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Low complexity model to study scale dependence of phytoplankton dynamics in the tropical Pacific
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We demonstrate that a simple model based on reaction-diffusion-advection (RDA) equation forced by re-
alistic surface velocities and nutrients is skilled in reproducing the distributions of the surface phytoplankton
chlorophyll in the tropical Pacific. We use the low-complexity RDA model to investigate the scale relationships
in the impact of different drivers (turbulent diffusion, mean and eddy advection, primary productivity) on the
phytoplankton chlorophyll concentrations. We find that in the 1/4◦ (∼25 km) model, advection has a substantial
impact on the rate of primary productivity, while the turbulent diffusion term has a fairly negligible impact.
Turbulent diffusion has an impact on the phytoplankton variability, with the impact being scale propagated and
amplified by the larger scale surface currents. We investigate the impact of a surface nutrient decline and some
changes to mesoscale eddy kinetic energy (climate change projections) on the surface phytoplankton concentra-
tions. The RDA model suggests that unless mesoscale eddies radically change, phytoplankton chlorophyll scales
sublinearly with the nutrients, and it is relatively stable with respect to the nutrient concentrations. Furthermore,
we explore how a white multiplicative Gaussian noise introduced into the RDA model on its resolution scale
propagates across spatial scales through the nonlinear model dynamics under different sets of phytoplankton
drivers. The unifying message of this work is that the low-complexity (e.g., RDA) models can be successfully
used to realistically model some specific aspects of marine ecosystem dynamics and by using those models
one can explore many questions that would be beyond computational affordability of the higher-complexity
ecosystem models.
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I. INTRODUCTION

There is no effective scale in ecology [1]. New struc-
tures and processes appear with every new scale down to
the fundamental spatial scale of molecular biology, which is
far beyond the reach of our ecosystem models. Our models
provide merely an effective description for the ecosystem
dynamics (e.g., [2,3]), so that any impact of the model sub-
grid processes is either parametrized or can be represented
by a stochastic noise. To be able to correctly describe the
impact of subgrid processes on the model grid scale, it is
beneficial to have some understanding of how the ecosystem
equations, or ecosystem variables evolve with the spatial, or
temporal scale (�). We will call an approach that provides
such understanding a “scaling analysis.” Scaling analysis has
been largely advanced within the framework of renormaliza-
tion group (e.g., [4–6]) with many fundamental applications
across particle physics, solid state physics, and complex dy-
namical systems (e.g.. [7–10]). Interestingly, renormalization
group methods were also applied to Navier-Stokes equa-
tions (e.g., [11]) and reaction-diffusion models (for a recent
comprehensive review see [12]). The renormalization group
turned out to be particularly well suited to describe scale-
invariant properties of the examined system and has been
widely applied to study critical phenomena and universality
(e.g., [13–15]).

With the increased ecosystem model resolution, as well
as the increased model complexity, more phenomena are in-
cluded into the ecosystem model. However, a model does not
necessarily provide good understanding for all the phenomena
it represents. Indeed, understanding phenomena often requires
a specific scale: for example, to understand oceanic gyres it is
desirable to look at a long-time, spatially large-scale oceanic
and atmospheric behavior. Although a model that captures
ocean mesoscale, or submesoscale dynamics, represents also
ocean gyres, their behavior remains hidden behind the dom-
inant short-time small-spatial scale eddy signal. Similarly, if
we managed to run a model on a molecular scale, the eddy
behavior would remain hidden behind the thermal fluctuations
of the molecules and atoms (and the same type of situation
happens if we switched further from the atomic scales to the
scales of the current elementary particle theory). Here lies
another benefit of the scaling analysis: it provides us with
a natural tool to understand diverse phenomena with a wide
range of characteristic spatiotemporal scales (e.g., turbulence,
geologic processes, climate, financial markets [16–20]), as it
simultaneously compares processes across different scales.

Apart of improving our ecosystem models and understand-
ing processes, there is also a third potential benefit of scaling
analysis: fine-resolution models represent a broad range of
ecosystem phenomena, but they are computationally expen-
sive. Understanding dynamics across a range of scales might
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also optimize the performance of high resolution models
by converting them into multiscale models (e.g., [21]). This
means each “separate” part of the model dynamics could be
represented at the maximum scale where it occurs, eventually
leading to substantial reduction in the model computational
cost.

The main point of this work is to develop a schematic
multiscale understanding for some essential aspects of ecosys-
tem dynamics. This provides a different viewpoint from the
standard ecosystem modeling, where the ecosystem model
is understood at some specific (fine-resolution) scale, while
the larger-scale phenomena always “emerge” from the model
small-scale complex dynamics (e.g., [22]). We will show
that to get a sufficiently realistic representation of the pri-
mary productivity in the tropical Pacific, the high-complexity
model can be for specific purposes bypassed by a simpli-
fied “toy” reaction-diffusion-advection (RDA) model. The
model adds advection term (as in [23]) to the frequently used
reaction-diffusion models based on the Fisher-Kolmogorov-
Petrovski-Piskunov equation [24,25].

