison between simulations and the analytical results can be
inspected in Fig. 4(b).

Next, the probability pLC(t ) for staying on the limit cycle,
the probability pFP(t ) for visiting the stable fixed point, as well
as the intra- and interburst statistics are calculated.

D. Intraburst statistics

This section determines the probability pLC(t ) for staying
on the limit cycle without visiting the fixed point used in
Eq. (3). From this, the statistics of spikes inside a “burst” is
derived, i.e., a consecutive sequence of limit cycle excursions
uninterrupted by a crossing of the separatrix into the attraction
domain of the fixed point.
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For trajectories that stay within the basin of attraction of the
limit cycle and a sufficiently small noise amplitude, a phase
reduction maps the process to a one-dimensional Brownian
motion in the phase, θ , which has constant drift:

θ̇ = 1/τLC +
√

2D̄LC ξ (t ). (14)

Here, τLC is the intrinsic, deterministic period of the limit
cycle and ξ (t ) a stochastic white-noise process with effective
diffusion matrix D̄LC. The effective diffusion matrix, D̄LC, is
obtained by averaging the potentially nonstationary noise over
the timescale of one interspike interval with an appropriate
weighting function, Z1, that quantifies how susceptible the
spike time is to perturbations at a given phase ϕ [32]:

D̄LC =
∫ 1

0
dϕ Z1(ϕ) · D[xLC(ϕ)]Z1(ϕ). (15)

The weighting function is the so-called phase-response curve,
Z1(θ ) = ∇θ |x(θ )=xLC(θ ), which can be determined numerically
or calculated via center manifold reductions [31]. Provided
that channel or synaptic fluctuations act on timescales faster
than the average limit cycle period, the effective phase
diffusion, D̄LC, quantifies the averaged noise per interspike
interval that causes jitter in the timing of spikes. It disregards
radial excursions due to noise, in particular those that would
cause jumps over the separatrix into the phaseless set (where
no phase is defined). Assuming the intraburst dynamics is
governed by the stochastic phase evolution in Eq. (14), the
waiting-time density follows an inverse Gaussian distribution
[27,33]:

pLC(t ) =
exp

( − (t−τLC )2

τ 2
LC D̄LC t

)
√

π D̄LC t3
. (16)

The mean of the distribution, τLC, is identical to the
deterministic period of the limit cycle. In the case of a
homoclinic neuron, and close to the limit cycle onset (small
dLC), it scales according to [29]

τLC = −1

λ 1
ln(dLC). (17)

Here, dLC is again the distance of the limit cycle to the separa-
trix, [see Eq. (6)], which can be expressed in terms of system
parameters in Eq. (11) and is required to fulfill dLC 
 1.

E. Interburst statistics

This section develops the probability pFP(t ) for interspike
intervals composed of a visit to the resting-state fixed point
and a limit cycle spike used in Eq. (3). The interburst intervals
resulting from fixed-point visits are on average longer than the
intraburst intervals derived in the last section. The correspond-
ing interspike interval, tFP, can be obtained by adding the time
it takes for the trajectory to escape from the fixed point, te,
and the proceeding time, tLC, for a spike excursion around
the limit cycle, to obtain tFP = te + tLC. The escape time, te,
from the resting state is described by Poisson statistics with a
Kramers rate [10]. The required assumption for the Kramers
theory, i.e., that the dynamics be equilibrated around the rest-
ing state, though not perfectly satisfied, appears reasonable
enough, given that the decay time constant of the exponential

decay is correctly described by the escape rate, as previously
validated by comparisons with numerical simulations [10].
However, there is disagreement in the very short ISIs [10].
Therefore, in the present case, the escape rate is only supposed
to describe the exit over the separatrix, which is then followed
by the time taken for another limit cycle spike, tLC. If the
escape and limit cycle dynamics were to be statistically inde-
pendent, the waiting time of the complete interburst statistics
pFP(t ) would be the convolution of the escape statistics pe and
the additional time corresponding to the duration of the spike,
pLC, i.e.,

pFP(t ) = (pLC ∗ pe )(t ) =
∫ t

0
pLC(t − r)pe(r)dr. (18)

Note that Eq. (18) effectively describes a Poisson neuron with
a refractory period drawn from pLC. The assumption of sta-
tistical independence can be motivated by two observations.
First, due to the fast contraction of the stable directions onto
the one-dimensional unstable manifold at the saddle, the tra-
jectories that leave the stable fixed point are likely to penetrate
the separatrix near one point. This gives a deltalike initial
condition for the limit cycle dynamics and to some extent
clears the memory of the preceding trajectory. Second, the
noise is uncorrelated.

