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Bacterial quorum sensing is the communication that takes place between bacteria as they secrete certain
molecules into the intercellular medium that later get absorbed by the secreting cells themselves and by others.
Depending on cell density, this uptake has the potential to alter gene expression and thereby affect global
properties of the community. We consider the case of multiple bacterial species coexisting, referring to each
one of them as a genotype and adopting the usual denomination of the molecules they collectively secrete as
public goods. A crucial problem in this setting is characterizing the coevolution of genotypes as some of them
secrete public goods (and pay the associated metabolic costs) while others do not but may nevertheless benefit
from the available public goods. We introduce a network model to describe genotype interaction and evolution
when genotype fitness depends on the production and uptake of public goods. The model comprises a random
graph to summarize the possible evolutionary pathways the genotypes may take as they interact genetically with
one another, and a system of coupled differential equations to characterize the behavior of genotype abundance in
time. We study some simple variations of the model analytically and more complex variations computationally.
Our results point to a simple trade-off affecting the long-term survival of those genotypes that do produce public
goods. This trade-off involves, on the producer side, the impact of producing and that of absorbing the public
good. On the nonproducer side, it involves the impact of absorbing the public good as well, now compounded
by the molecular compatibility between the producer and the nonproducer. Depending on how these factors turn

out, producers may or may not survive.
DOI: 10.1103/PhysRevE.103.012403

I. INTRODUCTION

Bacterial quorum sensing (QS) is the general denomination
for a variety of mechanisms whereby bacteria communicate
with one another by the secretion and uptake of molecules
that get diffused in the intercellular medium. The absorption
of such molecules by the cells is important for the regula-
tion of some genes and thus affects survival and successful
proliferation, as well as many functional traits, depending on
cell density. These include a bacterial species’ propensity to
establish symbioses or to aggregate into biofilms, and also
its virulence and motility. Although bacterial QS has been
around as a research topic for about five decades, only much
more recently has sufficient evidence accumulated. Interest
in it is now widespread and a number of useful reviews are
available [1-6]. Whereas initial interest was sparked by the
curious phenomenon of bioluminescence arising in certain
marine bacteria [7,8], the current focus is on the role of QS in
the immunological effects of the mammalian gut microbiome
[9,10] and in combating bacterial virulence [11,12].
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When only one single species is involved in bacterial QS,
a cell’s uptake, though comprising mainly the molecules that
the cell itself secretes, may also include those of the other cells
nearly indistinguishably. Such molecules are called autoin-
ducers, in allusion to the fact that they act as gene regulators
for the species. In settings allowing for multiple species, it
is in principle conceivable that the autoinducers secreted by
members of a species be absorbable also by those of another.
Depending on the species involved, the autoinducers they
exchange can be expected to affect cells of different species
differently, perhaps acting as proper autoinducers in some
cases and simply as sources of nutrients or even toxicity in
others. A cell’s secretions, moreover, may include molecules
other than the ones directly involved in autoinduction. Com-
monly, all secreted molecules are collectively referred to as
public goods (cf., e.g., [6]). In evolutionary terms, and de-
pending on the metabolic costs involved, the production and
uptake of public goods can affect a cell’s fitness significantly.

Despite the much earlier developments in the field, bac-
terial QS seems to have been the object of mathematical
modeling for no longer than about two decades. Many of the
modeling efforts have counted on the close participation of re-
searchers involved with experimentation, resulting in detailed
analytical accounts of specific QS processes [4], including the
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combinatorial response to intercellular signaling [13]. Others
have taken a somewhat more distanced stance and addressed,
e.g., the importance of stochastic elements in bacterial QS
[14-20], the occurrence of transitions [21], and biofilm [22]
and pattern [23,24] formation. Moreover, some have taken
up the basic tenets of QS and sought to characterize higher-
level phenomena occurring not only in bacteria but also in
other systems in which QS can be said to play a central role.
Such phenomena include synchronization in networks [25],
oscillations in coupled systems [26], the appearance of dense
aggregates of active particles [27], and phase separation in
colloidal mixtures [20]. To the best of our knowledge, each
of these models has considered one single bacterial species,
taking diversity into account only insofar as it stems from a
few of that species’ strains.

Here we introduce a model of bacterial QS that focuses on
how multiple species coexist and evolve in the presence of the
public goods they produce. In order to avoid the many com-
plications involved in bacterial taxonomy [28], we henceforth
refer to genotypes as the basic units of diversity. Given two
genotypes, one of them might be considered merely a strain
of the other or they might both refer to totally distinct species.
In our model, all possible genotypes of a given length are
considered concomitantly. The complete QS system is repre-
sented by a random graph whose nodes stand for genotypes
and whose edges exist with probabilities that aim to reflect the
mutations that occur as cells undergo binary fission (the most
common mechanism of bacterial proliferation, though several
others exist [29,30]) and horizontal gene transfer (HGT, the
transfer of genetic material between individuals [31]). These
probabilities are parametrized so that sampling from the ran-
dom graph may result in a graph with more or fewer edges and
therefore more or less far-reaching effects of localized random
variation.