We forced the RDA model by the realistic Copernicus
Marine Environment Monitoring Service (CMEMS) reanal-
yses for the surface currents and nutrients, and the model
remarkably successfully captures the dynamics of chlorophyll
also provided by a CMEMS reanalysis. This is a surpris-
ing result: Although simple (often one-dimensional) models
based on the RDA equation were often used to address con-
ceptual problems, such as how species survival depends on
diffusion rate, advection rate, or on the characteristic patch
size occupied by the species (e.g., [23,26–34] and for an
overview see [35]), one would assume that a sufficiently
realistic marine model must be much more complex than
the RDA-like models. The relationship between the ecosys-
tem model skill and the model complexity is nontrivial [36],
however, certain minimum amount of model complexity is
always assumed; the real world marine biogeochemistry is
addressed either by the medium-complexity models [37–39],
or by the high-complexity models [40,41] that have often
10’s of state variables and more than 100 parameters. Such
assumptions are without any doubt founded, but this paper
shows that for some suitably chosen problems of high scien-
tific interest, even the simplest model based on RDA equation
is capable to produce surprisingly good approximation to
the selected real world ecosystem data. However, the words
“suitably chosen problems” need to be emphasized here, as
we are not replacing the full higher-complexity model with its
lower-complexity surrogate, we are only simulating a specific
ecosystem model component (surface phytoplankton dynam-
ics) with a low-complexity model, that is forced by some
selected higher-complexity ecosystem model variables. This
is analogous to the typical situation when higher-complexity
marine ecosystem models are being forced by a marine phys-
ical model, or to the coupled marine physical-biogeochemical
model being forced by an atmospheric model. By applying the
low-complexity RDA model one gets the best of both worlds:
the advantage of the RDA model is that it is cheap to run,
and it depends only on three free parameters, whose impact
on chlorophyll distributions can be easily understood, modi-
fied, and studied across a wide range of spatial and temporal
scales. In the same time the RDA model appears (within its

constrained frame of reference) to be sufficiently realistic for
the results of such analyses to be taken seriously.

The paper is structured as follows: (i) First, we describe,
justify, calibrate, and validate the RDA model, (ii) we briefly
introduce some basic tools and concepts from the scaling
analysis, (iii) we apply the scaling analysis to a range of
RDA model simulations with modified nutrient and velocity
forcing, as well as modified model parameters, in order to
derive the scales of spatial and temporal impact of differ-
ent drivers on the phytoplankton dynamics, (iv) we analyze
how phytoplankton scales as a function of the scaled-down
nutrients and mesoscale eddies, and (v) we add stochastic
perturbations to the RDA model in order to investigate how
the model nonlinear dynamics propagates the impact of the
stochastic noise on phytoplankton concentrations through a
range of spatial scales.

II. METHODS

A. RDA model

The growth of biomass starts with the photosynthesis in
the autotrophic species, and for marine ecosystems these are
the diverse species of phytoplankton. The frequently used
proxy quantity for phytoplankton biomass is chlorophyll a,
with a clear advantage of large volume of ocean-color derived
observations available for the ocean surface concentrations of
chlorophyll (e.g., [42]). In this work we focus on the chloro-
phyll dynamics, modeled by a RDA equation expressed as

∂ρ(t, �x)

∂t
= − �u(t, �x) · ∇ρ(t, �x) + κT · ∇2ρ(t, �x)

+ P · N (t, �x)ρ(t, �x) − D · ρ2(t, �x), (1)

where ρ(t, �x) represents chlorophyll concentrations, N (t, �x)
nutrients, �u(t, �x) is the current velocity, κT is the diffusiv-
ity parameter, which is at the spatial scales considered in
this study dominated by the turbulent diffusivity component,
P the net primary productivity (growth) rate, and D is the
damping (mortality) rate. The turbulent diffusivity parameter
(κT ) describes the integrated effect of subgrid eddy mixing
and determines the rate of small-scale chlorophyll smoothing.
The damping rate D integrates phytoplankton loss due to
the limitation in resources, mortality, respiration, and grazing
by higher trophic-level species. D also impacts the degree
to which chlorophyll and nutrients are correlated: if sub-
stantial phytoplankton concentrations get advected into the
low-nutrient areas, they die off quickly if the damping rate D
is high. Conversely, in the nutrient-rich areas the high rate of
damping D will not allow phytoplankton to grow above a cer-
tain threshold in concentrations, constraining the correlation
between ρ and N . Finally, the growth parameter (P) describes
the rate of photosynthesis. The P parameter determines (for a
fixed D) the average levels of chlorophyll (〈ρ〉) on the domain.

For the purpose of this study, the RDA model is constrained
to a two-dimensional horizontal plane, representing the ocean
surface in the Pacific central tropical region [155E-110W,
30S-30N (see Fig. 1)]. The selected region spans most of
the tropical Pacific with meridional dimension ∼6700 km
wide and zonal dimension ∼10 600 km long. The RDA
model resolution was taken to be 1/4◦ (∼25 km). The ocean
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FIG. 1. The CMEMS horizontal 2017–2018 mean surface current velocity in m/s. Left hand panel (a) shows the zonal mean current
velocity component, the middle panel (b) shows the meridional mean current velocity component, and the right hand panel (c) shows the mean
surface eddy speed.

