
PHYSICAL REVIEW E 103, 012405 (2021)

Integer topological defects of cell monolayers: Mechanics and flows
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Monolayers of anisotropic cells exhibit long-ranged orientational order and topological defects. During the
development of organisms, orientational order often influences morphogenetic events. However, the linkage
between the mechanics of cell monolayers and topological defects remains largely unexplored. This holds
specifically at the timescales relevant for tissue morphogenesis. Here, we build on the physics of liquid crystals to
determine material parameters of cell monolayers. In particular, we use a hydrodynamical description of an active
polar fluid to study the steady-state mechanical patterns at integer topological defects. Our description includes
three distinct sources of activity: traction forces accounting for cell-substrate interactions as well as anisotropic
and isotropic active nematic stresses accounting for cell-cell interactions. We apply our approach to C2C12 cell
monolayers in small circular confinements, which form isolated aster or spiral topological defects. By analyzing
the velocity and orientational order fields in spirals as well as the forces and cell number density fields in asters,
we determine mechanical parameters of C2C12 cell monolayers. Our work shows how topological defects can
be used to fully characterize the mechanical properties of biological active matter.

DOI: 10.1103/PhysRevE.103.012405

I. INTRODUCTION

Collective cell migration plays a major role in the
regulation of vital biological processes, including tissue mor-
phogenesis, wound healing, and tumor progression [1–3]. Cell
migration is driven by the cytoskeleton, a network of mul-
tiple protein filaments, such as actin, and molecular motor
complexes, such as myosin. As an active material, the cy-
toskeleton can generate mechanical stresses at the cellular
level by consuming the chemical fuel adenosine-triphosphate
(ATP) [4]. Cell-cell junctions can transmit such mechanical
stresses to neighboring cells, which leads to collective cell
migration.

During morphogenesis and regeneration, cells commonly
display anisotropic distributions of intracellular constituents.
Examples are stress fibers, which are bundles of actin fil-
aments and myosin motors. In cells, these structures can
organize into phases with orientational order [5–7]. Other
forms of orientational cellular order are resulting from the
symmetry breaking between front and back of migrating cells.
At the front, migration is generated by a distinct structure
enriched with branching actin filaments called the lamel-
lipodium.

Physical interaction between such anisotropic cells can
lead to long-range orientational order with varying degrees
of symmetry. For instance, polarity markers in mouse liver
or confluent monolayers of fibroblasts in vitro exhibit nematic
order [8,9]. Similar to liquid crystals [10], nematic refers to
order that is invariant under inversions of the cell orientation.
Signatures of polar order, where this invariance is absent, have
been reported in spreading epithelial monolayers [11–14].

Orientational fields may exhibit topological defects, where
the orientation is not well defined. These defects are char-
acterized by their topological charge, which is determined
by counting the number of rotations the orientational field
performs when following a closed trajectory around the de-
fect center [10]. Polar order fields can present topological
defects with an integer charge, whereas nematic order fields
can also exhibit half-integer defects. In active materials, the
characteristics of the mechanical patterns around topological
defects depend on details of the underlying active processes.
In particular, studying the dynamics of half-integer topolog-
ical defects, one can infer whether the active stresses are
contractile or extensile [15–19].

Several theoretical studies suggest that in active sys-
tems, well-defined mechanical patterns and flows can emerge
around topological defects [20–24]. Based on this idea, one
can qualitatively understand the structure of collective flows
of active systems, such as purified cytoskeletal motor-filament
suspensions, by considering the dynamics of topological de-
fect assemblies [15,25–28]. Similar ideas were applied to
multicellular systems to interpret various processes including
cell extrusion [16], changes in cell density [17], or morpho-
genetic events during the regeneration of the freshwater polyp
hydra [29,30]. These findings suggest that orientational fields
can organize cell stress patterns and guide collective cell
migration.

In this work, we show that the dynamics of individual
topological defects can be used to determine mechani-
cal properties of active systems. To this end, we first
develop a hydrodynamic approach to study the forces, ori-
entation, and flows around integer topological defects in
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compressible active fluids. Our phenomenological description
accounts for three types of active processes, corresponding
to polar traction forces as well as isotropic and anisotropic
nematic active stresses. We illustrate our approach by ana-
lyzing integer topological defects that are formed by muscle
precursor cells (C2C12 myoblasts) when confined to small
circular domains [31]. Combining our experimental data and
our theory allows us to determine material parameters of my-
oblast monolayers. The experiments analyzed in this work are
published in Ref. [31] and part of this work is published in an
accompanying letter [32].

II. HYDRODYNAMIC DESCRIPTION OF MONOLAYERS
OF ANISOTROPIC CELLS

In this section, we develop a phenomenological descrip-
tion of monolayers of elongated cells. After presenting the
dynamic equations, we apply them to a monolayer of C2C12
myoblasts confined to a circular domain [31].

A. Hydrodynamic fields and conservation equations

To describe cell monolayers, we use a hydrodynamic ap-
proach and start by identifying the hydrodynamic variables
characterizing such systems. Let us consider first the two-
dimensional (2D) cell number density n. Cell division and
growth occur on a timescale of 10 h. Additionally, in some
experiments, cell division was inhibited, which increased
this timescale even further. Focussing on shorter timescales,
we can neglect these processes and write the conservation
equation

∂t n + ∂γ (nvγ ) = 0, (1)

where γ represents the cartesian coordinates in the substrate
plane and v is the in-plane velocity field. We adopt the
Einstein convention such that summation over repeated in-
dices is tacitly assumed. In principle, also the chemical fuel,
adenosine-triphosphate (ATP), and its hydrolysis products,
adenosine-diphosphate (ADP) and inorganic phosphate Pi,
satisfy conservation equations. However, in our experiments,
the cells metabolize nutrients provided by the buffer to re-
plenish consumed ATP from ADP and Pi [31]. Therefore,
we assume that the concentrations of ATP, ADP, and Pi are
homogenous and constant in time.

Next, we consider momentum conservation. In our ex-
periments, the Reynolds number Re is small: The C2C12
myoblasts were confined to small circular domains of radius
∼100 μm and moved at a typical speed ∼0.5 μm/min. In
addition, taking the density of water for the mass density of
cells [33] and using the viscosity of epithelial tissues, which
is ∼109 times that of water [34], we find Re ∼ 10−15–10−16.
We thus consider the overdamped limit and the conservation
of momentum is expressed through force balance.

In our experiments, the lateral extension of C2C12 mono-
layers is an order of magnitude larger than its height, 50 μm
versus 10 μm. In this limit, a thin-film approximation can be
used to turn the three-dimensional (3D) force balance equa-
tion into an effective 2D description for the height-averaged
stress and the height itself [35]. We neglect any fluctuations in
the latter and assume it to be uniform, such that force balance

is captured by the following effective equation:

∂βσ tot
αβ = ξvα − T0 pα. (2)

Here σ tot
αβ are the cartesian components of the in-plane total

mechanical stress tensor obtained after averaging with respect
to the height. On the right-hand side of the equation, the
external force density results from interactions of the cells
with the substrate. No net force and torque is applied on the
monolayers as a result of these interactions.

The external force density has two components: ξv de-
scribes friction between the monolayer and the substrate,
whereas T0p is the traction force of the cells. The friction
force depends on the velocity field v. The traction force is
independent of the velocity v. It results, for example, from
retrograde cytoskeletal flows in lamellipodia or from stress-
fiber contraction transmitted to the substrate via long-lived
adhesion points. The direction of the traction force derives
from the local average orientation of these cellular structures,
which is captured by the polarization field p. Fluctuations
around the average orientation are accounted for by higher
order fields, like the nematic tensor Q [10]. Here we assume
that such terms are determined by p, for example, Q ∼ pp.
A possible nematic contribution to the traction force will be
discussed in Sec. VII A.

B. Constitutive relations

To close the system of equations describing the dynamics
of the myoblast monolayer, expressions for the total stress
σ tot and the time evolution of the polarization field p are
needed. To obtain such expressions, we follow the standard
approach of nonequilibrium thermodynamics [36]. It consists
of first identifying pairs of conjugated thermodynamic forces
and fluxes by inspecting the time derivative of the free energy.
In a second step, the fluxes are expressed to linear order in
terms of the forces, where the coupling coefficients obey the
Onsager relations.

Here we choose the following quantities as thermodynamic
forces [37]: the symmetric part of the velocity gradient ten-
sor with components vαβ = (∂αvβ + ∂βvα )/2, the field h =
−δF/δp, where F is the equilibrium free energy, and the
difference between the chemical potentials of ATP, ADP and
Pi 	μ = μATP − μADP − μP. The corresponding thermody-
namic fluxes are given by the deviatory stress tensor σ =
σ tot − σ e, the corotational convective derivative of the polar-
ization field Dp/Dt , and the rate r of ATP hydrolysis [37]. As
we assume constant concentrations of ATP, ADP, and Pi we
do not consider r any further. The Ericksen stress σ e is a gen-
eralization of the hydrostatic pressure; see Appendix A. In the
context of liquid crystals [10], h is called the molecular field.
It describes the restoring forces associated with deformations
of p. The corotational convective derivative of the polarization
field is given by

D

Dt
pα = ∂t pα + vβ∂β pα + ωαβ pβ. (3)

Here ωαβ = (∂αvβ − ∂βvα )/2 is the antisymmetric part of the
velocity gradient tensor.