The interval statistics of the escape, i.e., the Poisson neuron
with Kramers rate 1/τe, is exponential:

pe(t ) = e−t/τe/τe. (19)

The mean interval τe is given by the inverse of the Kramers
rate [10]:

τe ≈ 2π

|λ1|e�Usn/2σ 2
, (20)

where λ1 is the eigenvalue associated with the unstable man-
ifold of the saddle. �Usn is the potential difference between
saddle and node, �Usn = Usn(ys) − Usn(yn). The latter can be
approximated in the vicinity of the saddle-node bifurcation.
Saddle and node depart from the saddle node according to a
square-root function, such that locally ysn = (ys + yn)/2. If ys

and yn have not departed too far from ysn, the potential U is
centrally symmetric around ysn and hence has no quadratic
part (i.e., the linear dynamics of saddle and node cancel in the
middle). Therefore, the remaining dynamics can be captured
in the following potential:

Usn ≈ (Isn − I )(y − ysn )

Cm
+ a(y − ysn )3

3
,

with the factor a from Eq. (26).
The potential difference between saddle and node is hence

�Usn ≈ (I − Isn )(yn − ys)/Cm + a

12
(yn − ys)3.

Using this approximation of the potential height in
Eq. (20), the escape time density in Eq. (19) can be compared
to the simulated neuron. The validity of the approximation can
be inspected in Fig. 5 for different input currents. With this, all
elements of the interspike density in Eq. (3) have been derived.

The full interspike interval distribution is plotted in Fig. 6
for one representative simulation, together with the analytical
prediction.
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FIG. 5. Near spike onset, the analytical escape rate (solid line)
fits the probability density of the escape duration from the fixed point
to the separatrix (τn = 0.165ms).

F. Burst-length statistics and estimates of the splitting
probability

As argued in Sec. III B, the sequence of interspike intervals
generated by the present bistable neuron, driven by white
noise, is a renewal process; i.e., after each spike at the down-
stroke, the decision from which of the mixture components
the interval is drawn happens irrespective of the previous
intervals. Hence, no serial correlations between intervals are
to be expected. Consequently, the burst length (number of
consecutive limit cycle traverses before crossing the separatrix
to the fixed point) follows a geometric distribution which only
depends on the splitting probability:

p(k) = � (1 − � )k−1. (21)

Figure 7 shows a comparison of numerically obtained
burst-length statistics and the theory. This supports the initial
assumption that the distribution of interspike intervals is in-
deed a renewal process. The discrepancy between simulations

0 20 40 60
ISI [ms]

10−8
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100

p(
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FIG. 6. Interspike interval density for a numerical simulation
with τn = 0.16ms, driven with I = 4.4μA/cm2 plus current noise
with σ = 0.8

√
ms μA/cm2. Mean ISI is 4.53 ms; coefficient of

variation is 1.69.

FIG. 7. Burst-length statistics fitted using a geometric distribu-
tion and the splitting probability from Eq. (10).

and theory observed for larger inputs results from the shape of
the potential that separates stable fixed point and limit cycle.
For large inputs, the potential becomes shallow, such that
repeated jumps over the separatrix become more likely. Even
if the dynamics immediately jump back to the limit cycle,
these events are in the simulations counted as fixed-point
visits, while the theory only considers jumps that converge to
the fixed point. This leads to shorter bursts in the simulation
compared to the theoretical expectations, as observed in Fig. 7
in the panel with I − Isn = −0.06 μA/cm2.

If, for longer experimentally recorded spike trains, his-
tograms of burst-length distribution are available, the splitting
probability � can be inferred as the single parameter that fits
p(k) to the data.

IV. MOMENTS AND PARAMETER ESTIMATES

In the presence of noise, hysteresis effects as shown in
Fig. 1, a distinctive signature of bistability in deterministic
systems, may be obscured. But can bistability still be detected
from stochastic properties of the spike time series? Once
bistability is established, the previous section has identified
multimodality as the distinguishing fact between the bistabil-
ity resulting from a saddle-homoclinic orbit bifurcation versus
a subcritical Hopf bifurcation.