surface current velocity [�u(t, �x), see Eq. (1)] and nutrients
[N (t, �x)] were provided for the RDA model externally; the
ocean surface current velocity was taken from the 2017–2018
daily resolution CMEMS reanalysis [43] which is based on
assimilation of satellite sea surface temperature, sea level
anomaly, as well as in situ temperature and salinity into 1/12◦
ORCA012 model configuration of the Nucleus for European
Modeling of the Ocean (NEMO, v3.1 [44], for details on
the reanalysis, see [45]). To represent the surface currents
�u on the 1/4◦ RDA model grid we upscaled the CMEMS
data from their original (1/12◦) scale of resolution. In Fig. 1
we show the 2017–2018 mean values of the surface current
velocity vector components and also the mean surface eddy
speed. The nutrients N (t, �x) have been estimated as a sum
of nitrate and phosphate using the outputs of 2017–2018
CMEMS hindcast based on 1/4◦ resolution NEMO coupled
with the biogeochemical model Pelagic Interactions Scheme
for Carbon and Ecosystem Studies [46]. No assimilation was
used in the biogeochemical run. Phosphate and nitrate were
the only nutrient data available with the desired resolution,
however, taking the sum of nitrate and phosphate is only one
of multiple seemingly equivalent choices of how to represent
the nutrients. Since phosphate and nitrate concentrations are
shaped by similar drivers, the two nutrients have been found
to be reasonably highly Pearson correlated (R = 0.78). The
correlation between nitrate and phosphate suggests that dif-
ferent choices on how to combine them into a single nutrient
function will yield similar results. We explicitly tried some
other options such as the square root of the product from
nitrate and phosphate and we have found (not shown here)
that the results were indeed qualitatively similar to the choice
presented in this study. However, for a specific study on nu-
trient regulations, at the same computational cost, it could be
possible to investigate other, more realistic physiological for-
mulations for nutrient colimitation, e.g., following the Liebig
rule.

The RDA model simulated chlorophyll for the 2017–2018
period, taking the chlorophyll initial value conditions (for
01/01/2017) and open sea boundary conditions from the
same CMEMS product than the nutrients. We tested the sen-
sitivity of the RDA model to the initial value and boundary
conditions, by replacing the CMEMS chlorophyll data with a
Gaussian white noise (±30% variance) around the 0.1 mg/m3

mean. The tests (not shown here) have demonstrated that on
the timescale of �80 days the model is insensitive to the
used initial value data. Furthermore, the tests have shown

that the impact of boundary conditions on the chlorophyll
distributions is negligible.

The tropical Pacific is a region responsible for 20% of
world marine productivity [47] and it is an important source of
CO2 emissions to the atmosphere [47,48]. Large parts of the
region, such as the eastern equatorial Pacific, are characteristic
of high-nutrient (nitrate and phosphate) concentrations due
to the equatorial upwelling, but comparably low chlorophyll
concentrations (the so-called “high chlorophyll low-nutrient
regions” [49–51]). The comparably low primary productivity
around the equator is often understood to be caused by the lim-
ited resources of iron [48,52,53], although the elevated levels
of grazing also may play a role [50,54]. In the oligotrophic
regions further away from the equator (higher latitude than
10◦) the conditions are very different and phytoplankton is
mostly nutrient limited [48].

There are several reasons why the tropical Pacific is an
optimal choice for our experiment:

(i) It is an open ocean region with little impact of
bathymetry on the ecosystem dynamics.

(ii) The first baroclinic Rossby radius is in the tropical
Pacific on the scale of 100 s of km [55] and the eddy scales
can get close to ∼500 km [56] (see also Fig. 2), so the 1/4◦
model resolution allows us to see a wide range of interesting
scales for the chlorophyll dynamics [57].

(iii) Phytoplankton dynamics can be fairly complex and
have strong seasonal signatures (e.g., spring blooms) due to
seasonal variability in the upper ocean mixing and sunlight
that drives photosynthesis. However, the seasonal cycles in
the tropical Pacific are weak, and phytoplankton production is
primarily regulated by the available nutrients (Fig. 3), with ad-
ditional impact of advection by the surface currents. Figure 3
shows that in the tropical Pacific nutrients and chlorophyll
are strongly correlated (Pearson correlation, R = 0.77), with
nutrient spatial geography playing an essential role for the
phytoplankton distributions. In such case one can represent
the biological productivity as a simple function of the nutrient
concentrations, as is done in the RDA model [Eq. (1)].

(iv) The RDA model used in this study is a single-equation
model with externally supplied nutrients. One could argue that
the RDA model needs adding a similar dynamical equation
for the nutrients, as has been done many times in the litera-
ture (e.g., [35]). In the tropical Pacific the nutrient sinks and
sources depend largely on the vertical mixing (e.g., equatorial
upwelling) and sufficiently near the coastline could reflect
other forcing fields, such as the river discharge. In such case
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FIG. 2. The spatial and temporal eddy scales. The left hand side panels (a) and (c) show the Pearson correlation (R, y axis) in the eddy
surface velocity as a function of spatial (a) and temporal (c) scale (x axis), the right hand side panels (b) and (d) show the chlorophyll magnitude
of log-spatial (b) and temporal (d) variability [��ρ, Eq. (12), y axis] as a function of temporal scale � (d) or spatial log-scale log(�) [(b), x
axis]. The chlorophyll from the panels (b) and (d) was a RDA model output with κT = N = 0 and with �u represented only by the eddy field
(the eddy �u was estimated by subtracting the 2017–2018 mean CMEMS currents from the CMEMS daily output). Since the panels (b) and
(d) focus only on the scaling slope of ��ρ, the values of ��ρ are not shown. Panel (b) shows both spatial ��ρ and � on a log-scale, and it
is expected that extending the plot beneath the 25 km scale would yield a power law relationship (straight line on a log-log scale) with an
exponent of a passive turbulent tracer. Both analyses [(a), (c) and (b), (d)] point consistently to the maximum eddy spatial scale of 500 km and
the maximum timescale of 50 days (this can however be much shorter than eddy lifetime, as eddies move). The spatial large-scale correlation
(R ∼ 0.1) that can be seen in the panel (a) has been found (not shown here) to be caused by a meridional cross correlation across the equator
due to seasonal variations in the currents. Similarly, the ��ρ scaling slope within the intermediate timescale between 50–150 days in (d) has
been found (not shown here) to correspond to the seasonal variability in the currents.