Before proceeding to discuss the constitutive equations, let
us first note that there is some freedom in choosing the stress
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tensor. Only the divergence of the stress has a physical signif-
icance, so one can always add a divergence-free component to
the stress tensor. We adopt the same choice as in Refs. [38,39],
such that the components of the antisymmetric part of the
deviatory stress are

σ a
αβ = 1

2 (pαhβ − pβhα ). (4)

The symmetric part σ s of the deviatory stress and the coro-
tational convective derivative of the polarization field are
obtained, as mentioned above, by expressing these fluxes in
terms of the thermodynamic forces in lowest order. Explicitly,
we find

σ s
αβ = 2η

(
vαβ − 1

2
vγ γ δαβ

)
+ η̄vγ γ δαβ

+ ν

2
(pαhβ + pβhα − pγ hγ δαβ ) + ν ′ pγ hγ δαβ

−
(

pα pβ − 1

2
pγ pγ δαβ

)
ζ	μ

− δαβζ ′	μ − pγ pγ δαβζ ′′	μ, (5)

D

Dt
pα = hα

γ
− ν

(
vαβ − 1

2
vγ γ δαβ

)
pβ − ν ′vββ pα. (6)

In the expression for the symmetric part of the deviatory stress
σ s, the first two terms account for viscous stresses, where
the coefficient η and η̄, respectively, are the shear and bulk
viscosities of the cell monolayer. The following two terms
couple the mechanical stress to the field h. All these terms
also appear in the stress of liquid crystals [10]. The remaining
terms couple the mechanical stress to ATP hydrolysis and thus
denote the active components of the stress. Note that since
we consider a compressible active fluid, we need to account
for the isotropic part of the deviatory stress. It is associated
with the phenomenological constants η̄, ν ′, ζ ′, and ζ ′′. For our
choice of the sign of the stress tensor, positive values of ζ , ζ ′,
and ζ ′′ correspond to extensile active stresses. Let us remark
that also the expressions for the friction and traction forces in
Eq. (2) could be obtained from similar arguments [40]. In this
way, the traction force is coupled to ATP hydrolysis.

In Eq. (6) the first term captures relaxation of the polariza-
tion field with γ being a rotational viscosity. The parameters
ν and ν ′ are the so-called flow-alignment parameters. They
describe the response of the polarization field to gradients in
the velocity field v. In particular, ν describes the response to
shear flows, whereas ν ′ that to divergent flows. Note that, in
this equation, we have omitted an active term, that is a cou-
pling to 	μ. Such a term would be of the form pαλ	μ. We
will see in Sec. VII B that this amounts to a renormalization
of parameters.

Explicit expressions for the Ericksen stress σ e and the field
h are obtained by fixing the equilibrium free energy F of the
system. We choose

F =
∫
A

[
B

2

(
1 − n

n0

)2
+ χ

2
p2

α + K
2

(∂α pβ )2

]
da. (7)

The first term penalizes deviations of the cell density from
the reference density n0, where B is the corresponding bulk
modulus. The remaining terms capture the elastic energy
associated with distortions of the polarization field similar

to the free energy used for liquid crystals [10]. As sug-
gested by our experiments (see Sec. II C below), we consider
χ > 0 meaning that the preferred bulk equilibrium state is
disordered. The energy cost associated with gradients of the
polarization field is accounted for by the final term. It is
equal to the Frank energy in the one-constant approximation
with modulus K. This approximation is appropriate for the
experimental system as we show in Sec. VI A.

Let us remark that the term of uniform isotropic active
stress ζ ′	μI in Eq. (5) amounts to a renormalization of
parameters. Explicitly, the bulk modulus B and the reference
density n0 are transformed as follows: B → B − 2ζ ′	μ and
n0 → n0

√
1 − 2ζ ′	μ/B. For large enough positive ζ ′	μ,

the effective bulk modulus B is negative, which may lead
to mechanical instabilities that are similar to those found in
other contexts [41]. Henceforth, we consider ζ ′	μ = 0 and
exclude this scenario as we have not found signatures of such
instabilities in our experiments.

Let us briefly summarize the parameters appearing in our
description. Active processes are captured by the magnitude
of the traction force T0 and the parameters ζ and ζ ′′ coupling
ATP hydrolysis to the mechanical stress. Dissipation occurs
through rearrangements of the polarization, the viscous dissi-
pation, and friction with the substrate, which are, respectively,
controlled by the coefficients γ , η, η̄, and ξ . Flow alignment
of the polarization is governed by ν and ν ′ and, finally, there
are three elastic moduli, namely, B, χ , and K.

C. Myoblast monolayers

We studied the collective behavior of C2C12 cells confined
to fibronectin-coated circular domains with radii between
50 μm and 150 μm. In this subsection we describe the main
features of the methods used. For further experimental details;
see Ref. [31].

Individually, C2C12 mouse myoblasts move at speeds of
20–50 μm/h, and they can assume an elongated shape around
50 μm in length and 10 μm in width [42]. Extended C2C12
myoblast monolayers spontaneously generate long range ne-
matic order [17,31,43]. This corresponds to χ < 0 in the
equilibrium free energy (7). Correspondingly, these monolay-
ers can present half-integer topological defects [17,43].

In our experiments, cells were confined to fibronectin-
coated circular domains by coating the surrounding with
nonadhesive polyethylene glycol [Fig. 1(a)]. Over the course
of our experiments, the cell number increases by proliferation.
After a transient, cells formed a uniform monolayer without
visible cell-free gaps. In contrast to extended monolayers, in
our small islands, we observe polar order near the domain
boundary as reflected by continuous lamellipodial activity.
Correspondingly, the cell monolayers arranged into integer
topological defects with a disorganized center. We thus chose
polar traction forces and χ > 0 in the free energy (7).

At low densities, we found that cell monolayers spon-
taneously arranged into spirals that collectively rotated
[Fig. 1(b)]. The orientation of the cell bodies at the interface
of the circular domains was approximately tangential, and
the average rotational speed was on the order of 30 μm/h
[Fig. 1(c)]. As the cell number increased further, we found
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FIG. 1. Confined C2C12 monolayers. (a) Schematic of the ex-
perimental setup. (b) Phase-contract image of a spiral in a circular
domain of 100 μm radius. (c) Orientational order (left) and velocity
fields (right) averaged over N = 12 spirals. Colors correspond to S
and speeds (see legend); the vertical line separates the two fields.
Gray lines: velocity stream lines. (d) Phase-contrast image of an aster
in a circular domain of 100 μm radius. Scale bar in panels (b) and (d):
50 μm.

that cells at the periphery changed their orientation by align-
ing their bodies perpendicularly to the circular interface thus
forming an aster; see Fig. 1(d). In this case, the collective
rotation was lost. Further evolution of these cell monolayers
led to 3D multicellular protrusions featuring long-range ne-
matic order and collective cell dynamics perpendicular to the
confinement plane; see Ref. [31].

From phase-contrast movies, particle velocimetry tech-
niques were used to determine a coarse-grained velocity field.
From the same movies, we determined a coarse-grained ori-
entational field via a structure tensor method [44]. For a
given 2D intensity pattern, this technique computes the di-
rection of the minimal and maximal intensity anisotropy as
the eigenvectors of a 2D structure matrix obtained from in-
tensity gradients. Then we set the orientational field parallel
to the eigenvector with minimal eigenvalue. A representative
example of both time-averaged fields for spiral configurations
is shown in Fig. 1(c). Similarly, the polarization field could
be obtained from fluorescence micrographs of the actin cy-
toskeleton, which leads to similar results; see Appendix B.

D. Circular confinement

In this subsection we apply the equations derived in the
previous sections to cell monolayers confined to circular is-
lands. We therefore express the equations in polar coordinates
r and θ . We focus on steady-state solutions and assume that
they are invariant with respect to rotations around the center

of the island. Finally, we determine the boundary conditions
for this situation.

1. Steady-state equations in polar coordinates

We start with the conservation equation (1) for the cell
number density. In steady state and assuming rotational in-
variance, it becomes

∂r (nvr ) + nvr

r
= 0. (8)

As will be detailed below, there are no flows across the domain
boundaries, such that vr = 0 in steady state.

For the polarization field p, we introduce the magnitude or
“polar order parameter” S and the angle ψ with respect to the
radial direction, such that pr = S cos(ψ ) and pθ = S sin(ψ ).
In terms of the variables S and ψ , the dynamic equation (6)
for the polarization field reads

h‖
γ

− νSvrθ sin(2ψ ) = 0, (9)

h⊥
γ

+ Svrθ [1 − ν cos(2ψ )] = 0. (10)

In these expressions, h‖ and h⊥ are the components of the field
h parallel and perpendicular to p. The explicit expressions of
h‖ and h⊥ are given in Eqs. (C4) and (C5) in Appendix C.
Furthermore, vrθ = (∂rvθ − vθ /r)/2 is the off-diagonal com-
ponent of the symmetric part of the velocity gradient tensor.
The components vrr and vθθ vanish at steady state.