In addition to the structural component given by this
random graph, our model includes a system of coupled
differential equations describing how the genotypes’ abun-
dances vary with time. These equations depend on the same
parametrization as the random graph. Crucially, they also
depend on which genotypes are producers of public goods, as
well as on whether and how absorption affects each individual
genotype. All these aspects of public-good production and
uptake contribute to each genotype’s fitness in the QS system
and can be quantified in such a way that a great variety of
global configurations can be studied.

This model continues earlier work [32] in which we added
network structure to the so-called quasispecies models of the
dynamics of prebiotic molecules and RNA viruses [33-38],
and also work in which we modeled the network dynamics
of autoimmunity and immunodeficiency [39,40] and of the
evolution of eukaryotic cellular division [41]. We now pro-
ceed by giving the model’s details in Sec. II and analyzing a
special case thereof in Sec. III. Results are given in Sec. IV
and discussed in Sec. V. We conclude in Sec. VI and give
directions for further analysis in the Appendix.

II. MODEL

We represent each bacterial gene by a sequence of B binary
digits (0’s or 1’s), each standing for a nucleotide. A bacterial

genotype is represented by a sequence of L binary digits,
provided L > B and that L is a multiple of B. A genotype is
then viewed as a sequence of L/B genes. Such representations
are of course oversimplistic in more than one sense, but even
so they provide the necessary means to model the two main
sources of variation in bacterial genotypes, viz., mutations
during binary fission (at the level of the nucleotide) and HGT
(at the level of the gene). Henceforth, we use N to denote the
set of all 2F genotypes. Genotypes are numbered 0 through
2L —1.

Our focus is on the effects of public-good production and
consumption by the genotypes, which we model using param-
eters 1; and o;, as follows. For each genotype j, u; takes
its value from {0, 1} and indicates whether j is a producer
of public goods (u; = 1) or not (1; = 0). For each genotype
pair i, j, oj; takes its value from the interval [—1, 1] and
is used to indicate the degree to which consuming public
goods produced by genotype j can impact the rate at which
genotype i is capable of multiplying. This degree ranges from
a full contribution toward a slower pace (o;; = —1) to a full
contribution toward a faster pace (o;; = 1), with neutrality
in between (0;; = 0). For j =i, the biological process in
question includes that of bacterial autoinduction.

Whenever 1 joj; # 0, we model the consumption by i of
the public goods produced by j as occurring with probability
uj; = u'i, where u < 1 is a base probability of the model and
Jij is the number of homologous genes at which genotypes
i and j differ. Expressing u;; in this way takes into account
the need for molecular compatibility between organisms of
genotype j and those of genotype i, and the fact that such
compatibility occurs at the level of the genes of j and i. Thus,
lower values of J;; indicate higher compatibility. J;; = 0, in
particular, holds when j =i, so autoinduction occurs with
probability 1 whenever u; = 1.

As will become apparent when we give the model’s dy-
namical equations in Sec. IIC, we make another strong
simplifying assumption, now regarding the production and
consumption of public goods by the genotypes. The assump-
tion is that setting p; = 1 for some genotype j makes the
public goods it produces available to all genotypes in suffi-
cient concentration at all times. That is to say, we make no
provision to model the dynamics of public-good production,
diffusion, or consumption. Our equations are concerned solely
with the dynamics of genotype proliferation, given a static
backdrop of overall public-good availability. We comment
further on these and related issues in Sec. VI.

A. Fitness of a genotype

The quantification of an individual’s fitness in studies of
evolutionary dynamics can be challenging. Ideally, it should
rely on the identification of traits exerting a quantifiable in-
fluence on gene spread through the population. This is rarely
possible, so it is common for the difficulty to be sidestepped
with the adoption of a proxy, as some form of distance to
an agreed-upon wild type or the experimental counting of
individuals as proliferation unfolds.

However, the case at hand is exceptional in that, clearly,
a genotype can be said to be as fit as its total consumption
of public goods is beneficial to it. That is, if genotype j is a
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producer of public goods (i.e., i; = 1), then its contribution
to the fitness of genotype i should be an increasing function of
oj;u’i. It should also depend on how abundant genotype j is
in the entire population, which immediately makes the fitness
of i time dependent. Letting X; denote the absolute abundance
of genotype j at a certain instant and

__X
ZkeN Xk

its relative abundance (so ) y x; = 1), we express the in-
stantaneous fitness of i by an increasing function of the convex
combination of ;o j;u’i over N that uses x; as the weight of
genotype j. We denote this combination by d;, so

(D

Xj

di = Zﬂjgjiuji/xjv (2)
JEN

and denote the fitness of genotype i by f;, defining it as
fi = 2% Clearly, —1 < d; < 1, from which 0.5 < f; < 2. For
d; = 0 (the combined public goods instantaneously available
to i are neither beneficial nor detrimental to its ability to
multiply), we have f; = 1. This is convenient in view of
how we incorporate fitness values into the model’s dynamical
equations (cf. Sec. I1 C).

B. Network structure

A further important element in our model is a substrate
on which genotypes can transform into one another via the
mechanisms afforded by mutations and HGT. The substrate
we use is a random graph of node set N (the set of all 2F
distinct genotypes on L nucleotides) and undirected edges.
The existence of an edge between any two genotypes i and j
depends on two base probabilities, p and r, and has probability

myj = p = pflir, 3)

In this expression, H;; is the Hamming distance between geno-
types i and j, i.e., the number of nucleotides at which they
differ. J;;, already introduced at the beginning of Sec. 11, is the
number of homologous B-nucleotide genes at which i and j
differ.