it becomes difficult to implement a two-equation nutrient-
chlorophyll model without substantially increasing the model
complexity. However, we argue that for the purpose of this
study the single equation model [Eq. (1)] is in the tropi-
cal Pacific a reasonable approximation to the phytoplankton
chlorophyll dynamics. There are two issues here that need
to be raised: First, within this study we will explore the
impact of the modified CMEMS data for the surface cur-
rents (�u) and the turbulent diffusion parameter (κT ) on the
phytoplankton chlorophyll concentrations (ρ). The changed
surface advection and diffusion can potentially change the nu-
trient concentrations (N) relative to their externally supplied
CMEMS values. Second, the phytoplankton concentrations
change as a function of the modified advection and the
changes to the nutrient uptake by the changed phytoplankton
(ρ) could be another source that modifies the nutrients relative
to their supplied CMEMS values. There are, however, two
arguments why we could reasonably neglect those changes
to the supplied nutrients and still use the CMEMS product:

(a) The nutrient distributions are much more geographically
stable than the chlorophyll (Figs. 3 and 4), by which we
mean that the nutrient anomalies are relatively small when
compared to the nutrient spatial geography estimated from
the 2017–2018 mean values (Fig. 3). The nutrient geographic
sinks and sources, which largely correspond to the upwelling
and downwelling zones, then consequently play a key role
in the representation of the nutrient distributions, with other
drivers (such as eddy mixing, or time fluctuations, in the
uptake by phytoplankton) playing mostly a secondary role.
Moreover, this study will explicitly demonstrate that it makes
little difference to the simulated chlorophyll, whether we force
the RDA model with a time-changing, or 2017–2018 time-
averaged, nutrient distributions. (b) A substantial change to
the CMEMS phytoplankton chlorophyll concentrations might
indeed introduce some changes to the CMEMS nutrients
through the uptake. However, the concern of this study are
not the changes to the nutrients, but the impact of those nutri-
ent changes on the phytoplankton distributions. Although the

012401-4



LOW COMPLEXITY MODEL TO STUDY SCALE … PHYSICAL REVIEW E 103, 012401 (2021)

FIG. 3. The CMEMS 2017–2018 mean surface concentrations for the chlorophyll a (a) and nutrients (c), displayed in percentage (%)
deviation from the 2017–2018 mean of the whole spatial domain. Panels (b) and (d) show the 2017–2018 time series for the spatial mean of
surface chlorophyll (b) and nutrients (d), displayed in percentage (%) deviation from the 2017–2018 mean of the whole spatial domain. It is
shown that chlorophyll has a modest biannual periodicity (b), which is driven by the seasonal solar cycle (since the region is meridionally
symmetric across the equator, the solar seasonal cycle here is biannual).

single-equation RDA model does not represent the changes to
the nutrients, the quadratic damping term in the RDA model
[the D term in Eq. (1)] effectively integrates into the phyto-
plankton dynamics the impact of the resource limitation due
to nutrient uptake.

Although iron is an important limiting factor in some areas
of the tropical Pacific [50], the daily products for iron distri-
butions were unavailable and could not be used as part of the
RDA model forcing. The limitation by iron was, similarly to
the nutrient uptake, included into the RDA model only implic-
itly as part of the quadratic damping term. The RDA model
assumes that any damping effect included in the quadratic
term is proportional to the chlorophyll concentration. This
can be easily justified for the rate of phytoplankton mortality,
nutrient limitation, or for phytoplankton grazers (their density
is expected to be proportional to phytoplankton density), and
to some degree it can be justified also for the iron limitation, as
the chlorophyll concentrations are highest in the iron-limiting
equatorial upwelling region (Fig. 3). However, we acknowl-
edge that representing the iron limitation only implicitly is
definitely a shortcoming of the RDA model.

B. Some analytical results about the RDA model solutions

In this section we briefly outline some analytical properties
of the RDA model, which will be later used to better under-
stand the results of the study. Since advection and turbulent
diffusion do not change the spatially averaged chlorophyll

concentration 〈ρ〉, the RDA model [Eq. (1)] has a simple
stochastic steady state (∂〈ρ〉/∂t = 0) solution:

〈N ′(�x)ρ ′(�x)〉 = 〈ρ ′2(�x)〉, (2)

where N ′ = PN and ρ ′ = Dρ. [For a region with boundaries,
we assume in Eq. (2) also constant Dirichlet boundary condi-
tions.] Applying

〈N ′ρ ′〉 = 〈N ′〉〈ρ ′〉 + cov(N ′, ρ ′),

where “cov” is covariance or, consequently,

〈ρ ′2〉 = 〈ρ ′〉2 + var(ρ ′),

where “var” stands for variance, one can transform the
stochastic steady state solution [Eq. (2)] into a quadradic
polynomial equation for 〈ρ〉:

〈ρ ′〉2 − 〈N ′〉〈ρ ′〉 + var(ρ ′) − cov(N ′, ρ ′) = 0. (3)

By solving Eq. (3) we obtain a relationship between the aver-
age chlorophyll and the nutrient concentrations as