The splitting probability, � , may be taken as an indicator
for which regime a neuron is driven: (i) � ≈ 0, to the mean-
driven regime; (ii) � ≈ 1, to the fluctuation-driven regime;
or (iii) � ≈ 1

2 , to the bistable regime. In Sec. III F, it was
surmised that for long enough spike trains, the mixing factor
� could be estimated based on the burst-length statistics
in Eq. (21). One may explore how the moments of the ISI
distribution are related to system parameters. The uncentered
moments of the ISI distribution are obtained from its Laplace
transform in Eq. (22) via

νk = (−1)k dk

dsk
Pisi(s)

∣∣
s=0.
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Although the convolution in Eq. (18) cannot be evaluated
analytically, its Laplace transform is a simple product of the
transform of the inverse Gaussian distribution of the limit
cycle dynamics,

PLC(s) = exp
[(

1 −
√

1 + 2sσ 2
LCτ 2

LC

)/
σ 2

LCτLC
]
,

and that of the exponential distribution, which is PFP = (1 +
sτe )−1. Together the Laplace transform of the ISI distribution
is

Pisi(s) = (1 − � )PLC(s) + �PLC(s)

1 + sτe
. (22)

Thus, mean and variance of pisi(t ) are given by

μisi = �τe + τLC (23)

and

σ 2
isi = (2 − � )�τ 2

e + τ 3
LCσ 2

LC. (24)

For the high firing rates present in HOM neurons with a
small saddle-homoclinic orbit, the mean escape time τe is the
longest timescale in the system and can be estimated inde-
pendently by fitting a histogram of the largest ISI samples.
For low noise, τLC can be estimated as the peak of the ISI
histogram. Then, using Eq. (23), the mixing factor � can be
estimated.

V. MULTIMODAL ISI DENSITIES IN BISTABLE NEURONS

Neuronal bistability at a separatrix connected to the stable
manifold of a saddle is not the only known bistability in single
neuron dynamics. Already in Hodgkin and Huxley’s equations
for the squid’s (Doryteuthis pealeii) giant axon a coexistence
of resting and spiking was found for a small parameter range
[34]. In that case, for increasing input, a stable and an unstable
limit cycle originate from a fold of limit cycle bifurcation
and the unstable limit cycle subsequently terminates in a
subcritical Hopf bifurcation, which also changes the stability
of the fixed point. ISI histograms estsimated from numerical
simulations of the squid model with noise [25,26], as well as
analytical calculations with simplified resonate-and-fire type
models [35,36], have suggested the presence of multimodal
peaks in the ISI density. This raises the question if the kind
of bistability in homoclinic neurons treated here can produce
multimodal ISI densities, too, or if this hallmark can be used
to differentiate between the two kinds of bistability.

A. HOM case

To answer the question of multimodality, the modes of
the components of the mixture are examined. The inverse
Gaussian, pLC(t ), has a single mode at

t̂LC = τLC

(√
1 + 9

4
τ 2

LCD̄2
LC − 3

2
τLCD̄LC

)
.

The convolution with an exponential kernel does not produce
additional peaks, and hence pFP(t ) as defined by the convo-
lution in Eq. (18) is unimodal, too. The derivative of pFP(t )
is τe p′

FP(t ) = pLC(t ) − pFP(t ). If set to zero, it is found that it

has a single mode t̂FP which satisfies

pLC(t̂FP) = pFP(t̂FP), (25)

i.e., the single mode is located at the crossing of the two
distributions.

The curvature of pFP is given by

p′′
FP(t ) = 1

τe
[p′

LC(t ) − p′
FP(t )]. (26)

The curvature at the mode is thus given by p′′
FP(t̂FP) =

p′
LC(t̂FP)/τe. The curvature is negative because t̂FP corre-

sponds to a maximum. Hence, the mode of pFP(t ) is to be
found on the declining part of pLC(t ), i.e., t̂LC < t̂FP.

The modes of the mixture distribution are confined to lie in
the interval [t̂LC, t̂FP]. Within this interval between both indi-
vidual peaks, p′

LC(t ) < 0 and p′
FP(t ) > 0, such that Eq. (26)

implies the concavity of pFP(t ). Let t̃ denote the inflection
point of the declining part of the inverse Gaussian distribution,
pLC(t ). The distribution pLC(t ) is concave on the interval
[t̂LC, t̃]. Within the interval [t̂LC, min(t̃, t̂FP)], both distribu-
tions, pLC(t ) and pFP(t ), are concave, which permits no more
than a single peak for the mixing distribution. If the inflection
point lies beyond the mode of pFP(t ), i.e., t̂FP < t̃ , this implies
unimodality of pisi(t ). For the other case, t̂FP > t̃ , this implies
no more than a peak on the interval [t̂LC, t̃]. For unimodality,
it remains to be shown that the mixing distribution decays on
the interval [t̃, t̂FP]. Within this interval, let us assume that τe

is the longest timescale in the system. According to Eq. (26),
the density pFP(t ) can be made arbitrarily flat compared to
the derivative p′

LC(t ) by increasing τe. This means that for
sufficiently large τe, pisi(t ) is within the interval [t̃, t̂FP] dom-
inated by the derivative p′

LC(t ), and is thus negative with no
possibility for a peak.