Using the variables S and ψ , the components of the devia-
tory stress can be written as

σrr,θθ = ∓1

2
S2 cos(2ψ )ζ	μ − S2ζ ′′	μ

± ν

2
S[h‖ cos(2ψ ) − h⊥ sin(2ψ )] + ν ′Sh‖, (11)

σrθ,θr = 2ηvrθ − 1

2
S2 sin(2ψ )ζ	μ

+ ν

2
S[h‖ sin(2ψ ) + h⊥ cos(2ψ )] ± Sh⊥

2
, (12)

where the upper (lower) signs correspond to the first (second)
index pair. The force balance equation (2) takes the form

∂rσ
tot
rr + σ tot

rr − σ tot
θθ

r
= −T0S cos(ψ ), (13)

∂rσ
tot
θr + σ tot

θr + σ tot
rθ

r
= ξvθ − T0S sin(ψ ). (14)

By employing the Gibbs-Duhem relation (A8), we can fur-
thermore eliminate the Ericksen stress in Eq. (14) and obtain

∂rσθr + 2σθr

r
= ξvθ − T0S sin(ψ ). (15)

2. Boundary conditions

It remains to fix the conditions on the fields at the boundary
of the island at r = R, where R is the radius of the domain.
Compatible with our experiments, we impose that the there
is no flux of material into the domain at the boundary. At
the same time, there is no tangential force applied to the
cell monolayer at the edge of the domain. For the boundary
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conditions on the polarization field, let us first note that the
polar order parameter is maximal at the boundary. Without
loss of generality, we fix this value to be one. Furthermore we
impose that there are no gradients in ψ at the boundary. In
summary, we thus have

S|r=R = 1, (16)

∂rψ |r=R = 0, (17)

σ tot
θr |r=R = 0, (18)

vr |r=R = 0. (19)

Note that the total cell number is conserved and thus a param-
eter of our system.

In our experiments, the monolayers are disordered in the
center of the domains, and we impose S = 0 at r = 0. Due
to our assumption of rotational invariance, we also need to
impose regularity of the solutions at r = 0. In total we have

S|r=0 = 0, (20)

∂rψ |r=0 = 0, (21)

vθ |r=0 = 0, (22)

vr |r=0 = 0. (23)

III. ACTIVE FORCES IN INTEGER
TOPOLOGICAL DEFECTS

Materials with orientational order are prone to exhibit
singularities in the corresponding order parameter. Such
singularities are called topological defects. They are charac-
terized by their “charge,” that is, the number of turns of the
polarization vector upon moving it along a closed path around
the singularity. The most common types are defects with
charges ±1/2 and ±1. In this section we analyze the active
forces by different processes in integer topological defects.

As mentioned in the Introduction, topological defects
have been related to biological processes in cell monolayers
[16,17,30,31]. For a better understanding of the mechanics of
defects in monolayers under confinement, we analyze now
the active force density associated with +1 defects. In our
description, activity enters in different terms, namely, in the
traction force T0p and in the stress via

σ act
αβ = −(

pα pβ − 1
2 pγ pγ δαβ

)
ζ	μ − pγ pγ δαβζ ′′	μ. (24)

The surface active force density then is

fa,s = T0p + ∇ · σ act. (25)

In addition, there is a line active force density at the boundary
of the circular domain with radius R,

fa,l = −σ act · r̂|r=R, (26)

where r̂ is the radial unit vector.
The simplest form of +1 defects corresponds to spirals

with constant angle ψ = ψ0. In the cases, ψ0 = 0, π and
ψ0 = ±π/2, the spirals turn into asters or vortices, respec-
tively. For the polar order parameter S, we will assume a linear
dependence on the radial coordinate r, such that S = r/R. As
we will see below, this is a solution to our equations in the

(a) (b)

(c) (d)

(e) (f)

FIG. 2. Active forces associated with integer topological defects:
asters (a, c, e) and spirals (b, d, f). Active forces generated only
by traction forces T0p (a, b), by anisotropic active stresses propor-
tional to ζ	μ (c, d), and by isotropic active stresses proportional to
ζ ′′	μ (e, f). Gray lines indicate the polarization field, which points
outwards. The angle of the spiral is ψ0 = π/3 (b, d, f). Magenta
arrows: surface active force density at r/R = {1/3, 2/3, 1}, fa,s in
Eq. (27). Green arrows: line active force density, fa,l in Eq. (28).
Black circle: boundary at r = R. The shafts of the magenta arrows are
scaled by fa,s(r = R) and of the green arrows by Rfa,s(r = R), where
f a,s = |fa,s|. Scale bars indicate fa,s(r = R) = Rfa,s(r = R) = 1. We
assumed T0, ζ	μ, ζ ′′	μ > 0.

limit of small radius R. Using expressions (11) and (12) for
the components of the active stress tensor, we obtain

fa,s = [T0R cos (ψ0) − 2ζ	μ cos (2ψ0) − 2ζ ′′	μ]
rr̂
R2

+ [T0R sin (ψ0) − 2ζ	μ sin (2ψ0)]
rθ̂

R2
(27)

and

fa,l =
[
ζ	μ

2
cos(2ψ0) + ζ ′′	μ

]
r̂ +

[
ζ	μ

2
sin(2ψ0)

]
θ̂,

(28)

where θ̂ is the azimuthal unit vector. Figure 2 presents these
force densities for asters and spirals.

For asters with ψ0 = 0 both, the surface and the line active
force densities have only radial components; see Figs. 2(a),
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2(c), and 2(e). In this case, fa,s is pointing towards the center
if T0R − 2(ζ + ζ ′′)	μ < 0 and vice versa.

For spirals, the surface and the line active force density has
a radial and an azimuthal component; see Figs. 2(b), 2(d),
and 2(f). For spirals with ψ0 > π/4 but otherwise the same
parameter values as for asters, the radial component of fa,s

can point away from the center, Eq. (27). The same effect
can be observed for the radial component of fa,l , Eq. (28).
The azimuthal components of fa,s and fa,l are independent of
the isotropic active stress proportional to ζ ′′	μ, Eqs. (27) and
(28).

For vortices with ψ0 = π/2, the traction forces generate
an azimuthal component in the surface active force density. In
this case, fa,s is pointing towards the center if 2(ζ − ζ ′′)	μ <

0 and vice versa.
In the following two sections, we discuss in detail the

steady states of integer topological defects.

IV. ASTERS

In this section we determine the steady-state mechanical
patterns of aster defects confined to small circular domains.

We consider first the special case of an aster, where ψ0 = 0.
In that case, the azimuthal velocity vθ vanishes by symmetry.
Equation (10) then implies h⊥ = 0, showing that the aster is a
solution of our system. It follows from Eq. (9) that also h‖ =
0. Using this result in Eq. (C4) and the boundary conditions
(16) and (20), the polar order parameter S can be calculated.
The general solution is given by a Bessel function. Since in
our experiments we see a single defect per island [31], we
focus on the limit R2 	 K/χ . In that case, the penetration
length of the boundary polar order

√
K/χ is larger than the

system size R and S = r/R. For larger island radii, multiple
defects were reported for C2C12 monolayers [43].

It remains to determine the cell number density for the
aster. To this end, we employ the radial component of the
force balance Eq. (13). Note that the azimuthal component,
Eq. (14), is automatically satisfied by symmetry. In the limit
R2 	 K/χ , the nonvanishing components of the total stress
tensor read

σ tot
rr = B

2

(
1 − n2

n2
0

)
−

(
1

2
ζ	μ + ζ ′′	μ

)
r2

R2
, (29)

σ tot
θθ = B

2

(
1 − n2

n2
0

)
+

(
1

2
ζ	μ − ζ ′′	μ

)
r2

R2
. (30)

In the limit that there are only small deviations from the
reference density n0, the solution to Eq. (13) is

n − n0

n0
≈ 1

B

[(R

2
T0 − ζ	μ − ζ ′′	μ

) r2

R2
+ nc

]
, (31)

where nc is an integration constant. If the total cell number in
the circular island is ntotπR2, then

n − ntot

n0
≈ 1

B

(R

2
T0 − ζ	μ − ζ ′′	μ

)(
r2

R2
− 1

2

)
. (32)

In Fig. 3(a) we show the density as a function of the radial
coordinate for different ratios T0R/ζ	μ and fixed ζ ′′	μ.

Next, let us determine the momentum that the monolayer
in the aster configuration exchanges with the environment. As

FIG. 3. Steady-state profiles for asters. (a) Cell number density
B(n − ntot )/n0, Eq. (32), and (b) radial force density fi · r̂, Eq. (39),
as a function of the radial distance r for varying values of the
dimensionless ratio T0R/ζ	μ as indicated in the legend. We con-
sider ζ ′′	μ = 0 (a) and − ζ ′′	μ

2 − B ntot−n0
n0

= 0 (b). Units are set by
ζ	μ = R = 1.

the velocity v = 0, the force exerted by the monolayer on the
substrate is

t = −T0
r

R
r̂. (33)

At the confinement boundary r = R and to first order in
ntot/n0, the local force density per unit length is

fo = −σ tot (r = R) · r̂ (34)

=
(

T0R

4
+ ζ ′′	μ

2
+ B

ntot − n0

n0

)
r̂. (35)

From Eqs. (33) and (35), we see that the total force on the
monolayer

Ftot =
∫
A

t da +
∫

∂A
fo dl (36)

vanishes, Ftot = 0. Because the forces are all radial, also the
total torque

Mtot =
∫
A

r × t da +
∫

∂A
Rr̂ × fo dl (37)

is zero. Therefore, neither a net force nor a net torque results
from interactions between the monolayer and the substrate in
steady-state asters.

In our experiments [31], we used circular elastic pillars
placed in the center of the circular domain to measure the
force exerted by the monolayer. Neglecting deviations from
the profiles calculated above that are caused by the finite
diameter of the pillar, this force is

fi = σ tot (r) · r̂ (38)

=
[

R

2

(
1

2
− r2

R2

)
T0 + 1

2

(
r2

R2
− 1

)
ζ	μ

−1

2
ζ ′′	μ − B

ntot − n0

n0

]
r̂; (39)

see Fig. 3(b). Although this expression is correct only in the
limit, where the diameter of the pillars tends to zero, it gives
an approximate value for pillars with finite diameter.
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(a) (b)

FIG. 4. Steady-state profiles of the orientational order in spirals
and with R2 	 K/χ . (a) Polarization angle ψ and (b) polar order
parameter S. Purple lines: ψ = ψ0 and S = r/R , respectively. Green
dots: numerical solution of the dynamic equations. Parameter values
are χ = 0.1, ν = −1.4, ζ = 10−2, T0 = 0, η = 102, and ξ = 1 with
the units being set by R = K = γ = 1. For these parameter values
|γ νvrθ sin(2ψ0 )| < 2 × 10−5 	 χ .