Given the value of p, increasing H;; makes it less likely
for the edge joining i and j to exist, reflecting the fact that
the transformation of i into j (or conversely) by co-occurring
mutations at H;; nucleotides becomes less likely as well.
Similarly, given the value of r, increasing J;; makes joining
i and j by an edge less likely, now reflecting the also less
likely transformation of i into j (or conversely) by the co-
occurring horizontal transfer of J;; genes. The expression in
Eq. (3) comes from assuming that events of these two types
in sample space (mutations and HGT) are independent though
not mutually exclusive.

Regardless of the value of p or r, for i = j we always
have 7;; = 1 (assuming 0° = 1). As a result, every undirected
graph G sampled from the random graph given by Eq. (3)
necessarily has self-loops at all genotypes, no matter how
sparsely interconnected the genotypes may be as a function
of pandr.

C. Network dynamics

For a fixed graph G sampled from the random graph in-
troduced in Sec. II B, we describe the corresponding network
dynamics as a set of 2¢ coupled differential equations, one for
each possible genotype. These equations bring together all the
elements introduced in Sec. II A, which led to the definition of
the fitness f; = 2% of genotype i for d; as in Eq. (2), and those
introduced in Sec. I B, where the random graph giving rise to
G was specified via the edge probability 7r;; of Eq. (3) that an
edge exists between genotypes i and j.

The probabilities pi and i appearing in the expression
for 7;; are, as a matter of principle, expected to be relevant
also to our dynamical equations. If so, they must appear in the
equations in normalized form, as follows. Letting N; denote
the set of genotypes (including i itself) to which genotype i is
joined by an edge in graph G, probability p’i becomes

pli
ke, P

SO D . N, di—i = 1, and similarly probability i becomes

“4)

qj—i =

rlii

Si>j = o .0
J,
ZkeNi ik

SO Z_ieNi si; = 1. Probability g;_,; is the probability that
genotype j gives rise to genotype i during binary fission
by undergoing mutation at H;; of its nucleotides. Probability
Si—j, in turn, is the probability that genotype i gives rise to
genotype j when J;; genes of genotype i undergo HGT.

The differential equation describing the evolution in time
of the absolute abundance of genotype i, X;, is

X =) qiifiXi + 1Y sinifiXi. (6)

jeN; jeN;

(&)

The first summation on the right-hand side of this equation
accounts for the total contribution to X; from mutations af-
fecting genotypes j € N;. The individual contribution from
each such j depends on probability g;_.;, on the fitness of
genotype j, and on its abundance. The second summation is
similar, now accounting for the total contribution to X; when
genes get transferred from genotype i to genotypes j € N; via
HGT. In Eq. (6), A is a parameter that can be used to regulate
the relative rate at which the two types of contribution to X;
oceur. Because ) jen, Si—j = 1, Eq. (6) can be immediately
rewritten as

X = Zq_j—n‘ijj + AfiXi, (7

JEN;

where it becomes clear that the second summation on the
right-hand side of Eq. (6) depends only on the fitness and
abundance of genotype i. Thus, the probabilities /i giving
rise to s;_, ; through Eq. (5) are relevant only insofar as they
affect the sampling of graph G from the random graph.

In spite of the presumed function of parameter A in Egs. (6)
and (7), the simplified equation for X; given in Eq. (7) high-
lights the fact that the contribution of f,X; to X; is actually
multiplied by ¢,_,; + A. Without A weighing in like this, such
factor would already be exponentially higher than that of
any other f;X; for p < 1; that is, for j # i we would have
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qii/qj—i = (1/ p)Hii Tt seems, therefore, that A has no clear
role to play, so henceforth we use A = 0. The final form of the
equation for X; is then

X; = ZCIj»iijj- (3

Jen,

In order to avoid the unbounded growth of X; that Eq. (8)
may entail, we rewrite it for the genotypes’ relative abun-
dances instead. Such abundances are as given in Eq. (1); i.e.,
the relative abundance of genotype i is x; = X;/ ) ..y Xk, SO
Y ey Xi = 1 holds at all times. We obtain

X; X
i = —x ZkeN k
2 _ken Xk 2ken Xk
= qu‘—nfjxj _xiZZQj—ﬂcfjxj- )
JEN; keN jeNg
Letting
d=>"> aj-ifix; (10)
keN jeN;
yields
Y=Y qjsifix; — ¢xi. (1)
JEN;

Note that, even though this equation embodies the new non-
linearities implied by the term involving ¢, the truly striking
ones are those already present in Eq. (8), that is, those through
which genotype fitnesses depend on relative abundances
exponentially.

III. A SPECIAL CASE WITH ONE SINGLE PRODUCER

By Eq. (3), letting p = r = 0 implies 7;; = [i = j].! That
is, graph G has no edges other than the 2% self-loops, so by
Eq. (4) we have ¢,;_,; = 1 for every genotype i. It might seem
that such a trivial topology, implying as it does that genotypes
never undergo any form of random variation, would be unable
to give rise to interesting dynamics. This is not necessarily
so, however, because genotypes still influence one another
through the close coupling that their abundance-dependent
fitnesses provide.