Coming back to the question of the modality of bistable
homoclinic ISI density, it can be asserted that for large τe,
which occur close to Ihom, and with all other assumptions used
in this paper, the ISI density is unimodal. This is in contrast to
at least a large proportion of bistable Hopf neurons and could
offer a way to distinguish these regimes.

B. Subcritical Hopf case

The second type of bistability in conductance-based neuron
models originates from the case where the stable limit cycle
is born together with an unstable one out of a fold of limit
cycles. The unstable limit cycle shrinks and may be destroyed
either by a homoclinic bifurcation to a saddle [11] or, as in the
Hodgkin-Huxley equations, in a subcritical Hopf bifurcation,
which is the case discussed here and shown in Fig. 8(b). The
noise-driven dynamics of this latter case has been investigated
in numerical simulations, where the ISI density was reported
as multimodal [25,26,37]. Furthermore, some geometric con-
siderations about probable exit regions across the unstable
limit cycle have been made [37] and will be discussed in the
following. While at present it is not fully understood how
universal this multimodality is, it can be distinguished from
the homoclinic case, which is not multimodal for sufficiently
long escape times from the fixed point as argued in Sec. III A.

In the Hopf case, too, interspike intervals could be cate-
gorized into trajectories cycling around the stable limit cycle
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FIG. 8. (a) Phase portrait and voltage trace of a stochastically
bursting subcritical Hopf neuron are shown in gray. Stable and un-
stable limit cycles are shown as solid and dashed black lines. The
bistability region is found for dc input parameters between a fold of
limit cycles and a subcritical Hopf bifurcation. The separatrix is an
unstable limit cycle. (b) (A)–(D) show phase portraits before, after,
and during the emergence of the unstable limit cycle. Multimodal
ISI histogram (c) for noise parameters derived from the analytically
approximated unstable limit cycle in (a) and shown as the dotted
ellipse in (a). The parameter of the neuron model can be found in
[29], Fig. 6.16.

and those that visit the fixed-point region by crossing the
circular separatrix given by the unstable limit cycle as shown
in Fig. 8(a). Within the basin of attraction of the stable focus,
the dynamics can be linearized,

ẋ = Jx + Bξ, (27)

using the Jacobi matrix at the fixed point, J, and given the
diffusion matrix, D = 1

2 BB†. Assuming there is no focus-to-
node transition in the region of bistability [11], J has a pair of
conjugate imaginary eigenvalues with negative real parts. In
this case the dynamics shows noise-induced oscillation (alias
quasicycles or subthreshold oscillations) [38]. This class of
noisy oscillations that do not require a deterministic limit cy-
cle can still be described as phase oscillators using the recently
found methods of backward and forward phases [39,40]. Their
average period is given by τH = 2π/ωH [40], where ωH is
the frequency given by the imaginary part of the Jacobian’s
eigenvalues at the focus. What determines whether or not
these quasioscillations are reflected in the ISI density?

For random crossings of the separatrix, one might be in-
clined to think that the deterministic definition of phaseless
sets [41] implies that the phases of the spiralling dynamics

inside the unstable orbit will not automatically carry to the
phases of the stable limit cycle, defined by their isochrons,
and thus not influence spike timing histograms. A fortiori,
since the isochrons of the stable limit cycle foliate around
the unstable LC [41,42] and, hence, in a deterministic setting,
all phases would be available for small perturbations crossing
the separatrix. With this logic, the subthreshold phase should
be scrambled. Yet, the deterministic view is misleading as
shown by numerous simulation studies reporting multimodal-
ity [25,26]. Motivated in part by realistic noise sources such
as ion channel fluctuations, previous considerations have fo-
cused on escape from the fixed point which is restricted to a
region on the unstable LC as a mechanism for multimodality
and found additional peaks “in all ISI histograms [that] have
been examined” [37]. Indeed, the jump into the unstable limit
cycle is typically confined to a region in state space, because
action potentials with a required signal strength (AP height)
need to have a resting state fixed point that is in one corner
of the AP limit cycle, away from the peak voltage. Due to the
closeness of the AP trajectory and the unstable LC, transitions
are likely to occur in this proximity, in particular if noise were
to be restricted to the voltage dimension. The idea is that each
time after completing another subthreshold cycle there is a
probability of jumping out and initializing a spike at a narrow
region in state space. It was previously concluded that “the
second peak arises when the trajectory [...] spirals round in
the vicinity of the fixed point for one cycle, and as the next
cycle starts, it switches back to the stable limit cycle vicinity,
thus creating an ISI roughly twice as long as the period of the
stable limit cycle” [37]. Actually, the quoted premise would
not lead to a peak at double τLC but with that reasoning the
modes would be located at

τmode
H = τLC + kτH, for k = 0, 1, . . ..