V. SPIRALS

In this section we determine the steady-state mechanical
pattern of a general topological defect with charge +1, where
ψ (r) takes on an arbitrary constant value ψ0. A constant
value of ψ implies h⊥ = 0; see Eq. (C5). Its value is fixed
by the steady state (10), which implies ν cos(2ψ0) = 1. This
condition requires |ν| � 1 for a real solution ψ0. Note that
ψ (r) = ψ0 also satisfies the boundary conditions (17) and
(21); see Fig. 4(a) for a comparison of the analytic result
with a numeric solution of the dynamic equations. Without
restriction of generality we consider 0 < ψ0 < π/2.

Next, we consider Eq. (9) with h‖ given by Eq. (C4). As for
the case of asters discussed above, we focus on the case R2 	
K/χ . Furthermore, we consider that |γ νvrθ sin(2ψ0)| 	 χ .
In this limit, flow alignment does not lead spontaneously to
orientational order and the solution to Eq. (C4) is S = r/R;
see Fig. 4(b).

A. Velocity field

Having obtained the polarization field, we now determine
the velocity field. To this end, let us first consider force
balance in the azimuthal direction; see Eq. (15). Using the
expressions for S and ψ , we obtain a differential equation for
the azimuthal component vθ of the velocity

∂rσθr + 2σθr

r
= ξvθ − T0

r

R
sin(ψ0), (40)

where the off-diagonal component σθr of the deviatory stress
tensor reads

σθr =
[

2η + γ
r2

2R2
tan(2ψ0)2

]
vrθ − r2

2R2
sin(2ψ0)ζ	μ;

(41)

see Eq. (12). The boundary conditions are given by Eqs. (18)
and (22).

In our system, azimuthal flows are generated by two dif-
ferent active processes, namely, gradients in the active stress,
which is proportional to ζ	μ, and traction forces, which are
proportional to T0 as discussed in Sec. III. Since Eq. (40) is
linear in vθ , we discuss these two origins of flows by solving

Eq. (40) in various limiting regimes that differ in the dominant
dissipative mechanism. Explicitly,

Regime I, where dissipation is dominated by shear viscos-
ity: γ tan(2ψ0)2 	 η and ξR2 	 η;

Regime II, where dissipation is dominated by relaxation
of the polarization field: η 	 γ tan(2ψ0)2 and ξR2 	
γ tan(2ψ0)2;

Regime III, where dissipation is dominated by friction
forces with the underlying substrate: γ tan(2ψ0)2 	 ξR2

and η 	 ξR2.

In Regime III we further distinguish the cases
γ tan(2ψ0)2 	 η and η 	 γ tan(2ψ0)2. Whereas in Regimes
I and II there are long-ranged flows due to viscous coupling
of different parts of the system, in Regime III, flows can be
screened beyond distances of the order of the “friction length”
�, where

�2 = 1

4ξ
[4η + γ tan(2ψ0)2]. (42)

1. Flows driven by traction forces

In the presence of traction forces only, the angular velocity
takes the form

vθ = T0

ξ

r

R
sin(ψ0). (43)

As a consequence, the system rotates as a block and no shear
flows exist, i.e., vθr = 0. Consequently, neither viscous nor
rotational dissipation affects these flows. We have verified
numerically that this solution is a good approximation of the
flow in Regimes I–III; see Fig. 5.

2. Flows driven by gradients in active stresses

In contrast to traction-force driven flows, those driven by
gradients in anisotropic active stresses depend on the dom-
inant mechanism of dissipation. We now take T0 = 0 and
consider the different regimes in turn.

For Regimes I and II, the friction term in Eq. (40) can be
neglected, and we have

∂rσθr + 2σθr

r
= 0. (44)

We thus have σθr = C/r2 for some constant C. Since σθr is
finite at r = 0, it follows that C = 0. Because the correspond-
ing component of the Ericksen stress also vanishes, σ e

θr = 0
[see Eq. (A4)], the boundary condition (18) is satisfied. Us-
ing Eq. (41), we can solve σθr = 0 for vθr and find that the
azimuthal velocity vθ is determined by

1

2

(
∂rvθ − vθ

r

)
= r2 sin(2ψ0)ζ	μ

4ηR2 + γ r2 tan(2ψ0)2
. (45)

In Regime I, the term proportional to γ in Eq. (45) can be
neglected, and we obtain

vθ = sin(2ψ0)ζ	μ

4ηR2
r3 + Dηr, (46)
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(a) (b)

(c) (d)

FIG. 5. Steady-state azimuthal velocity for flows driven by trac-
tion forces and with R2 	 K/χ . (a) Regime I with η = 50, 100,
200 and ξ = 1, (b) Regime II with 100η = 0.5, 1, 2 and ξ = 10−2,
(c) Regime III with η = 100 and 10−5ξ = 0.5, 1, 2, and (d) Regime
III with η = 0.01 and 10−3ξ = 0.5, 1, 2. Purple lines: Eq. (43). Green
dots: numerical solutions of the dynamic equations. Other parameter
values are χ = 10−1, ν = −1.4, T0 = 10−2, and ζ	μ = 0 with the
units being set by R = K = γ = 1.

where Dη is a constant of integration. Similarly, in Regime II
the term proportional to η in Eq. (45) can be neglected and

vθ = 2 cos(2ψ0)ζ	μ

γ tan(2ψ0)
r ln (r) + Dγ r, (47)

where Dγ is a constant of integration. Note that both solutions
respect the condition vθ = 0 at r = 0.

For vanishing friction, ξ = 0, the integration constants Dη

and Dγ remain undetermined. By inserting the solutions (46)
and (47) into the force balance (40) and with the friction
coefficient ξ being small leads to the respective particular
solutions

vθ = sin(2ψ0)ζ	μ

4η
r

(
r2

R2
− 2

3

)
(48)

in Regime I and

vθ = 2 cos(2ψ0)ζ	μ

γ tan(2ψ0)
r ln (re1/4/R) (49)

in Regime II. Note that in both cases the azimuthal flow near
the outer boundary of the circular domain is opposite to the
flow close to the center. The distance from the center at which
the flow changes sign is independent of the friction coefficient
ξ . The stagnation point at which vθ = 0 is placed such that
the total torque vanishes; see Sec. V C. Both solutions agree
well with numerical solutions obtained in Regime I and II; see
Figs. 6(a) and 6(b).

Let us now turn to Regime III. There, the viscous part of
the stress tensor is negligible except in a boundary layer of
size � that is determined below. Neglecting the viscous stress,

(a) (b)

(c) (d)

FIG. 6. Steady-state azimuthal velocity for flows driven by gra-
dients in active stresses and with R2 	 K/χ . (a) Regime I with
η = 50, 100, 200 and ξ = 1, (b) Regime II with 104η = 0.5, 1, 2
and ξ = 10−2, (c) Regime III with η = 100 and 10−5ξ = 0.5, 1, 2,
and (d) Regime III with η = 0.01 and 10−3ξ = 0.5, 1. Purple lines:
(a) Eq. (48), (b) Eq. (49), (c, d) Eqs. (50) and (52). Green dots:
numerical solution of the dynamic equations. Other parameter values
are χ = 10−1, ν = −1.4, T0 = 0, and ζ	μ = 10−2 with the units
being set by R = K = γ = 1.

the force balance equation (40) reads

− 2r

R2
sin(2ψ0)ζ	μ = ξvθ (50)

and thus explicitly gives the azimuthal velocity. In the bound-
ary layer, we introduce a new spatial variable x = (R − r)/R
and velocity ṽθ (x) = vθ (R(1 − x)) with 0 � x 	 1. We then
express the force balance equation (40) in terms of these
variables and keep only terms of order 0 in x. Since ∂x ṽθ ∼
ṽθ /(�/R) = Rṽθ /� � ṽθ , we see that ṽθ and ∂x ṽθ are neg-
ligible compared to ∂2

x ṽθ , which further simplifies the force
balance equation. Expressing the resulting equation in terms
of r and vθ , we obtain

�2∂2
r vθ − 2 sin(2ψ0)

Rξ
ζ	μ = vθ , (51)

where the friction length � is given by Eq. (42).
The solution is

vθ = −2ζ	μ

Rξ
sin(2ψ0) + Ee(r−R)/� (52)

for r ∈ (R − �, R). In this expression, we have neglected for
simplicity the subdominant term proportional to e−(r−R)/�. The
integration constant E is fixed by the boundary condition (18).
In the limit � 	 R this condition takes the form

σθr |r=R ≈
[
η + γ tan (2ψ0)2

4

]
∂rvθ |r=R − ζ	μ

2
sin(2ψ0)

(53)
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such that

E = 2ζ	μ sin(2ψ0)�

4η + γ tan (2ψ0)2 . (54)

We have verified numerically that the solution given by
Eqs. (50) and (52) is valid for η 	 γ tan (2ψ0)2 and η �
γ tan (2ψ0)2; see Figs. 6(c) and 6(d).