〈ρ ′〉 = 〈N ′〉
2

±
√√√√( 〈N ′〉

2

)2

+ var(ρ ′)

(√
var(N ′)
var(ρ ′)

R(ρ ′, N ′) − 1

)
,

(4)
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FIG. 4. The distributions expressed by the probability density function (PDF) for the chlorophyll [(a) and (b)] and the nutrient [(c) and
(d)] anomalies calculated relative to the 2017–2018 mean concentrations. The values on the x axis are scaled (in %) relative to the 2017–2018
spatiotemporal mean. The right hand panels (b) and (d) show the PDF on a log-scale to emphasize the structure of the tails. The plots show
that the relative spread of chlorophyll distribution is substantially larger than the relative spread of nutrients.

with R being the Pearson correlation coefficient. A simpler
relationship between 〈ρ ′〉 and 〈N ′〉 can be derived, if we
assume that the standard deviation of both ρ ′ and N ′ is di-
rectly proportional to their mean values:

√
var(ρ ′) = cρ ′ 〈ρ ′〉

and
√

var(N ′) = cN ′ 〈N ′〉, which is reminiscent of Taylor’s law
[58] and it is to some degree supported by ecological data [59].
Then, Eq. (3) leads directly to a linear relationship:

〈ρ ′〉 = 1 + R(ρ ′, N ′)cρ ′cN ′

1 + c2
ρ ′

〈N ′〉. (5)

If we lower advection, chlorophyll becomes highly correlated
with nutrients and the Pearson correlation R(ρ ′, N ′) in Eq. (5)
approaches R(ρ ′, N ′) = 1, whereas with the high levels of
mixing ρ ′ and N ′ decorrelate [R(ρ ′, N ′) → 0]. Equation (5)
then implies that increasing advection, while maintaining the
same 〈N ′〉, lowers the mean chlorophyll concentrations.

If there is neither advection nor turbulent diffusion (�u =
κT = 0), and N ′ does not depend on time, Eq. (1) has the
following exact solutions:

ρ ′(t, �x) = N ′(�x)

1 + ρo exp{−N ′(�x) · t} , (6)

which converge for ρ ′ > 0 to a steady state attractor:

ρ ′(�x) = N ′(�x), (7)

while for ρ ′ < 0 the solutions run away to −∞. The solutions
from Eq. (7) approach the steady state attractor [Eq. (6)] as

�(t, �x) � exp{−N ′(�x) · t}, (8)

where � is the distance measured on the real line between
the approaching solution and the attractor. Equation (8) means
that the higher the nutrient concentration, the faster the chloro-
phyll distributions converge to the steady state solution from
Eq. (7).

For the exact steady state solution [Eq. (7)] chlorophyll is
maximally correlated with nutrients R(ρ ′, N ′) = 1. A simple
consistency check shows that for R(ρ ′, N ′) = 1, Eq. (4) is
solved by the averaged form of the linear relationship in
Eq. (7):

〈ρ ′〉 = 〈N ′〉 (9)

together with

var(ρ ′) = var(N ′). (10)

Equations (7), (9) and (10) imply that if the first two statistical
moments of ρ ′ and N ′ are equal, then the steady state ρ ′
and N ′ are maximally correlated [R(ρ ′, N ′) = 1]. With the
increased advection N ′ and ρ ′ decorrelate, and in the limit of
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R(ρ ′, N ′) = 0, one obtains

〈ρ ′〉 = 〈N ′〉
2

±
√( 〈N ′〉

2

)2

− var(ρ ′). (11)

C. Scaling analysis

In this work, we borrow insights from the long history of
the studies on turbulence and multifractals [16,20,60–66], and
use a simple measure for the scale dependence of the system
variables (��ρ) as

��ρ = 〈|ρ(x + �) − ρ(x)|〉. (12)

Here ��ρ represents a (scale-dependent) magnitude of spatial
and temporal variability of ρ, x is the spatial, or temporal vari-
able (spatial vector for spatial variability, or time for temporal
variability), � is the scale of interest, and the averaging in
Eq. (12) runs through the relevant spatial domain, or the time
interval. ��ρ corresponds to the first statistical moment of
what is in the multifractal literature often called “increments”
(e.g., [66]).

��ρ has the advantage of being methodologically simple
and has been many times proven fruitful in the literature (e.g.,
[20,65,67–73]): For the scale-invariant systems the scaling of
��ρ follows a power law and it has been found that its power
law exponent (H) is often an important indicator of the system
dynamics, e.g., much research has been carried out to identify
the power law exponent for tracers passively advected by a
turbulent flow [62,68,74,75]. For the intermittent turbulence,
the exact value of the tracer power law exponent H depends
on some nontrivial assumptions [73], but the tracers scale sub-
linearly, with the phytoplankton power law exponents often in
the H = 0.33–0.45 range [69,73] [H = 0.33 is the value for
the passive tracer in the three-dimensional (3D) homogeneous
turbulence [62,74]].

In the recent work of [76] it has been shown that the scaling
described by Eq. (12) is frequently a piecewise power law
with the scaling transition between different power laws corre-
sponding to a transition between different dynamical regimes
(see also [69,71]). The power law exponents correspond to
the scaling slope of ��ρ (we use �̃�ρ notation), which can be
analyzed by normalizing the ��ρ value as

�̃�ρ = ��ρ/�Lρ, (13)

where L is some maximum spatial, or temporal scale of in-
terest [76]. �̃�ρ can be then used as a simple “probe” to
test the impact of dynamical drivers (e.g., eddy and mean
advection, turbulent diffusion, biological productivity) on the
variable of interest (e.g., chlorophyll) across a wide range of
spatiotemporal scales.