This predicted position of the secondary peaks in the ISI
density is, however, still off as can be seen in Fig. 8(c). A hint
on why may be inferred from the path simulation in Fig. 8(a)
showing that, as the unstable limit cycle is not very repellent,
trajectories close to it will cycle around it for some time before
switching to the large stable limit cycle of a spike at a specific
region. In that case the mode should be found at multiples of
the period of the unstable limit cycle, τs:

τmode
s = τLC + kτs, for k = 0, 1, . . .,

which fits better to the data.
In order to highlight that the “regionalised exit” [37] is not

a prerequisite for multimodality in the ISI, the noise sources
in the system were carefully tuned to render the exit over the
entire unstable limit cycle equally likely. Though this might
be an unlikely scenario in a real nerve cell, it is a useful
theoretical thought experiment to understand the requirements
for multimodality. The scenario arises for small unstable limit
cycles accompanied by a fortiori small noises with a special
structure D. The diffusion matrix has to be chosen such that
the covariance matrix � of the stationary solution of Eq. (27)
matches with the geometry of the surrounding unstable limit
cycle. Close to the Hopf bifurcation the emerging unstable
limit cycle can be approximated as an ellipse [43]:

	(t ) = ε[qRe cos(ωHt ) − qIm sin(ωHt )],
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where qRe and qIm are the real and imaginary part of the
right eigenvector corresponding to the Hopf bifurcation. The
covariance matrix � matches the geometry of the ellipse if
� = qRe · q�

Re + qIm · q�
Im. The diffusion matrix is then chosen

as [28,40]:

D = −(J� + �J�). (28)

With this choice of D, the exit though each segment of the
unstable limit cycle is equiprobable.

The additional example of the uniform exit highlights the
fact that (i) the subthreshold backwards phase of the quasicy-
cles with associated period τH, (ii) the phase of the unstable
limit cycle with associated period τuLC, and (iii) the phase
associated with the stable limit cycle and isochrons and the
period τLC are all connected. This fact is different from the
saddle case where paths are contracted on the separatrix into
almost a single point and hence the previous dynamics is not
forgotten.

VI. DISCUSSION

Interspike-interval distributions are commonly investigated
to characterize spiking behavior in neurons. Experimentally,
these distributions are easily measured by observing spike
trains in response to step currents or noise injections. The-
oretical distributions have been derived for several types
of neuron models, in particular the Poissonian distribution
for fluctuation-driven integrate-and-fire-type or conductance-
based neuron models [10], and the inverse Gaussian distri-
bution for mean-driven neurons with a SNIC bifurcation at
spike onset [27,33,44]. Here, the interspike-interval distribu-
tion for neurons with a saddle-homoclinic orbit bifurcation,
from which the limit cycle spike emerges, was derived within
the bistable regime. These neurons show, close to spike onset,
a region of bistability between resting state and spiking, and
if the dynamics visits the resting state between two spikes
particularly long interspike intervals can ensue.

But can the present statistical analysis help to discern
HOM/SNL, SNIC, and Hopf bifurcations in recordings? Fit-
ting inverse Gaussian, exponential, or bistable ISI density, as
derived here, to recordings and comparing the model likeli-
hood can be construed as supportive evidence for one or the
other mechanism. However, for generalized inverse Gaussian
distributions, it was shown that several diffusion processes can
in principle result in the same waiting time distribution, or,
conversely, ISI distributions cannot be uniquely mapped to
their underlying diffusion processes [45]. Therefore, caution
is warranted not to overstress the generality of one’s inference
about the mechanistic cause. Nonetheless, features of the ISI
density, such as its skewness, have been related to underlying
biophysical processes such as adaptation currents [44,46]. A
question similar in spirit may be whether neuronal bistability
is uniquely tied to the ISI distribution derived in the present
paper.

In terms of the underlying bifurcation structure at least one
other scenario giving rise to bistability of spiking and resting
has been described previously and in Sec III B: The subcritical
Hopf bifurcation in association with a fold of limit cycles—
present in the equations derived for the classical squid
axon—also leads to a region of bistability and hysteresis [34].

In combination with noise, numerical investigations [25,26]
indicated that the ISI distribution is multimodal for the tested
parameter combinations. At present, no parameters have been
documented for which multimodality does not manifest in
the ISI density. In the case of simplified resonate-and-fire
models, the ISI distribution has been investigated analytically
and multimodal peaks were confirmed [35,36]. In contrast, the
present paper argues for the absence of multimodality in the
homoclinic-type bistability and hence this difference may be
exploited to distinguish both kinds of bistability.