B. Cell number density

To obtain the cell number density profile, we use force
balance in the radial direction, Eq. (13). We first compute the
components of the total stress tensor. The components of the
Ericksen stress are given by Eqs. (A3)–(A5), where the terms
proportional to B dominate if R2 	 K/χ . The antisymmetric
components of the deviatory stress vanish and its symmetric
components are given by Eqs. (11).

From now on, we focus on Regimes I and II. With expression (45) for vrθ we then obtain for the total stress

σ tot
rr = B

2

(
1 − n2

n2
0

)
−

(
1

2
− ν ′γ

r2

R2

)
cos (2ψ0) r2

R2

1 + γ r2

R2

ζ	μ − r2

R2
ζ ′′	μ, (55)

σ tot
rθ = σ tot

θr = 0, (56)

σ tot
θθ = B

2

(
1 − n2

n2
0

)
+

(
1

2
+ ν ′γ

r2

R2

)
cos (2ψ0) r2

R2

1 + γ r2

R2

ζ	μ − r2

R2
ζ ′′	μ, (57)

where γ = γ tan (2ψ0)2/4η.
Using the above expressions in the radial component of the force balance (13), we can integrate once and obtain

σ tot
rr = σ tot

rr,0 − r2

2R
cos (ψ0)T0 + cos(2ψ0)

2γ
ln

(
1 + γ r2

R2

1 + γ

)
ζ	μ. (58)

Here σ tot
rr,0 is an integration constant that is fixed by the boundary condition (19). We now assume that the cell density deviates

only little from the reference density, |n − n0| 	 n0. Equating expressions (55) and (58) for σ tot
rr and writing the total cell number

in the circular island as ntotπR2, we obtain up to first order in n/n0

n − ntot

n0
≈ 1

B

{(
r2

R2
− 1

2

)[R

2
cos (ψ0)T0 − ζ ′′	μ

]
− cos(2ψ0)

2γ

[
(1 − 2ν ′γ r2

R2 )γ r2

R2

1 + γ r2

R2

+ ln

(
1 + γ

r2

R2

)
+ �

]
ζ	μ

}
, (59)

where � = ν ′(γ − 2) − (1 − 2 ν ′
γ

) ln (1 + γ ). Note that unlike
the case of asters the density profiles of spirals depend on
couplings between the field h and flow gradients through ν ′.

In the limits γ → 0 and γ → ∞ we have

n − ntot

n0
≈ 1

B

[R

2
cos(ψ0)T0 − κ cos(2ψ0)ζ	μ − ζ ′′	μ

]

×
(

r2

R2
− 1

2

)
. (60)

Here the constant κ = 1 for γ → 0 and κ = −ν ′ for γ → ∞.
In these limiting cases, we thus have parabolic density pro-
files, which differ from the cell number density for asters,
Eq. (32), only in a global prefactor.

C. Force densities

We end the discussion of spirals by determining the mo-
mentum that the monolayer exchanges with the environment
in this configuration. As in the previous section, we consider
only the Regimes I and II, where friction between the mono-
layer and the substrate is negligible. The force exerted by the
monolayer on the substrate is

t = −T0 cos(ψ0)
r

R
r̂. (61)

At the confinement boundary r = R and to first order in
ntot/n0, the local force density fo per unit length is

fo = −σ tot (r = R) · r̂ (62)

=
{

R

4
cos (ψ0)T0 − ν ′

ν

[
γ − 2

2γ
+ ln (1 + γ )

γ 2

]
ζ	μ

+ζ ′′

2
	μ + B

(
ntot − n0

n0

)}
r̂. (63)

As there are no azimuthal components of the force densities,
the total force and torque on the system vanish, Eqs. (36) and
(37).

In the presence of a small friction term, the force
exerted by the monolayer on the substrate now is t =
−T0 cos(ψ0)rr̂/R + ξvθ θ̂, which implies the presence of local
forces and torques. The velocity vθ is given by Eq. (48) in
Regime I and by Eq. (49) in Regime II. The total force,
Eq. (36), still vanishes due to symmetries, whereas the total
torque (37) vanishes because the contributions from clockwise
and counterclockwise flows compensate each other.

We can generalize expression (39) for the force exerted by
the monolayer on a pillar in the center of the island obtained
for asters to the case of spirals. Making the same assumptions
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as in Sec. IV, we have

fi = σ tot (r) · r̂ (64)

=
{
−R

2
cos(ψ0)T0

(
r2

R2
− 1

2

)
+ cos(2ψ0)

2γ

[
ln

(
1 + γ

r2

R2

)

+2ν ′ − γ

γ
ln(1 + γ ) + ν ′(γ − 2)

]
ζ	μ

−ζ ′′

2
	μ − B

(
ntot − n0

n0

)}
r̂. (65)

In Regimes I and II we obtain parabolic force profiles similar
to the case of asters [see Eq. (39)] with rescaled coefficients.
Note that similarly to the cell number density, the force on the
pillars depends on the coupling between the field h and flow
gradients via ν ′.

VI. CHARACTERIZATION OF MYOBLAST MONOLAYERS

We now use the framework developed above to analyze
monolayers of C2C12 myoblasts. To determine their physi-
cal properties, we analyze two different situations. First, we
study the organization of cells around topological defects in
extended confluent layers. Through our analysis, we constrain
the Frank elastic constants, which characterize splay and bend
deformations of the orientational order field. Second, we ex-
amine spiral arrangements of monolayers confined to small
circular domains. This analysis allows us to comprehensively
determine the material parameters of myoblast monolayers.
For experimental details, we refer to Ref. [31].

A. Nematic elastic moduli

In this subsection we determine the ratio of the nematic
elastic constants for extended confluent C2C12 monolayers.
In this situation, the cells exhibit long-ranged orientational
order and arrange into patterns similar to passive nematic
liquid crystals [43]. The nematic organization is evidenced for
instance by the presence of half-integer topological defects
[31]. We capture the nematic order by the director field n and
analyze its configurations around +1/2 topological defects in
terms of an equilibrium approach to nematic liquid crystals.
Similar approaches were used in the context of synthetic or
biological liquid crystals [45,46].

For a 2D nematic liquid crystal with director field n, the
elastic energy associated with distortions of the orientational
order is

F =
∫
A

{K1

2
(∇ · n)2 + K3

2
[n × (∇ × n)]2

}
da (66)

with Frank elastic constants K1 and K3. They, respectively,
quantify the energetic costs of splay and bend deformations
[10].

The equilibrium director configuration is determined by
minimizing the energy (66). Near a topological defect, the
solution is given by [47]

θ = p
∫ φ−θ

0

√
1 + ε cos (2x)

1 + εp2 cos (2x)
dx, (67)

(a) (b)

(c) (d)

FIG. 7. Half-integer topological defects in C2C12 myoblast
monolayers. (a) Schematic representation of the director field for
a +1/2 topological defect. (b) Theoretical profile φ(θ ), Eq. (67),
with s = +1/2 for varying ε as indicated in the legend. The ra-
tio of Frank constants is K1/K3 = {0.25, 0.54, 1, 1.86, 4.} for ε =
{−0.6,−0.3, 0, 0.3, 0.6}. (c) Representative experimental curves
φe(θ ) for varying radial distance r as indicated in the legend. (d) Fit-
ted ratio K1/K3 as a function of the radial coordinate r. Error bars
correspond to the standard deviation of all values of ε that lead to
E < 1.1Emin.

where the elastic anisotropy parameter is ε = (K1 −
K3)/(K1 + K3), for which there is a one-to-one correspon-
dence with the ratio K1/K3. Furthermore, φ denotes the angle
of the director n with respect to a fixed axis and θ is the
azimuthal angle with respect to the defect center [Fig. 7(a)].
The fixed axis is chosen such that φ(θ = 0) = 0. Note that
Eq. (67) is independent of the radial coordinate r [Fig. 7(a)].
Finally, p is a constant that is determined by the condition that
φ is a single-valued function of θ , which leads to

π = (s − 1)p
∫ π

0

√
1 + ε cos (2x)

1 + εp2 cos (2x)
dx, (68)

where s corresponds to the topological charge of the defect.
Figure 7(b) shows φ(θ ) for a s = +1/2 topological defect and
for varying ε.

For extended C2C12 monolayers, we obtained the experi-
mental values φe by first determining the director field of the
monolayer using structure factor methods [44]; see Methods
in Ref. [31]. We then averaged the director orientation over
time for N > 100 distinct +1/2 topological defects. For the
overall average, we fixed the radial coordinate r and thus
obtained average profiles for different radial distances [see
Fig. 7(c)]. Within the experimental error, the director orien-
tation did not depend on r, which is in agreement with the
theory. We fitted the solution (67) for φ to the experimental
data by using the elastic anisotropy ε as the only fit param-
eter. The parameter ε was obtained by minimizing the error
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function

E =
∫ 2π

0
|φ(θ ) − φe(r, θ )| dθ. (69)

We attributed an error to this value as the standard deviation
(std) of all values of ε that lead to E < 1.1Emin, where Emin is
the absolute minimum.

The values of K1/K3 thus obtained are presented in
Fig. 7(d) as a function of the radial distance r with respect to
the defect center. Although there is some tendency of the ratio
K1/K3 to increase with r, there is not a significant difference
between the values of this ratio for different radii. The value
averaged over all experimental data is K1/K3 = 0.95 ± 0.10
(mean ± std). We conclude that the Frank elastic constants K1

and K3 are equal within the experimental error. This justifies
our choice of the one-constant approximation made in Eq. (7),
where K = K1 = K3.