Letting

F=>fixe. (12)

keN

it follows from Eq. (10) that ¢ = f, thus leading, by
Eq. (11),to

&= (fi — . (13)

Here we look at the case in which u; = [i = 0] (genotype O
is the only producer of public goods) and o;; = [j = O][i #
OJo (all genotypes other than 0 are equally impacted by the
public goods that genotype 0 produces) for some o € [—1, 1].

'For a logical proposition P, the Iverson bracket [P] equals 1 if P
is true, O if P is false. This notation generalizes the Kronecker delta,
since [i = j] = §;;.

All 5;;’s with j # 0 are irrelevant. (A similar special case, but
with multiple producers of public goods, is analyzed in the
Appendix.)

Assuming x;(0) = 2% for every genotype i, Eq. (13) im-
plies that, in the long run, only the genotypes whose initial
fitnesses are greatest survive. If this happens for more than
one genotype, then all of them survive with the same abun-
dance. Of all genotypes i # 0, identifying the fittest depends
on the value of 0. For o > 0, the fittest are the (L/B)(2% — 1)
genotypes for which Jo; = 1. For o = 0, all 2L — 1 genotypes
have the same fitness. For o < 0, the fittest are the (28 — 1)%/8
genotypes for which Jy; = L/B. It follows that survival is
determined by how oy relates to ou (if ogp > 0 and o > 0),
or to out’B (if og9 < 0 and o < 0), or directly to o (in all
other cases). In general, we denote the greatest fitness among
genotypes i # 0 by f. There are nine cases to be considered,
discussed next. In this discussion, any conclusion that a group
of genotypes i # 0 survives is to be extended to all genotypes
i #0 if u =1, since in this case they all have the same
fitness.

(Cl) 0o >0 and 0 > 0: fy > 1 and f; > 1, with three
subcases.

(Cla) ogo > ou: fo > f4; genotype O survives.

(C1b) opg = ou: fo = fy; genotype O survives, and so do
all genotypes i such that Jy; = 1.

(Clc) oo < ou: fo < f4; genotypes i such that Jy; = 1
survive.

(C2) o0gp >0ando =0: fy > 1 and f = 1; genotype 0
survives.

(C3) o0po >0ando < 0: fy > 1 and f; < 1; genotype O
survives.

(C4) opo=0ando > 0: fy =1 and f; > 1; genotypes i
such that Jo; = 1 survive.

(C5) opp=0and o0 =0: fy =1 and f = 1; all geno-
types survive.

(C6) ogp=0ando <O0: fy =1and f < 1; genotype 0
survives.

(C7) opo <Oando > 0: fy < I and f; > 1; genotypes i
such that Jo; = 1 survive.

(C8) o9y <0and o =0: fy < 1 and f; = 1; genotypes
i # 0 survive.

(C9) o <0O0ando <O0: fy <1 and f+ < 1, with three
subcases.

(C92) ogo > ou’B: fy > fi; genotype 0 survives.

(C9b) og9 = ou’B: fy = f,; genotype O survives, and so
do all genotypes i such that Jo; = L/B.

(C9¢) ooy < oul'B: fy < fy; genotypes i such that Jo; =
L/B survive.

A careful examination of these cases reveals that a number
of outcomes are possible in the long run, which seems remark-
able as we consider that the only edges in graph G are the
self-loops at all genotypes. Interestingly, these results provide
useful insight even when lifting the p = r = 0 simplification,
as we show in Sec. IV.

IV. RESULTS

All our computational results come from time stepping
Eq. (11) from x;(0) =271 for all genotypes i € N. This
is done on a fixed graph G, obtained by Monte Carlo
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sampling as explained in Sec. II B. The expected steady-state
value of each x; is obtained by averaging over several such
graphs.

A potentially problematic aspect of time stepping Eq. (11),
depending on the case at hand, is the often very small absolute
value of each of the terms contributing to d; in Eq. (2). An
issue to be considered is that several genotypes may have
nearly neutral (close to 1) fitnesses for a long time even
if eventually they are to diverge from one another substan-
tially. In this case, convergence to the steady-state relative
abundances can be slowed down significantly. Another is-
sue is the effect of the unavoidable round-off errors that
accompany operations on numbers very close to zero. Be-
cause of such errors, the value obtained for d; may depend
on the order used for the terms to enter the sum, which
can break important symmetries whenever the equations dic-
tate that i and j exist for which we should have d; = d;.
To avoid this, at every step the terms that make up d; are
added in increasing order of absolute value. Thus, except
for cases involving one single producer, a sorting opera-
tion is required at each step, thus making convergence to
the steady state very slow indeed; see Sec. VI for more
on this.

We sidestep these issues by reducing the size and variety
of the scenarios we consider while at the same time retaining
the possibility of interesting and diverse behavior. We thus
consider only a small number of genotypes: we use L =9
and B = 3, hence 512 genotypes, each with three 3-nucleotide
genes. Moreover, all scenarios we consider generalize the
special case of Sec. III by allowing p, r > 0 and therefore the
appearance of nontrivial topologies (that is, those on which
manifestations of the mutational and HGT-related aspects of
the model can occur). All other simplifications of that sec-
tion continue to be assumed, so p =r, genotype O is the
only producer of public goods, and oy, = o for every geno-
type i # 0. Given these simplifications, the expected behavior
of all

0y = (LjB) 25— 1y (14)

genotypes that differ from genotype O at J genes is the same.
A handy simplification when analyzing results is then to con-
sider all such genotypes as a single group; that is, consider
them through their mean relative abundances, denoted by x;
and given by

=t Y (15)

i€N|Jgi:J

Of course, Y5 nyx; = 1.