As was argued, bistability in homoclinic neurons can lead
to spike time patterns, which resemble spiking observed ex-
perimentally in neurons, such as “stuttering cells” [1,2] or
“irregular spiking cells” [3–5]. Some cells show membrane-
voltage bistability in the form of distinct downstates and
upstates [47]. The likelihood of seeing this dynamics seems
to be increased during sleep and certain anesthetics. The
emergence of up- and downstates is associated with altered
concentration dynamics in the intra- and extracellular space.
Since the required timescale separation to induce the SNL
bifurcation can also be achieved by modifying reversal po-
tentials [48], the resulting homoclinic bistability may be a
putative, alternative mechanism underlying some of the up-
and downstate dynamics observed in neurons. While up- and
downstates have been modeled previously as bistable fixed
points in an integrate-and-fire-like model [14,18], the bista-
bility between resting state and spiking dynamics introduced
here is easily implemented in a biologically more realistic
conductance-based neuron model.

The emergence of bistability in neurons changes their cod-
ing properties, too. It has been noted that, in the absence of
noise, rate coding in neurons close to a SNIC bifurcation
is undermined by undesirable nonlinearities. More favorable
for coding, bursting neurons have been shown to linearize
the rate-tuning curve [49]. Furthermore, in a network, bista-
bility in the membrane voltage has been shown to increase
the power for certain frequency bands of a population trans-
fer function [18]. In a similar way, the filtering associated
with individual homoclinic neurons can transfer considerably
higher frequencies during the spiking periods [50,51]. Hence,
spike-timing based codes can benefit from the high-frequency
coding arising from the symmetry breaking that is induced by
the switch in spike generation from SNIC to HOM at the SNL
point [12]. The option to visit the fixed point before spiking
adds to the versatile coding possibilities of these neurons
when explicitly considering their bistability. An open question
is if the interspike-interval distribution of the bistable neuron
has favorable properties similar to the power-law interspike
interval density appearing in some theories of optimal coding
[52]: The mutual information between a fast stimulus and
the emitted spike train is bounded from above by the output
entropy of the alphabet (i.e., the spike train entropy) [53].
The spike train entropy is increased by more diverse spike
patterns arising from the stochastic bursting responses in the
bistable regime, compared to the tonic response of a SNIC
neuron. It remains to be shown how the conditional entropy is
influenced, which also contributes to the system’s information
transmission rate.

Early theories of spiking network dynamics have, for
simplicity, assumed identical neurons. Networks of such
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identical, yet highly stochastic, spiking neurons can gener-
ate global rhythms [54]. Even with mild heterogeneity in
the network delays, these phenomena seem to persist [55].
Neuron-intrinsic heterogeneity has also been investigated in
networks of leaky integrate-and-fire (IF) units, using ran-
domly distributed thresholds. Under a rate coding regime an
optimal level of heterogeneity was suggested [56]. Yet, leaky
IF models lack the rich bifurcation structure of conductance-
based models. Particularly, heterogeneity in thresholds will
not produce the drastic and critical changes described in the
present paper. The impact of heterogeneity in single-neuron
parameters that bring about SNL bifurcations in networks may
be surmised to be substantial, but awaits further studies.

Integrate-and-fire models focus on capturing only the spike
upstroke dynamics while relying on a reset for the spike
downstroke. These models have been used to investigate the
influence of rapid upstroke dynamics (in part influenced by
Na+ channel dynamics) on coding [57], and network dynam-
ics [58]. The quadratic IF model can be derived from the
center manifold reduction of saddle-node bifurcations [30],
and can with an appropriately chosen reset serve as the “nor-
mal form” of the bifurcation structure in Fig. 1(b) [21,29].
Then again, this paper shows the switching dynamics to occur
outside the center manifold dynamics during the downstroke
along the strongly stable direction. Hence, the window of
opportunity for jumping the separatrix is more related to
the timescale of the K+ channel dynamics. Nonetheless, the
quadratic IF with a reset above the unstable fixed point and
noise will produce the same ISI dynamics as derived here and
can thus be taken as a simplified form in network theories of
homoclinic bistable neurons.

In summary, the interspike interval distribution derived
in this paper is useful on various levels. It provides an
experimental check for bistability due to homoclinic spike
generation, conveys information on coding properties, and
forms the basis for a mean-field theory for networks with
bistable single-neuron dynamics. Translated to other oscillat-
ing systems, the analysis might even inform about homoclinic
bistability beyond the neurosciences.
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APPENDIX A: MODEL DEFINITION

For illustrative purposes, a planar conductance-based neu-
ron model is considered, but the analysis can be extended
to n-dimensional models provided the stable manifold of the
saddle is n − 1 dimensional:

Cmv̇ = I − Iion,

τn(v)ṅ = n∞(v) − n

where τn(v) is a bounded function of the voltage.