B. Determination of material parameters

In order to determine the material parameters of C2C12
myoblast monolayers, we solve the full dynamic equations for
a broad range of parameters numerically (see Appendix D)
and compare the velocity and polarization fields obtained in
this way to our experimental data. Specifically, we used data
from spirals on islands with radius R = 50 μm, 100 μm, and
150 μm for the velocity vθ and the polar order parameter S.
Cell monolayers were treated with 10 μM mitomycin-C to
inhibit the effects of cell proliferation. For the polarization
angle ψ , we used data from spirals on islands with a fixed
radius R = 50 μm.

The difference between the numerical and experimental
fields are quantified via an error function E that is given
below. The parameter set that gives the minimal error Emin

then provides the sought for material parameters. The param-
eter values determined in this way are prone to uncertainty
resulting, for example, from deviations between the theoret-
ical and experimental curves. To account for these effects,
we will determine confidence intervals for these parameter
values by considering the range of parameter values that yield
an error within 10% of the minimal error, that is, for which
E < 1.1Emin.

The numerical solutions are computed after making the
dynamic equations dimensionless. To this end, we use the
radius R of the smallest island as the length scale, K as the
energy scale, and K/(Rγ ) as the velocity scale. The flow
alignment parameter ν = 1/ cos(2ψ0) can be directly inferred
from the angle ψ = ψ0 between the polarization vector and
the radial direction (Fig. 8). The average angle ψ = 76 ± 22◦,
which leads to ν = −1.1 ± 0.5 (mean ± std, N = 11). For
the numerical calculations, we used ν = −1.2. This leaves
us with five dimensionless parameters to determine: χR2/K,
η/γ , ξR2/γ , ζ	μR2/K, and T0R3/K. In the remainder of this
section, we will use the same notation for the nondimension-
alized parameters as for the original ones.

We computed solutions for parameters in the
range (χ, η, ξ, |ζ	μ|, |T0|) ∈ (0.2, 5) × (10−1, 101) ×
(10−1, 101) × (10−4, 10−2) × (10−4, 10−2), where ζ	μ

FIG. 8. Probability density of the polarization angle with respect
to the radial direction ψ . The data were obtained from C2C12 mono-
layers in spiral configurations that were confined to an island of
50 μm radius (N = 11). The dashed line indicates ψ = 90◦.

and T0 can take either sign. As error function we used

E =
∑

i

|ve
θ,i − vθ,i|	ri +

∑
i

|Se
i − Si|	ri. (70)

Here the superscript “e” indicates values averaged over at least
N = 5 experiments, and the index i indicates that samples
are taken at discrete radial positions ri. Furthermore, 	ri =
ri+1 − ri is related to the experimental spatial resolution and
	ri ∼ 5 μm. In Fig. 9 we present various cuts through the
parameter space and indicate the regions, where E < 1.1Emin.

(a) (b)

(c) (d)

FIG. 9. Parameter values leading to an error E < 1.1Emin for the
error function (70). The cuts of the parameter space are (a) T0 vs
ζ	μ, (b) η vs ξ , (c) χ vs ζ	μ, and (d) ζ	μξ/T0η vs ξ . The units
are fixed by K = γ = R = 1, and ν = −1.2. Gray areas indicate
parameter regions that were not analyzed. Green squares: active
stress predominant region, dark green star: local minimum. Magenta
circles: traction force dominant region, dark magenta star: global
minimum.
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(a) (b)

FIG. 10. Theoretical fits to experimental data. (a) Polar order
parameters S and (b) azimuthal velocity vθ as a function of the
radial distance r. Mean theoretical profiles for the active stress pre-
dominant parameter region in solid magenta and for the traction
force dominant parameter region in dashed green; see Fig. 9 and
Table I. Blue: experimental profiles of spirals that were treated with
10 μM mitomycin-C (N = (11, 12, 5) for confining domain radius
(50, 100, 150) μm). Error bars in theoretical fits correspond to the
standard deviation of parameter values that lead to E < 1.1Emin and
in experimental curves to the standard error of the mean. Profiles
for three different confinement radii R = 50, 100, and 150 μm are
shown. The theoretical curves are endowed with physical units such
that S(R) = 1 and vθ (R) = 21.4 μm/h for R = 50 μm.

C. Myoblast monolayers confined to circular domains

In this subsection, we discuss the parameter values deter-
mined by the approach described in the previous subsection
using our experiments of C2C12 monolayers on circular do-
mains [31]. Let us start by setting the units of our experiments.
The length scale is set by the radius of the smallest island R =
50 μm. The velocity scale is set by the azimuthal flow velocity
at the edges of the island to 30 μm/h. Finally, the energy scale
is set by the stress exerted on pillars of radius 40 μm times R3,
that is, 10 kPa × 1.25 × 105 μm3 = 1.25 × 103 μNμm.

The data presented in Fig. 9 readily reveal several con-
straints on the parameter values. First, T0 > 0 [Fig. 9(a)],
which shows that the azimuthal velocity vθ is in the direc-
tion of the azimuthal component of the polarization field p.
Second, the penetration length of the polar order parameter√
K/χ is larger than 25 μm [Fig. 9(c)]. It is thus at least of

the same order as the confinement radii in our experiments,
such that the orientational order induced by the boundaries
propagates into the center of the island.

Further inspection of Fig. 9 shows two disjoint regions
in parameter space corresponding to solutions with distinct
physical properties. In both cases, the parameters yield close
fits to the polar order parameter S and the azimuthal velocity
vθ measured in our experiments; see Fig. 10. The two regions
are narrow in several directions, meaning that the correspond-
ing combinations of the dimensionless parameters are well
determined by our experimental data. This is the case, for
example, for ζ	μξR/T0η; see Fig. 9(b) and Table I. The
directions that are less constrained still provide upper or lower
bounds on our dimensionless parameters; see Table I.

The parameter region for the solid magenta fits in
Fig. 10 corresponds to a mechanical regime where the
anisotropic active stress ζ	μ is the predominant active mech-
anism, T0R/|ζ	μ| < 0.6. In this active stress predominant
regime, the length scale

√
η/ξ , which is determined by the

TABLE I. Table of material parameters for the solutions in
Fig. 10. The errors correspond to the standard deviation of all pa-
rameter values with E < 1.1Emin. To restore length units R = 50 μm.
Asterisk indicates bound for ζ > 0.

Active stress Traction force
predominant dominant

T0R/|ζ	μ| with T0 > 0 <0.6∗ >16√
η/ξ/R >0.5 <0.24√
K/χ/R >1 (0.4,2)

ζ	μRξ/ηT0 with T0 > 0 3.5 ± 0.9 −0.6 ± 1.6
ν −1.1 ± 0.5 −1.1 ± 0.5

dissipative mechanisms, is bounded from below by 25 μm.
The penetration length of the polar order is

√
K/χ > 50 μm.

There are two velocity scales associated with the two active
mechanisms, ζ	μR/η and T0/ξ . The ratio between these
two scales ζ	μRξ/ηT0 = 3.5 ± 0.9 shows that the flows are
mainly generated by anisotropic active stresses.

The parameter region for the dashed green fits in Fig. 10
corresponds to a mechanical regime, where the traction force
T0 is the dominating active mechanism, T0R/|ζ	μ| > 16. In
this traction force dominant regime, the length scale

√
η/ξ is

bounded from above by 12 μm. The penetration length of the
polar order is limited 22 μm <

√
K/χ < 112 μm. The ratio

of the two velocity scales ζ	μRξ/ηT0 = −0.6 ± 1.6 shows
that the flows are mainly generated by traction forces.

Although, the two parameter regions give comparably
good fits to the polar order parameter and the azimuthal veloc-
ity in spirals, their mechanical characteristics are distinct. An
important difference between the two regions is exhibited in
the steady-state force density and cell number density profiles
of asters. In the active stress predominant region, the cell num-
ber density increases towards the center whereas it remains
essentially constant in the traction force dominant regime; see
Fig. 11(a). Furthermore, the force density is pointing towards
the center of the circular domain in the active stress predom-
inant region, whereas it is pointing outwards in the traction
force dominant region; see Fig. 11(b).

In our experiments, we observed an increase of the cell
number density in the center of asters compared to the pe-
riphery [Fig. 11(a)]. Qualitatively similar cell number density
profiles were measured for spiral defects and asters defect at
early times [Fig. 11(a)]. A further sign of cell accumulation
in the center was the formation of mounds; see Ref. [31].
When elastic pillars were placed in the center of the circular
domain, we observed compression of these structures, which
is again compatible with the active stress predominant region;
see Ref. [31] and Fig. 11(b).

For the fits presented in Fig. 11(b), we have imposed that
the isotropic stress ζ ′′	μ vanishes. If this value were used as
a fitting parameter, a qualitative agreement between the theory
and the experiment could be achieved in the traction-force
dominant regime, such that a discrimination between the two
regimes might appear not to be possible based on these fits.
However, in that case, the isotropic stress ζ ′′	μ needs to be
comparable to T0R to achieve the same order of magnitude for
the stress exerted on the pillars; see Eq. (39). We conclude
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(a) (b)

FIG. 11. Theoretical fits of steady-state profiles for asters.
(a) Cell number density n and (b) radial force density as a function
of the radial distance r. Averaged experimental profiles (orange filled
circles in (a): N = 10 spirals treated with 10 μM mitomycin-C 1
day after seeding, purple empty circles in (a): N = 9 asters 2 days
after seeding, blue cross in (b): N = 3 experiments), mean fit in the
active-stress predominant (magenta, full lines) and in the traction
force dominant parameter region (green, dashed lines) of the cell
number density of asters and the radial force density, respectively.
The theoretical solutions are Eq. (32) in (a) and Eq. (39) in (b).
Parameters are given in Table II. We used ζ ′′	μ = 0. Error bars in
theoretical fits correspond to the standard deviation of all parameter
values with E < 1.1Emin and in experimental curves to the standard
error of the mean.

that traction forces cannot be the dominating mechanism for
generating pillar deformations.