Given the random graph used to represent our network of
genotypes, the expected degree of a randomly chosen geno-
type i (the expected number of edges incident to it, including
its self-loop) can be obtained by summing up 7;; (the prob-
ability that an edge exists between genotypes i and j) over
j € N. Based on Eq. (3), we write this summation in terms
of the number H of nucleotides at which i and j may differ
and likewise the number J of genes at which they may differ.

® simulation

1 — Eq.(16)
0 | A
1.0'(—bg——————————————————.j.—_;?.——r*lh
i .
n »
. 0.87 /./
0.6 bd
~ L .’
004}
L .
02} ,
L y
00600060 | \ \
0.00 0.02 0.04 0.06 0.08 0.10
p

FIG. 1. (a) Expected degree of a randomly chosen genotype.
(b) Expected fraction of 2¢ corresponding to the connected compo-
nent to which that genotype belongs. Both panels refer to L = 9 and
B =3.

Letting z denote the desired expected degree, we obtain

L L/B L/B B
7= ;;) (;)PH + JZ(;”JVJ - ,Z(; (LgB)rj Z:l
— — - -

ny=1

=(0+pr+1+Q-1)r®
—[1+[(1+ p)® — 11r]~5. (16)

Clearly, increasing p (or r, should it be allowed to change
independently of p) leads z to grow as well, and with it
the expected number of genotypes that can be reached from
genotype i through some undirected path in the graph.

Such genotypes constitute the so-called connected compo-
nent to which i belongs. In the context at hand, this is the set
of genotypes expected to relate to i via mutation or HGT. For
i = 0, this means that probability p can be used to control the
expected extent to which the behavior of the single producer
is evolutionarily related to those of other genotypes. That is,
while all 2F genotypes partake of the public goods produced
by genotype 0, the set of those that interact with the producer,
directly or indirectly through mutation or HGT, can be shrunk
or enlarged by controlling the value of p. This is illustrated
in Fig. 1, where the expected number of genotypes in the
connected component is denoted by c. Clearly, letting p < 0.1
suffices for all interesting cases of the connected component in
question to be encompassed. This includes the case in which
it only contains genotype 0O, the case in which it contains
a sizable fraction of all 2L genotypes, and the transition in
between as p grows from p = 0. All values of p are thus
constrained henceforth. (Incidentally, in this case it can be
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FIG. 2. Average steady-state individual relative abundances (x;)
for L=9, B=3, p=0.075 (z~4.41, ¢ ~478), u=0.01, and
o = 1. Values of oy are (a) 0.001, (b) 0.01, (c) 0.1, and (d) 1. See
Fig. 3 for the corresponding mean relative abundances (x;).

verified that relaxing the assumption p = r only mildly, e.g.,
0.95p < r < 1.05p, causes z to vary mildly as well, about
+5% for p = 0.1, less for smaller p. This may help regard
the p = r constraint as not so stringent after all.)

We present our results in two groups of figures, the first
relating to case Cl1, of Sec. III, with both g9 > 0 and o > O,
and the second relating to case C9, with both opp < 0 and
o < 0. Note that, in regard to cases C1-C9 of that section, C1
and C9 are the only nontrivial ones in that outcomes depend
on how parameters other than o and ¢ intervene. With only
two exceptions, to be discussed shortly, all figures show the
steady-state value of x; for J € {0, 1, 2, 3}. Note, in these
figures, that because of their definition in Eq. (15) these four
values of x; do not in general add up to 1.

All figures in the first group, Figs. 2-5, are for u = 0.01
and o = 1. Figures 2 and 3 are for p = 0.075, leading to z =~
4.41 and c ~ 478. Figure 2 is one of the exceptions alluded
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FIG. 3. Average steady-state mean relative abundances (x;) for
L=9,B=3,p=0.075(z~4.41,c~478),u=0.0l,and o = 1.
Values of oy are (a) 0.001, (b) 0.01, (c) 0.1, and (d) 1. See Fig. 2 for
the corresponding individual relative abundances (x;).
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FIG. 4. Average steady-state mean relative abundances (x,) for
L=9,B=3,p=0.045(z~2.74,¢c ~ 250),u = 0.0l,and 0 = 1.
Values of oq are (a) 0.001, (b) 0.01, (¢) 0.1, and (d) 1.

to above, since it shows the steady-state x;’s individually.
A similar breakdown is of course possible in all other cases
of this group and the second, but is omitted in most of them.
Figures 4 and 5 complete the first group, respectively with
p=0.045 (z &~ 2.74 and ¢ ~ 250) and p = 0.0384 (z =~ 2.43
and ¢ ~ 136).