III. VALIDATION OF THE RDA MODEL

An ensemble of RDA model simulations was run until
the optimal set of P, D, κT [Eq. (1)] values was de-
termined to be κT = 300 m2 s−1 (which agrees very well
with the values published in the literature [77–81]), P =
7 × 10−8 m3 mmol−1 s−1, D = 1.2 × 10−7 m3 mg−1 s−1. The
set of optimal parameter values was chosen based on the
matchups between the RDA model and the CMEMS data us-

ing three metrics shown in Fig. 5: (i) the two-year mean spatial
distribution of chlorophyll, (ii) the magnitude of spatial and
temporal variability ��ρ [Eq. (12)] across 25–2500 km and
1 day–1 year range of scales. The first metric [(i), Figs. 5(a)
and 5(c)] measures the RDA model skill to estimate the aver-
age chlorophyll concentrations and to represent the dominant
chlorophyll patterns. Since the spatial chlorophyll patterns
dominate over the temporal chlorophyll patterns [Figs. 3(a)
and 3(b)] the metric entirely focuses on the chlorophyll spa-
tial distributions. The two remaining metrics [(ii), Figs. 5(b)
and 5(d)] measure how well the RDA model reproduces the
CMEMS magnitude of chlorophyll spatial and temporal vari-
ability. The magnitude of chlorophyll spatial and temporal
variability will be used to identify the impact of drivers on the
chlorophyll concentrations across a wide range of spatial and
temporal scales. Since the impact analysis for the chlorophyll
drivers relies fully on the RDA model, it is essential that
the RDA model reproduces realistically the scaling of the
magnitude of chlorophyll spatial and temporal variability.

All the three metrics in Fig. 5 show that the RDA model
is skilled in representing the CMEMS chlorophyll data, i.e.,
the magnitude of spatial and temporal variablity match on
most scales within 10% and on all scales within 20%, with
the exception of the magnitude of temporal variability on
the annual scale. The sudden drop in CMEMS data temporal
variability on the annual scale is due to the biannual period-
icity in the chlorophyll distributions (see Fig. 3) driven by
the biannual seasonality pattern in the solar radiation (at the
equator the seasonal pattern has biannual periodicity, because
the seasons in the Southern and Northern Hemispheres have
identical impact on the equator). Since the RDA model does
not represent the solar cycle, it is understandable that it fails
to capture the biannual, or annual periodicity, in the ��ρ of
the CMEMS data.

The RDA model parameters can be characterized by the
relative magnitude of three types of drivers: turbulent dif-
fusion, advection, and biological activity. The Damköhler
number Da (see [23]) gives the scale (�) dependent ratio
between the biological rate of the process and the advection
rate: Da = biological rate/advection rate = �P〈N〉/〈|�u|〉. We
can then easily calculate the scale �Da where biological rate ≈
advection rate as �Da ≈ 3600 km. At the scales � � �Da ad-
vection dominates biological processes and vice versa. If we
interpret “the much smaller” as a separation by two orders of
magnitude, we conclude that advection is expected to dom-
inate biological processes at the O(10) km scales. Similarly
to the Damköhler number, we can introduce Péclet number
[23], but in the context of turbulent, rather than molecular
diffusivity, as Pe = advection rate/turbulent diffusivity rate
= �〈|�u|〉/κT . Then for the scale �Pe where advection rate
≈ turbulent diffusivity rate, we obtain �Pe ≈ 700 m. At the
scales � � �Pe advection dominates over turbulent diffu-
sion and vice versa. The �Pe scale suggests that advection
should be dominant over turbulent diffusion on the scales
of O(100) km. The estimates using Damköhler and Peclet
numbers are broadly consistent with the results of this study,
however, we will show that advection can propagate the im-
pact of turbulent diffusion (at 1/4◦ resolution) to remarkably
large scales.
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FIG. 5. The panels compare the CMEMS 2018 mean surface chlorophyll [panel (a)] with the RDA model 2018 mean surface chlorophyll
[panel (c)], as well as the chlorophyll magnitude of spatial [panel (b)] and temporal [panel (d)] variability (all in mg/m3) across a range of
spatial and temporal scales (��ρ calculated as an appropriate average of the 2018 daily data). The panels show that the RDA model is skilled
in reproducing both CMEMS chlorophyll spatial distributions [panels (a) and (c)] and the magnitude of variability [panels (b) and (d)], except
for the magnitude of temporal variability around the half-year to annual scale. This can be easily explained: the RDA model does not include
the time variability in the solar input and hence does not reproduce adequately the biannual periodicity of the CMEMS data. The chlorophyll
magnitude of spatial variability over 2500 km starts decreasing (b) since the chlorophyll distributions have a meridional symmetry across the
equator. Similarly, as mentioned before, the local minimum of the CMEMS chlorophyll magnitude of temporal variability at the annual scale
(d) is due to the annual cycle (annual cycle seems more pronounced than the biannual cycle).