To obtain the material parameters in the active stress pre-
dominant region, Table II, we combined the analysis from the
polarization and velocity fields in spirals (Fig. 10) with the cell
number density and stresses fields in asters (Fig. 11). Specif-
ically, we restored the velocity units by setting vθ (r = R) =
21.4 μm/h for R = 50 μm and obtained the ratio ζ	μ/η =
1.4 ± 0.3 h−1. With a similar fitting procedure to that ex-
plained in Sec. VI B, we fitted the theoretical steady-state
profiles for asters (Fig. 11) and obtained the parameters B/n0,
ntot, and ζ	μ listed in Table II. To transform the stress that
cells exerted on deformable pillars into 2D cell monolayer
stresses, we considered that the height of the monolayer was
10 μm. Combining these new results with those from Ta-
ble I, we obtained the material parameters from Table II.
In Appendix E we provide an algorithmic description of the
procedure to determine the material parameters of active polar
fluids.

D. Comparison to other cell monolayers and conditions

Next, we discuss how our estimates of the material param-
eters compare to other cellular systems or conditions. First,

for contractile epithelial monolayers, ζ	μ < 0, an analog of
a de-wetting transition was found [48]. This transition was
controlled by the length scale −ζ	μ/T0. In our case, such
a transition is not expected to occur, because in both param-
eter regions the strongest driving is either traction forces or
extensile active stresses (see Table I).

Previous experiments had identified C2C12 monolayers
as being contractile (ζ	μ < 0). This conclusion was drawn
from the dynamics of +1/2 topological defects [17,49]. In
other experiments, based on the direction of the cellular shear
flows with respect to the orientation of the cell bodies, it
was concluded that these monolayers are extensile (ζ	μ > 0)
[49]. In our experiments, the observed flows in spirals are
compatible with extensile active stresses in the active stress
predominant regime. In the traction force dominant regime
both, contractile and extensile active stresses, were compat-
ible with the flows; see Fig. 9(a). Further work is necessary to
understand the difference between these experiments.

The flow-alignment parameter ν = −1.1 ± 0.5 controls
the reorientation of the polarization field p in response to shear
flows. This value is similar to the typical range for passive
liquid crystals [10]. In the Drosophila wing, this parameter
was estimated to be −1 > ν > −10 [50].

The mechanics of individual C2C12 cells was assessed by
confining them to micropatterns of varying geometries [51].
There, it was found that traction forces of elongated C2C12
cells were concentrated at the distal ends of the cell body
and pointed inwards. Depending on the cell geometry, these
corresponding stresses ranged between 100 and 1000 Pa. For
monolayers of other elongated cell types, the force per unit
length associated with intracellular interactions were of the
order of 10 kPa μm [52]. In our experiments, we observed
that confluent monolayers compressed elastic pillars with a
stresses of the order of 1–10 kPa.

For spreading epithelial monolayers, the friction length
was found between 100 and 1000 μm [34,53]. Such large val-
ues result from stable cell-cell junctions formed by epithelial
cells. For cell types lacking such junctions, like C2C12 my-
oblasts, the friction length was found to be smaller, 10–40 μm
[49]. The latter values are of the same order of magnitude
as the bounds we found in both parameter regions for

√
η/ξ ,

which is smaller than the friction length � given by Eq. (42);
see Table I.

Also the penetration length of the polarity field
√
K/χ was

measured in epithelial monolayers [34,48]. It was found to be
between 10 and 100 μm, which is of the same order as in our
measurements. When epithelial monolayers were confined to
circular islands with radii comparable to

√
K/χ , collective

rotation was found [54–56]. However, in these cases, no
evidence of topological defects organizing these flows was
reported.

TABLE II. Table of material parameters for active stress predominant solutions. To convert 3D material parameters into 2D material
parameters we use a cell monolayer height of 10 μm. Error bars correspond to the standard deviation of all parameter values with E < 1.1Emin

except for ν (mean ± std).

T0 (Pa) ζ	μ (kPa μm) η (kPa h μm) ξ (Pa h/μm)
√
K/χ (μm) ν B/n0 (kPa μm3) ntot (10−3 μm−2)

<460 ± 40 38 ± 3 27 ± 6 <30 ± 20 >50 −1.1 ± 0.5 1400 ± 200 2.3 ± 0.1

012405-13
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VII. EXTENSIONS

In this section, we discuss the effects of extensions to our
dynamical system. In particular, we consider nematic traction
forces and active alignment.

A. Nematic traction forces

In the force balance Eq. (2), we considered the active
forces exerted by the monolayer onto the substrate result from
processes with polar symmetry, T0p. In principle, also pro-
cesses with nematic symmetry, which remain invariant under
the operation p → −p, could contribute to these forces. In
some cases, these contributions have been shown to be of the
same order as the polar contributions [57]. We now discuss
the effects of such terms on spirals and asters.

Up to second order in p and first order in derivatives,
the nematic contributions to the right-hand side of the force
balance equation (2) can be written as

∂β

(
pα pβ − 1

2 pγ pγ δαβ

)
T1 + ∂β (pγ pγ δαβ )T2

+ (pα∂β pβ − pβ∂β pα )T3. (71)

Addition of the first two terms to the force balance equa-
tion amounts to a redefinition of the coupling coefficients
ζ and ζ ′′ in the constitutive equation (5) for the deviatory
stress, ζ	μ → ζ	μ + T1 and ζ ′′	μ → ζ ′′	μ + T2. Due to
substrate interactions, a contractile system can thus become
extensile or vice versa, but the terms proportional to T1 and T2

do not introduce qualitatively new behavior.
The antisymmetric term proportional to T3, in contrast, can-

not be absorbed in the constitutive equation (5). In principle,
this term can thus lead to new effects compared to our original
system. Let us evaluate its effects on spirals and asters in small
confinements with R2 	 K/χ . Expressing the components of
p in terms of the nematic order S and the angle ψ of the
director with the radial direction, it reads(

S2

r
r̂ − S2∂rψ θ̂

)
T3. (72)

For the steady-state spirals and asters considered above, we
have S = r/R and ψ = const, such that the term reduces to
T3rr̂/R2, which has the same form as the term proportional to
ζ ′′	μ on the left-hand side of the force balance equation (13).
We conclude that nematic traction forces do not introduce new
effects in spirals and asters aside from possibly introducing
additional surface terms.

B. Active alignment

In the constitutive equation for the dynamics of the po-
larization field, Eq. (6), we have neglected a coupling to
the chemical thermodynamic force 	μ. Explicitly, the term
would be of the form pλ	μ. Depending on the sign of the
phenomenological constant λ, this term favors the generation
or inhibition of polar order by active processes [58]. Note
that this “active alignment” is different from spontaneously
emergent orientational order by active flows [59,60].

For our choice of the free energy [see Eq. (7)] the molec-
ular field h contains a term −χp, such that in the dynamic
equation (6), the presence of active alignment can be absorbed
into the parameter χ such that χ → χ − γ λ	μ. Due to activ-

ity, the sign of the redefined χ can thus be different from that
of χ . However, because C2C12 monolayers confined to small
circular domains exhibit a disorganized center, the prefactor
of p in Eq. (6) should be positive, as in our above analysis.

A redefinition of the parameter χ also affects the symmet-
ric part of the deviatory stress tensor, Eq. (5), and the Ericksen
stress tensor, Eq. (A2). These effects can be absorbed by a
redefinition of the coupling coefficients ζ and ζ ′′. Explicitly,
ζ → ζ + νλγ , and ζ ′′ → ζ ′′ + λγ (ν ′ − 1/2). We conclude
that an active alignment term in the dynamic equation for the
polarization field p does not qualitatively change the behav-
ior of our system aside from possibly introducing additional
surface terms.

VIII. DISCUSSION

In summary, we have analyzed in detail the steady-state
patterns of spirals and asters of a compressible active polar
fluid. We showed that isolated topological defects provide
information for quantifying material parameters of cell
monolayers. Small circular confinements allowed us to
control the position and topological charge of such defects. In
principle, other techniques could be used for this purpose, in
particular, micropatterning of the topography of the substrate
[61,62] or application of external magnetic fields [63]. These
methods allow to impose spatiotemporal cell orientation
patterns, which in our system were self-organized. Combining
these approaches opens a vast range of possibilities to improve
our quantitative understanding of cell monolayer mechanics.

Ideally, asters and spirals in 2D nematic phases exhibit a
single point, where the orientational order is ill-defined. In our
experiments, cell monolayers were disorganized in a central
region (see Fig. 1) that increased in size with the radius of the
confining domain. Order was found in a region close to the
domain boundary. An alternative interpretation of the steady-
state aster and spiral patterns considers the ordered region
to be a boundary layer. Still, the same dynamic equations
could be used to analyze the data, such that our results are
independent of the interpretation.

The lack of spontaneously emerging orientational order in
the center of the confining domain led us to consider χ > 0 in
the free energy (7). In extended C2C12 monolayers, however,
long-range orientational order can be observed for similar
cell number densities [17,31,43]. This observation suggests
that in the range of domain sizes used in this work, the
boundary-induced order overcomes the density-induced order.
To explicitly study this competition, a description of mixed
orientation, nematic and polar, would be needed.