All figures in the second group, Figs. 6-9, are for u = 0.1
and 0 = —1. They refer to the same values of p as the figures
in the first group, in the same order. Figure 6 is the second
exception alluded to earlier, since it pairs with Fig. 7 in that the
former refers to individual relative abundances and the latter
to mean relative abundances for the same value of p. Note that
the value of u for all figures in this second group is greater than
that of Figs. 2-5 by one order of magnitude. This is meant to
avoid aggravating the first convergence issue mentioned at the
beginning of this section even further. As discussed in Sec. V,
the critical value of Jy; for Figs. 2-5 is Jo; = 1, whereas for
Figs. 6-9 it is Jo; = L/B = 3, so values of oy closer to zero
are needed.

1.0
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W 00— * . e * . .
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0.8 e
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L * . ® o [ 1 . . .
005 1 2 3 0 1 2 3
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FIG. 5. Average steady-state mean relative abundances (x,) for
L=9,B=3,p=0.0384 (z &~ 2.43, c ~ 136), u = 0.01, and 0 =
1. Values of oy are (a) 0.001, (b) 0.01, (c) 0.1, and (d) 1.
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FIG. 6. Average steady-state individual relative abundances (x;)
for L=9, B=3, p=0.075 (z~4.41, ¢ =478), u=0.1, and
o = —1. Values of o are (a) —0.01, (b) —0.001, and (c) —0.0001.
See Fig. 7 for the corresponding mean relative abundances (xy).

V. DISCUSSION

The public goods produced by bacteria in QS can be greatly
diverse, including for example enzymes [6] and vitamins [42],
and are therefore essential for a number of cellular func-
tions related to growth and metabolism. However, a cell’s

0.010
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0.05 - E
[ \ ¢ ¢ Y
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FIG. 7. Average steady-state mean relative abundances (x,) for
L=9,B=3,p=0.075(z~4.41,c~478),u =0.1,ando = —1.
Values of oy are (a) —0.01, (b) —0.001, and (c) —0.0001. Note the
different ordinate scales. See Fig. 6 for the corresponding individual
relative abundances (x;).
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FIG. 8. Average steady-state mean relative abundances (x,) for
L=9,B=3,p=0.045(z~2.74,¢c ~ 250),u = 0.1,and 0 = —1.
Values of oy are (a) —0.01, (b) —0.001, and (c) —0.0001. Note the
different ordinate scales.

production of public goods has costs associated with it that
have the potential to completely offset the benefits accrued to
the cell itself by autoinduction. A central factor affecting the
tipping of this balance one way or the other is the presence
of certain mutants, commonly referred to as “cheaters,” that
do not join in the production of public goods but may never-

0.010
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- (b) S, = -0.0010
A B
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FIG. 9. Average steady-state mean relative abundances (x;)
for L=9, B=3, p=0.0384 (z ~2.43, ¢ ~ 136), u=0.1, and
o = —1. Values of oy are (a) —0.01, (b) —0.001, and (c¢) —0.0001.
Note the different ordinate scales.
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theless benefit from them. Whether the presence of cheater
genotypes can negatively impact the survival of genotypes
that do produce public goods depends on a variety of issues.
Ultimately, these issues can be summarized as two overall
strategies, one highlighting positive effects on producers even
if cheaters might be positively affected as well, the other
highlighting negative effects on cheaters even if producers
might be negatively affected as well. The first (strategy 1)
is autoregulation of the costs versus benefits of public-good
production; that is, public goods are only produced if the latter
outweighs the former (cf., e.g., [43]). The second (strategy
2) is the exploitation of some weakening effect associated
with public-good uptake by cheaters (e.g., [44,45]). All our
computational results have genotype O as the sole producer
of public goods and are therefore focused on the trade-offs
affecting the survival of genotype 0 and all 2° — 1 cheaters.

The first group of results (depicted in Figs. 2-5) is for
000, 0 > 0 and can be seen as modeling strategy 1, since
ooo > 0 can be taken as indicating that for genotype 0O
public-good benefits outweigh production costs, and o > 0 as
indicating that cheaters benefit from the public goods without
significant hindrance. These results are for ou = 0.01, so
in the absence of any mutational or HGT-related exchange
between genotypes (as in Sec. III, case C1) we would have
a sharp threshold for ogp at 0.01 separating the exclusive
survival of genotype 0 (for oy above the threshold) from the
exclusive survival of the n; = 21 genotypes i having Jo; = 1
(for oy below the threshold). For oy precisely at the threshold
the two groups would coexist.

Figures 2 and 3 both refer to scenarios in which, on av-
erage, genotype 0 undergoes genetic interactions, directly or
indirectly, with about (478 —1)/(512 — 1) &~ 93.3% of all
other genotypes. Figure 2 shows individual relative abun-
dances in the long run, Fig. 3 mean relative abundances.
The value of oq is varied over three orders of magnitude
from Figs. 2(a) and 3(a) through Figs. 2(d) and 3(d), leading
genotype O from a situation of very low relative abundance
for ogp = 0.001 to one of clear preponderance for ogg = 1.
All along the competition is seen to be taking place between
genotype 0 (J/ = 0) and those that differ from it at exactly
J = 1 gene. All other genotypes are seen to be heading toward
perishing. This progression along the increasing values of oy
seems to lead to something resembling the outcome for case
C1 of Sec. III, but there are important differences as well,
all owing to the possibility of genetic interactions between
genotype 0 and the others. One of these differences is that
the J = 1 genotypes never vanish from the scene, not even
as genotype 0 becomes the most abundant one. Another is
that the sharp threshold at og9p = 0.01 separating the demise
of genotype 0 from the other regimes in Sec. III now seems
spread over at least two orders of magnitude.