TABLE I. Model parameters of the sodium-potassium neuron
used for the simulations of the homoclinic neuron.

Parameter Value

Membrane capacitance Cm 1μF/cm2

Leak reversal potential EL −80mV
Sodium reversal potential ENa 60mV
Potassium reversal potential EK −90mV
Maximal leak conductance gL 8mS/cm2

Maximal sodium cond. gNa 20mS/cm2

Maximal potassium cond. gK 10mS/cm2

Gating time constant τn 0.165ms

For numerical simulations, two-dimensional sodium-
potassium neuron models are used [29]. Model parameters
for the neuron with a saddle-homoclinic orbit bifurcation are
given in Table I and for the neuron with a subcritical Hopf
bifurcation in Table II. For both models, the ionic current is

Iion = gL(EL − v) + gNam∞(v)(ENa − v) + gKn(EK − v).

The activation curves of the gates are

m∞ = 1

1 + exp
(− v/mV+25

5

) ,

n∞ = 1

1 + exp
(− v/mV+29

15

)
The gating time constant is independent of v, τn(v) = τn.

Voltage dynamics were simulated in the simulation envi-
ronment BRIAN2 using the internal noise term xi [59].

APPENDIX B: DIRECTIONS OF STABLE AND UNSTABLE
MANIFOLDS AROUND THE SADDLE NODE

For the saddle node, λ1 = 0, and the associated right eigen-
vector is given by

(1) r1 = 1
κ

(
1

τk
∂Fk
∂v
...

) = 1
κ

1
d

dv
a(∞)

k (v)|v=vsn
...

),

where v = vsn and ak = a(∞)
k (v) was used [31]. The eigen-

vector r1 is tangential to the semistable manifold, which
corresponds to the center manifold of the SNIC bifurcation.

For the saddle node, the right eigenvectors to λ2, . . . , λn

span the tangential space to the stable manifold. Due to the
orthogonality of left and right eigenvectors, the normal to

TABLE II. Model parameters of the sodium-potassium neuron
used for the simulations of the subcritical Hopf neuron.

Parameter Value

Membrane capacitance Cm 1μF/cm2

Leak reversal potential EL −78mV
Sodium reversal potential ENa 60mV
Potassium reversal potential EK −90mV
Maximal leak conductance gL 1mS/cm2

Maximal sodium cond. gNa 4mS/cm2

Maximal potassium cond. gK 4mS/cm2

Gating time constant τn 1.0ms
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the tangent space of the stable manifold is given by the left
eigenvector corresponding to the unstable direction, l1 [31]:

(2) l1 = (
1

τk
∂F0
∂ak
...

).

APPENDIX C: DIRECTIONS OF STABLE AND UNSTABLE
MANIFOLDS AROUND THE SADDLE

The analysis of the HOM neuron model assumes that the
spike onset lies in proximity to the SNL bifurcation, such
that the saddle at Ihom inherits properties of the saddle node
at Isn. It is shown in the following for a planar model that
this implies similar linearized dynamics along the unstable
manifold of saddle and saddle node. To this aim, the eigen-
vectors around the saddle are expressed as the eigenvectors
of the saddle node, as given in Sec. VI, plus a small term. The
closeness of the saddle to the saddle node is translated into two
mathematical assumptions: It is assumed that λ1 
 1 at the
saddle (because λ1 = 0 at the saddle node), and it is assumed
that the voltage values of saddle and saddle node are similar,
�v = vsaddle − vsn 
 1.

The linearized dynamics around saddle or saddle node are
given by their Jacobian. The Jacobian of a two-dimensional
system akin to the model in Sec. VI is given as

J =
(

∂F0
∂v

∂F0
∂n

∂F1
∂v

∂F1
∂n

)
=

(
a b
c d

)
.