IV. IMPACT OF PRIMARY PRODUCTIVITY DRIVERS
ACROSS DIFFERENT SCALES

A. Spatial analysis

What will be the impact on the chlorophyll concentrations
if we switch off horizontal advection or turbulent diffusion
in the RDA model? We have done multiple experiments with
(i) switched off mesoscale eddies, in which case �u [Eq. (1)]
was taken as mean currents only, estimated from a 2017–2018
average of the CMEMS data (see Fig. 1), (ii) switched off
mean currents, in which case the 2017–2018 means were
subtracted from the CMEMS data for �u to estimate the eddy
field, (iii) no advection at all (�u = 0). In each of these cases
(i)–(iii) and also in the case forced by CMEMS data for �u
we ran two separate simulations, with and without turbulent
diffusion (turbulent diffusion was removed by setting κT = 0).
For the simulation with switched off mesoscale eddies (i),
it is desirable to remove the eddy signatures also from the
nutrient (N) data. We have compared two simulations with the
eddy advection �u: (a) one that used the CMEMS product for
nutrients (N) and (b) another simulation, which used for N the
2017–2018 mean CMEMS nutrient concentrations. The two

simulations produced very similar results for the chlorophyll
(not shown here), e.g., the differences in the magnitude of
spatial variability were on all scales <5%. In this paper we
show the results for the latter simulation (b), but we will keep
in mind that those results are representative of both those
simulations.

We have observed that advection has substantial impact
on the mean chlorophyll values. The levels of chlorophyll
increased more than twofold when mesoscale eddies and dif-
fusion (mostly subgrid eddy mixing) were removed (Fig. 6).
Furthermore, removing also the mean currents increased
chlorophyll concentrations more than threefold with respect
to their original value (not shown). The mean chlorophyll
concentration for the zero advection calculated from the RDA
model numerical simulation has been found to match re-
markably well (on the level of 3%) with the prediction of
the stochastic steady state solution from Eqs. (9) and (10).
The limiting impact of the advection (or diffusion) term
on the primary productivity is well known in the literature on
the RDA-like models ([30,35,82–88]) and can be understood
through a simple argument: Take nL, nS and chN , chS where
nL, chL are “large” nutrient and chlorophyll concentrations,
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FIG. 6. The impact of nutrient concentrations on the mean
chlorophyll. The values shown in the figure are the averages through
the RDA model spatial domain and the year 2018. It is shown that
eddies stabilize the chlorophyll concentration: without eddies the
50% decrease in nutrients leads to almost 50% decrease in chloro-
phyll, while in the presence of CMEMS eddies the 50% decrease in
nutrients lowers chlorophyll only by ∼20%.

while nS, chS are “small” nutrient and chlorophyll concentra-
tions. Since “large” is larger than “small” we have

(nL − nS )(chL − chS ) > 0 (14)

implying that

nLchL + nSchS > nLchS + nSchL. (15)

Advection (e.g., eddy mixing) brings large chlorophyll con-
centrations chL to areas with worse growth conditions (small
nutrient concentrations nS) and vice versa, the growth term
then corresponds to the right side of Eq. (15), whereas if there
was no advection the growth term is described by the left
side of Eq. (15). This means when there is advection (eddy or
mean) the growth term is smaller than if there is no advection.
However, focusing purely on eddies, their size matters: the
eddies that impact primary productivity have to act on a scale
with substantial nutrient variability. Otherwise, the inequality

between the two growth terms in Eq. (15) has small impact
since chL and chS (nL and nS) are of comparable size. For ex-
ample, the turbulent diffusion term representing eddy mixing
beneath the 25 km scale has been found to have very little
impact (∼10%) on the mean chlorophyll concentration.

By removing (mesoscale and subgrid) eddies, the mag-
nitude of chlorophyll spatial variability (��ρ) increases on
all scales roughly fourfold [Fig. 7(b) and Table I]. This is
not hugely surprising since the removal of mesoscale ed-
dies increased primary productivity and doubled the mean
chlorophyll concentrations. The increased chlorophyll con-
centrations then usually imply a higher chlorophyll variability.
However, the different scales of eddy impact on the chloro-
phyll distributions can be estimated from the chlorophyll
scaling slopes �̃�ρ [Eq. (13) and see also [76]], rather than
directly from the magnitude of chlorophyll spatial variability
[��ρ, Eq. (12)]. Eddies should lower variability (steepen the
scaling slope) above the characteristic eddy scale (they mix,
therefore smooth) and increase variability (flatten the scaling
slope) at the range of scales with eddies (due to characteristic
eddy patchiness). Assuming that any smoothing effect above
the eddy scale goes away at a sufficiently large scale, one can
determine the range of scales where the �̃�ρ differs between
the case with and without eddies. Given that above �500 km
�̃�ρ scales with similar slope in both cases (the case with
eddies vs the case without eddies), it is natural to assume that
the only important impact of eddy patchiness, or eddy mixing,
on the chlorophyll variability happens at �500 km where
the removal of eddies steepens the ��ρ scaling slope (10%
increase in variability under ∼250 km, due to eddy patchiness,
see Fig. 7 and also Table I). Using the chlorophyll �̃�ρ from
Fig. 7 and approximating it on the 100–500 km range with
a power law, one can estimate the chlorophyll scaling expo-
nent as H ≈ 0.6, which is somewhat above the previously
estimated passive turbulent tracer range at mesoscale [73] and
may indicate a mixed active tracer-eddy advection regime.