Figures 4 and 5 show the effect of restricting the possi-
bilities of genetic interaction with genotype 0, first to about
(250 — 1)/(512 — 1) ~ 48.7% of all other genotypes (Fig. 4),
then to (136 —1)/(512 — 1) = 26.4% (Fig. 5). While the
overall trends relating the survival of genotype O to that of
the J =1 genotypes remain the same, it seems clear that
genotype 0 comes ever closer to being the sole survivor as o
is increased and its possibilities of genetic interaction become
limited to a smaller neighborhood in the graph.

The second group of results (depicted in Figs. 6-9) is for
000, 0 < 0. This group can be regarded as modeling strategy
2, with og9 < 0 reflecting the downside of the absence of
autoregulation (public-good benefits are outweighed by pro-
duction costs) and o < 0 indicating that cheaters pay a heavy
price for absorbing potentially beneficial public goods with-
out joining in producing them. Results are now for ou"/8 =
—0.001, which like before would constitute a sharp threshold
for ogg at —0.001 should genotypes undergo no mutational or
HGT-related interactions (as in Sec. III, case C9). Now the
divide would be between the exclusive survival of genotype
0 (for ogy above the threshold) and the exclusive survival of
the n3 = 343 genotypes i having Jiy = 3 (for oy below the
threshold). Coexistence would ensue for og precisely at the
threshold.

In each of Figs. 6-9 the value of oq is increased by one
order of magnitude from panel (a) to panel (b), then by one
more from panel (b) to panel (c). Along these increases the
competition for survival takes place between genotype 0 and
those that differ from it at exactly J = 3 genes. All other
genotypes are heading toward perishing. In all four figures
the genotypes having J = 3 survive alone for opp = —0.01.
For larger values of oy genotype 0 is seen to survive as well,
becoming the most abundant one for ogg = —0.0001. As oy is
thus increased a transition similar to that of case C9 of Sec. III
takes place, but once again this happens much less abruptly,
along at least one order of magnitude.

As with the first group of figures, moving from Figs. 6 and
7 to Fig. 8 and then to Fig. 9 allows us to track the effects
of letting genotype O interact genetically with progressively
fewer other genotypes, from about 93.3% of them in Figs. 6
and 7, to about 48.7% in Fig. 8, then about 26.4% in Fig. 9.
Clearly, as genotype 0 becomes more confined in its possibil-
ities for genetic interaction, so does its prevalence relative to
the J = 3 genotypes become more pronounced.

VI. CONCLUSION

We have studied the evolutionary dynamics of bacterial
QS when multiple species (here referred to as genotypes)
participate. We have focused on the production and uptake
of public goods by the cells and on the trade-offs arising
when cheater genotypes (those that have the potential to
benefit from the uptake of public goods but do not join in
producing them) are present. Our model has a number of
parameters intended to allow for several scenarios to be con-
sidered. Two probability parameters (p, r) are related to how
genotypes interact genetically, and another (u) is related to
how molecular compatibility between genotypes influences
the uptake by one genotype of public goods produced by
another. Further parameters specify which genotypes are pro-
ducers (the u;’s) and whether (and how strongly) public-good
uptake is detrimental or beneficial to a genotype’s fitness
(the o0j;’s). Earlier studies of regulatory networks have re-
vealed a fundamental link between the network and functional
properties of a biological system and the leveraging of its
intrinsic and environmental noise to achieve robustness [46].
In light of results such as this, the probability parameters p,
r, and u can be regarded as helping characterize this impor-
tant connection for bacterial QS as well. Interestingly, this
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is fully in line with what happens in other complex sys-
tems in which noise has a positive role to play [14-16,47—
49].

All our computational results refer to genotype O being the
sole producer, all others being cheaters. All cheaters would
be equally affected by the uptake of the public goods pro-
duced by genotype 0 if this only depended on the oy;’s (i.e.,
all oy;’s equal some fixed o), but the action of parameter
u causes significant differentiation. For fixed genotype and
gene sizes, we have found that the long-term survival of
genotype 0 depends chiefly on how op stands relative to a
function of ¢ and u (though parameters p and r also have a
part to play). Our analytical results in the Appendix suggest
that a similar conclusion may come to hold when multiple
producers are considered. However, as suggested at the be-
ginning of Sec. IV, tackling cases of multiple producers (and
beyond these, substantially larger cases) is likely to require a
complete reformulation of our current computational environ-
ment. This reformulation will have to harness the power of
graphics processing units (GPUs), whose inherently massive
parallelism is expected to lead computational performance
to increase manyfold. Even so, the need for frequent sort-
ing operations will still constitute a serious bottleneck and
will have to be handled carefully. Doing this to good effect
will depend on GPU architecture as well as on selecting and
carefully adapting the sorting algorithm to be used. A de-
tailed, recent review of the relevant issues involved is available
[50].

Our model can be easily adapted, mainly by altering
the modes of genetic interaction between genotypes, to the
study of QS in other microorganisms (e.g., fungi [51] and
fungal-bacterial systems [52]). In fact, to varying degrees the
molecule-mediated communication that characterizes QS in
microorganisms is observed also in other biological systems,
from simple infectious agents such as viruses [53], to commu-
nities of so-called artificial cells [54], to precursor-cell clusters
as they differentiate into specific organs and tissues (some-
times with surprisingly accurate global results; cf., e.g., [55]).
We expect that also in some of these systems the analysis of
long-term global behavior could benefit from the development
of models closely related to the one we have presented.