For a two-dimensional matrix, the eigenvalues are λ1/2 =
0.5(a + d ± E ) with E = √

a2 − 2ad + 4bc + d2. The right
eigenvector corresponding to λ1 is r1 = (1, 2c

E+a−d ); the left

eigenvector is l1 = (1, 2b
E+a−d ) (equal to the right eigenvalue

of the transposed matrix).
Expressing E by λ1 gives r1 = (1, c

−d+λ1
) and l1 =

(1, b
−d+λ1

).
The assumptions allow us to approximate the expressions

for the eigenvectors. Because d = −1/τn(v) is a bounded
function of the voltage, and because of the assumption λ1 

1, one finds b

−d+λ1
= b

−d × 1
1+ λ1

−d

≈ b
−d × (1 − λ1

−d ). Further-

more, the assumption �v 
 1 allows one to develop b(v) and
c(v) around vsn, with v = vsn + �v:

r1 ≈
(

1,
∂n∞
∂v

)
+ (0, τnλ1)

≈
(

1,
∂n∞
∂v

(vsn )

)
+

(
0,

∂2n∞
∂v2

(vsn )�v + τnλ1

)
,

l1 ≈
(

1, τn
∂F0

∂n

)
+ (0, τnλ1)

≈
(

1, τn
∂F0

∂n
(vsn )

)
+ (

0,−gk p np−1�v + τnλ1
)
,

where b = gk np (Ek − v) was used for l1.
For λ1 = 0 and �v = 0, r1 and l1 at the saddle-node fixed

point (see Sec. VI) are recovered. This shows that the linear
dynamics at the saddle and at the saddle node are similar for
small λ1 and �v, in the sense that the linearized dynamics

FIG. 9. Location of the limit cycle. (a) For inputs above spike
onset, the limit cycle position remains relatively stable, while saddle
(open circle), and thus separatrix, move. (b) The downstroke of the
limit cycle aligns with r2 (green dotted line). Nullclines are shown
for voltage (dark gray) and gating variable (light gray). (c) During
the spike (violet voltage trace), the ionic current Iion (red) is orders of
magnitude larger than the input current I (green horizontal line). The
shaded area marks the area in which Iion < 10I .

around the saddle node are the zeroth order term of an expan-
sion of the linearized dynamics around the saddle in λ1 and
�v.

APPENDIX D: LIMIT CYCLE DOWNSTROKE IS IN FIRST
ORDER INDEPENDENT OF THE INPUT

The simulations in Fig. 9(a) show that the location of the
limit cycle remains surprisingly constant with an increase in
input current. This can be understood by observing that for the
flow on the limit cycle, the major change in velocity occurs in
proximity to the saddle: The flow on the limit cycle trajectory,
	, is given by the velocity at each point (v, n) ∈ 	. The speed
of the gating, ṅ, is independent of I . The speed of the voltage,
v̇ = (I + Iion )/Cm, depends on I , but the influence of I is
small as long as I 
 Iion. During the spike, ionic currents
dominate the dynamics [Fig. 9(c)], and Iion has the same order
of magnitude as I only in between two spikes, i.e., close to the
saddle [shaded area in Fig. 9(c)]. This implies that the only
significant changes in the limit cycle trajectory happen close
to the saddle, as suggested by the simulations of the limit cycle
trajectory [see Fig. 9(a)].

APPENDIX E: AT SPIKE ONSET, THE LIMIT CYCLE
DOWNSTROKE ALIGNS WITH THE STABLE

EIGENVECTOR OF THE SADDLE

The derivation in the main text assumes that the down-
stroke of the limit cycle follows the stable r2 eigenvector
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of the saddle at spike onset. This is trivially true for the
saddle-homoclinic orbit in an infinitesimal small environment
of the saddle. As shown in the following, this also holds for a
significant part of the dynamics along the spike downstroke.

The argument relies on the following observations. For
the homoclinic orbit attached to the saddle, two points in the
phase plane are known.

(1) The downstroke of the homoclinic orbit attaches to the
saddle. More precisely, it enters the saddle along its stable
manifold tangential to r2 [Fig. 9(b), green dotted line].

(2) At the limit cycle maximum in the phase plane,
(v(nmax), nmax) with nmax = maxt [nLC(t )], the flow is tangen-
tial to the voltage direction, i.e., ṅ = 0, such that the maximum
lies on the gating nullcline given by n∞(v) [Fig. 9(b)].

Because the limit cycle circles around the unstable node or
focus, the limit cycle maximum (v(nmax), nmax) lies above the
unstable node or focus. Because voltage and gating nullclines
cross at the unstable node or focus, the limit cycle downstroke,
once it has passed (v(nmax), nmax), lies above both nullclines.
In consequence, the velocity along the downstroke trajectory
points in the direction of the third quadrant (i.e., to the bottom
left), such that the trajectory approaches r2 monotonously. As
the trajectory of the limit cycle downstroke has a horizontal
velocity at (v(nmax), nmax) and a velocity aligned to r2 at the
saddle, and approaches r2 monotonically, the expectation of
smooth trajectories allows us to conclude that the trajectory
of the saddle-homoclinic orbit aligns for a significant part of
the limit cycle with r2.
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