Furthermore, in our experiments, asters appeared as the
cell number increases, suggesting that cell number density is
a control parameter for the transition. Indeed, when prolifera-
tion was inhibited in spiral configurations [31], asters were not
observed. This effect is not captured by our theory and would
require a better understanding of the physics underlying cell
orientation at interfaces.

Topological defects have been suggested to be involved in
morphogenetic processes [30]. In a similar way to our work,
one could use these defects to quantify the material properties
of the tissue. Such an analysis could reveal the physi-
cal conditions underlying collective cell migration during
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morphogenesis and provide essential pieces of information for
understanding developmental processes.
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APPENDIX A: THE ERICKSEN STRESS TENSOR

In this Appendix we compute the Ericksen stress tensor σ e
αβ

for a compressible active polar fluid with the free energy (7)
and give the corresponding Gibbs-Duhem relation [64]. For
a one-component polar fluid with cell number density n and
polarization field pα , the general expression for the Ericksen
stress tensor takes the form [38,39]

σ e
αβ = ( f − nμ)δαβ − ∂ f

∂ (∂β pγ )
∂α pγ . (A1)

Here f is the free energy density, such that F = ∫
f da, and

μ = ∂ f
∂n the chemical potential. With the free energy (7), we

obtain

σ e
αβ =

[
B

2

(
1 − n2

n2
0

)
+ χ

2
p2

γ + K
2

(∂γ pδ )2

]
δαβ

− K(∂α pγ )(∂β pγ ). (A2)

Writing the radial and the azimuthal components of the po-
larization vector again as pr = S cos(ψ ) and pθ = S sin(ψ ),
respectively, the components of the Ericksen stress in polar
coordinates are

σ e
rr = B

2

(
1 − n2

n2
0

)
+ χ

2
S2

+ K
2

[
S2

r2
− (∂rS)2 − S2(∂rψ )2

]
, (A3)

σ e
rθ = σ e

θr = −KS2 ∂rψ

r
, (A4)

σ e
θθ = B

2

(
1 − n2

n2
0

)
+ χ

2
S2

− K
2

[
S2

r2
− (∂rS)2 − S2(∂rψ )2

]
, (A5)

where we have assumed rotational invariance.
The Gibbs-Duhem relation links the intensive variables of

the free energy and reads [38,39]

∂γ σ e
αγ = −n∂αμ − hγ ∂α pγ . (A6)

In polar coordinates this expression yields

∂rσ
e
rr + σ e

rr − σ e
θθ

r
= −n∂rμ − hr∂r pr − hθ ∂r pθ

= −n∂rμ − h‖∂rS − h⊥S∂rψ, (A7)

∂rσ
e
θr + σ e

rθ + σ e
θr

r
= −hr

(−pθ

r

)
− hθ

( pr

r

)
= −h⊥S

r
,

(A8)

where in the second step we have expressed the polarization
vector in terms of S and ψ and used the components h‖ and
h⊥ of the molecular field. These relations can be verified
explicitly by inserting the expressions (A3)–(A5) for the com-
ponents of the Ericksen stress and using Eqs. (C4) and (C5)
for h‖ and h⊥.

APPENDIX B: MEASURING THE POLARIZATION FIELD
OF C2C12 CELL MONOLAYERS

In this Appendix we provide details on the operational
definition of the polarization field of C2C12 cell monolayers
confined to small circular domains.

Current experimental techniques to measure orientational
order fields in cell monolayers are: structure tensor meth-
ods applied to an image [9], quantification of concentration
gradients in specific lamellipodial-activity markers of cells
[14], and quantification of orientational order in cytoskeletal
patterns [7]. As explained in Sec. II C, we used the structure
tensor method from Ref. [44] to quantify the polarization field
in C2C12 monolayers. This method detects intensity gradients
in images. For more details on the technical aspects for this
method, we refer to Ref. [44].

The structure tensor method applied to phase-contrast im-
ages detects cell edges and thus reflects the shape anisotropies
of the cells. Alternatively, one can obtain a polarization field
by analyzing fluorescence micrographs of the actin cytoskele-
ton. We used the same structure tensor method to analyze
fluorescence images of SiR-actin [Figs. 12(a) and 12(b)]. SiR-
actin is a fluorogenic and specific probe for actin filaments.
We denote by ψBF the angle between the radial direction
and the polarization field from phase-contrast images and
by ψSA the corresponding angle from fluorescence images
of SiR-actin. The distributions of these angles are shown in
Figs. 12(c) and 12(d). The similarity between these two distri-
butions shows that, for C2C12 monolayers, the polarization
field is close to the orientational order of the cytoskeleton
organization.

APPENDIX C: THE MOLECULAR FIELD

In this Appendix we compute the expression of the
molecular field h in polar coordinates. Assuming rotational
invariance of our system, the physical fields are independent
of the azimuthal angle θ , and the free energy (7) can be
written as

F =
∫
A

{
B

2

( n

n0
− 1

)2
+ χ

2
(p2

r + p2
θ )

+ K
2

[
(∂r pr )2 + (∂r pθ )2 + p2

r

r2
+ p2

θ

r2

]}
r dr dθ. (C1)

From this expression, we obtain the components of the molec-
ular field as

hr = − δF
δpr

= −χ pr + K
[

1

r
∂r (r∂r pr ) − pr

r2

]
, (C2)
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(a) (b)

(c) (d)

FIG. 12. Polarization field of C2C12 monolayers. (a) Phase-
contrast image for a spiral defect. Yellow segments represent the
polarization field obtained from the structure tensor method in
Ref. [44]. The yellow segments in the inset correspond to the ac-
tual experimental resolution. (b) Fluorescence image of SiR-actin
for a spiral defect. In both panels (a) and (b) the circular domain
has a radius of 50 μm. (c) Histogram of ψBF defined as the angle
between the radial direction and the polarization field from phase-
contrast images. The average angle is ψBF = 76◦ ± 22◦ (mean ± std,
N = 11). Panel (c) is the same as Fig. 8. (d) Histogram of ψSA

defined as the angle between the radial direction and the polarization
field from fluorescence images of SiR-actin. The average angle is
ψSA = 82◦ ± 34◦ (mean ± std, N = 7). For panels (c) and (d), val-
ues of the angles positioned at a radial distance from the circular
domain center below 48 μm as well as with a polar order parameter
S > 0.4 were considered. Dashed lines in panels (c) and (d) indicate
ψ = 90◦.

hθ = − δF
δpθ

= −χ pθ + K
[

1

r
∂r (r∂r pθ ) − pθ

r2

]
. (C3)

After expressing the radial and azimuthal compo-
nents of the polarization field as pr = S cos(ψ ) and
pθ = S sin(ψ ), the components of the molecular field
parallel and perpendicular to the polarization field, h‖ =
cos(ψ )hr + sin(ψ )hθ and h⊥ = − sin(ψ )hr + cos(ψ )hθ ,
read

h‖ = −χS + K
[
∂rrS + ∂rS

r
− S

r2
− S(∂rψ )2

]
, (C4)

h⊥ = K
[

S∂rrψ + S∂rψ

r
+ 2(∂rS)(∂rψ )

]
. (C5)

APPENDIX D: NUMERICAL INTEGRATION SCHEME

The numerical solutions for the steady-state polarization p
and the azimuthal velocity component vθ presented in Secs. V
and VI C were obtained by solving the time-dependent form
of Eqs. (9) and (10) for p:

∂t S = h‖
γ

− νSvrθ sin(2ψ ), (D1)

S∂tψ = h⊥
γ

+ Svrθ [1 − ν cos(2ψ )], (D2)

as well as the time-independent Eq. (14) for vθ with boundary
conditions (16)–(18) and (20)–(22).

These equations were discretized in space with a number
of lattice sites of 105. Spatial derivatives were approximated
by central finite differences. At a time t , the profiles for
the polar order S and the angle ψ were first used to com-
pute vθ at this time by directly inverting the linear operator.
We then used a semi-implicit Euler method to compute
S(r, t + 	t ) and ψ (r, t + 	t ). Here the time step 	t was
chosen such that the maximal relative changes in S and
ψ were smaller than 0.01%. This procedure was iterated
until steady state was reached. We used a random initial
condition.

APPENDIX E: ALGORITHMIC DESCRIPTION OF THE
PARAMETER ESTIMATION PROCEDURE

Here we provide the main steps of our parameter estima-
tion procedure in an algorithmic format.

Step 1: Measure the velocity and polarization fields as well
as the cell number density in integer defects, preferen-
tially for different sizes of the circular confining domains
and different defect types.

Step 2: Determine the angle ψ0 between the polarization
field and the radial direction of spiral defects. This yields
the flow alignment parameter ν through the relation
ν cos (2ψ0) = 1.

Step 3: Numerically fit the steady-state azimuthal velocity
profile vθ and the polar order parameter S for spiral
defects to the experimental data from step 1. This yields
the values for the parameters T0R/|ζ	μ|, √

η/ξ/R,√
K/χ/R, and ζ	μRξ/ηT0; see Table I.

Step 4: Numerically fit the steady-state cell number density
to the experimental data of asters from step 1. This yields
the parameter values B/(n0R2ζ	μ) and ntotR2.

Step 5: Measure the force at the center of an aster defect.

Step 6: Obtain the force scale from the data of step 5. The
velocity scale is obtained from the azimuthal speed at
the periphery of spirals and the length scale by the radius
of the circular confining domains. Now the units of the
parameters can be restored; see Table II.
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