We finalize by noting that, in spite of what we perceive as
special novelties in our approach, such as a random network
structure capable of accommodating a great many bacterial
species, the bringing together of both bacterial evolution and
QS into a single model, and the many ways in which this
model can be fine tuned, it is still not testable. There are
two reasons for this, the first being the main simplifying
assumption mentioned at the end of the preamble to Sec. II,
viz., that the public goods available for consumption consti-
tute a static backdrop against which all else unfolds. Lifting
this assumption will require further modeling that takes into
account both the physical medium in question and the many
facets of bacterial dissemination and public-good diffusion
through the medium. The second reason is that, as with so
many physical theories when they first appear, experimental
data involving a large number of bacterial species as they trade
public goods while coexisting are still unavailable. We expect
that progress on these fronts will eventually make the theory
truly testable.
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APPENDIX: A SPECIAL CASE WITH MULTIPLE
PRODUCERS

The special case of Sec. III can be extended to allow
multiple producers of public goods while remaining tractable
as far as predicting behavior in the long run is concerned.
While studying multiple-producer scenarios computationally
has proven infeasible given the resources we can presently
access, the special case we analyze in this Appendix serves
to illustrate a more complex situation in which the fate of
producers and certain other genotypes continues to be deter-
mined, in the nontrivial cases, by a comparison between some
producer k’s oy and a threshold.

The extension of Sec. III we now present preserves the p =
r = 0 assumption of that section, so graph G continues to have
only self-loops for edges and the dynamics continues to be
given by Eq. (13). For uniform initial abundances, which we
continue to assume, survival in the long run continues to occur
for the initially fittest genotypes only, always with the same
abundance.

Let P be the set of producers, i.e., u; = [i € P]. Assume
L/B > 2 (at least two genes per genotype) and let g be a fixed
gene out of a genotype’s L/B genes. The multiple producers
that we consider are the 28 genotypes that differ from one
another only at gene g. It follows that every genotype i ¢ P
must agree with exactly one genotype k; € P at gene g and
differ from all the 28 — 1 other genotypes in P at this same
gene. Therefore, for some Jy, € {1,...,L/B — 1}, genotype
i differs from producer k; at Ji, genes and from all other
producers at Ji;, + 1 genes.

Similarly to how we proceeded in Sec. III, here we
assume either o;; =[j € Pl[i ¢ Plo or o;; =[jePlli e
P][i # jlop, with 0,0, € [—1,1], depending on whether
i € P. That is, for k € P, genotype i # k is impacted by the
public goods that genotype k produces either through o}; = o
(ifi ¢ P) or through oy; = o, (if i € P). We also assume o3, =
opp With op, € [—1, 1] for all k € P. All 0};’s with j ¢ P are
irrelevant. It follows that every genotype k € P has the same
value for xz, di, and f, which we henceforth denote by x,, dp,
and f,,. With these settings in place, by Eq. (2) we have

dy = oppxp + (2% — Dopux, (A1)

and
d; = ouix, + (2% — Dou'tlx, (A2)

fori ¢ P.

012403-9



AGUILAR, BARBOSA, DONANGELO, AND SOUZA

PHYSICAL REVIEW E 103, 012403 (2021)

For o > 0, the fittest genotypes i ¢ P are such that
Jir, = 1. Comparing f, to fy depends on how o, relates to

a= [1 —(2F - 1)(% - u)]ou

which for o, > 0 and op < [28 — 1)~! +ulo (to ensure
o > 0) extends case C1 of Sec. IIl. The resulting case is as
follows.

(D1) opp >0, 0 >0, and 0, < [2® — D7 +ulo: f, >
1 and f, > 1, with three subcases.

(Dla) opp > a: f, > f4; genotypes k € P survive.

(D1b) opp = a: fp = fy; genotypes k € P survive, and so
do all genotypes i ¢ P such that Jy, = 1.

(Dlc) opp < a: fp < fy; genotypes i ¢ P such that Jy, =
1 survive.

Case C9 can be extended similarly by first noting that for
o < 0 the fittest genotypes i ¢ P are such that J, = L/B — 1.
It follows that comparing f,, to fy depends on the relationship

(A3)

between o, and

p=[1-"- 1)(# —u) |outm (A

The desired extension comes from assuming o, < 0 and
op > [(28 — 1) + ulout/®~2 (to ensure B < 0). It is as fol-
lows.

(D9) opp < 0,0 <0,and o, > [(28 — 1)7! + uloul/B2:
fp < 1land fi < 1, with three subcases.

(D9a) opp > B: fp > f4; genotypes k € P survive.

(D9b) opp = B: fp = f; genotypes k € P survive, and so
do all genotypes i ¢ P such that Jy, = L/B — 1.

(D9¢) opp < B: fp < fy; genotypes i ¢ P such that Jy, =
L/B — 1 survive.

The trivial cases of Sec. III (cases C2—-C8) can be extended
similarly. Of course, allowing for ¢, and o to relate to each
other differently will lead to further variations.
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