It is interesting to analyze the interaction between explicit
advection terms and the subgrid eddy mixing captured by the
turbulent diffusion term (Fig. 8, Table II). Due to mesoscale
eddies and large-scale currents (“mean” flows) the smooth-
ing impact of turbulent diffusion spreads to the large spatial
scales, i.e., at the resolution ∼25 km scale removing tur-
bulent diffusion more than triples the chlorophyll variability

TABLE I. We show the impact of different drivers on the chlorophyll magnitude of spatial variability (��ρ). The table shows the values
displayed in Figs. 7 and 8. The first column shows the percentage change in the magnitude of spatial variability at 2500 km after we removed
a specific driver (turbulent diffusion, eddy, and mean advection) from the fully forced RDA run. The numbers in the first column amount
to the comparison of the different curves from Fig. 7(b) at 2500 km, and the purpose of those numbers is to show the overall change to the
spatial variability at the regional scale. The second to fourth columns display the percentage change to the spatial scaling slopes �̃�ρ [the
scaling slopes are understood as a ratio ��ρ/�Lρ with L = 2500 km, see Fig. 7(a)] in the situation without a specific driver when compared
to the fully forced RDA model. The percentage change is shown for a range of values within three intervals of spatial scales: 25–100 km,
100–500 km, and 500–2500 km. The ↑↓ symbols before the numbers indicate whether the RDA value increases (↑) or decreases (↓) when the
specific driver is removed.

Removed driver ��ρ at 2500 km 25–100 km 100–500 km 500–2500 km

Diffusion ↑ 10% ↑ 108%–238% ↑ 30%–108% ↑ 0%–30%
Diffusion and eddy ↑ 340% ↓ 13%–16% ↓ 6%–16% ↓ 0%–6%
Mean advection ↑ 580% ↓ 25%–30% ↓ 6%–25% ↓ 0%–6%
Diffusion and eddy and mean ↑ 600% ↓ 44%–54% ↓ 14%–44% ↓ 0%–14%
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TABLE II. We show how the different drivers (eddy and mean advection) propagate the impact of turbulent diffusion on the chlorophyll
magnitude of spatial variability (��ρ), as displayed in Fig. 8. The first column shows the percentage change in the magnitude of spatial
variability at 2500 km between the runs with and without turbulent diffusion, after we removed a specific driver (turbulent diffusion, eddy,
and mean advection) from the fully forced RDA run. The numbers in the first column amount to the comparison of the pairs of curves from
Figs. 8(a)–8(d) at 2500 km, and the purpose of those numbers is to show the overall change to the spatial variability at the regional scale. The
second to fourth columns display the percentage change to the spatial scaling slopes �̃�ρ [the scaling slopes are understood as a ratio ��ρ/�Lρ

with L = 2500 km, see Fig. 7(a)] in the situation with and without turbulent diffusion after a specific driver was removed from the fully forced
RDA model. The percentage change is shown for a range of values within three intervals of spatial scales: 25–100 km, 100–500 km, and
500–2500 km. The ↑↓ symbols before the numbers indicate whether the RDA value increases (↑) or decreases (↓) when the specific driver is
removed.

Removed driver ��ρ at 2500 km 25–100 km 100–500 km 500–2500 km

None ↑ 10% ↑ 108%–238% ↑ 30%–108% ↑ 0%–30%
Eddy ↑ 10% ↑ 26%–75% ↑ 3%–26% ↑ 0%–3%
Mean advection 0% ↑ 83%–196% ↑ 18%–83% ↑ 0%–18%
Eddy and mean 0% ↑ 7%–15% ↑ 1%–7% ↑ 0%–1%

(Table II) and it increases variability by at least 10% up to
2000 km scale [see Fig. 8(d)]. We can then separate out the
relative impact of the mesoscale eddies and the mean currents
on the large-scale smoothing (see Fig. 8). With the model
advection completely turned off, removing turbulent diffusion
increased the magnitude of chlorophyll spatial variability by
a maximum 10% at the resolution scale [Fig. 8(a), Table II],
with a detectable impact on the chlorophyll variability con-
strained to the �70 km scales. By switching on mean currents,
but no mesoscale eddies, removing the turbulent diffusion
increased the chlorophyll variability by about 100% at the
resolution scale, and the impact of turbulent diffusion on
chlorophyll variability lasted up to ∼4000 km [but beneath
10% from 700 km scale, Fig. 8(c), Table II]. Switching on
mesoscale eddies but not the mean currents, the turbulent
diffusion term impacted the chlorophyll variability approxi-
mately up to the 600–800 km scale [Fig. 8(b)]. Overall, the
impact of the turbulent diffusion term seemed to be equally
amplified by the mesoscale eddies and the mean currents
[Figs. 8(b) and 8(c), Table II].

B. Temporal analysis

Figure 9 shows an exact analog of Fig. 8 with the temporal
scaling replacing the spatial scaling. It is shown that with
no advection, the turbulent diffusion term has a negligible
effect on the magnitude of chlorophyll temporal variability
above the daily scale [Fig. 9(a)]. The impact of advection
on the chlorophyll diffusive smoothing [Figs. 9(c) and 9(d)]
appears highly nonlinear: The largest effect is observed due
to the mean currents and this effect is perhaps surprisingly
reduced when also eddies are removed [Fig. 9(d)]. However,
more broadly the conclusions based on the temporal analy-
sis (Fig. 9) are consistent with the spatial analysis (Fig. 8).
Figure 9 confirms that advection substantially increases the
impact of turbulent diffusion on the chlorophyll variability on
a large range of scales (>10% for up to the 180 day timescale).

C. A relationship between chlorophyll spatial
and temporal scales

The chlorophyll distributions are influenced by the com-
plex dynamics occurring at wide ranges of spatial and

temporal scales. To have a simultaneous understanding of the
ecosystem processes across a range of spatiotemporal scales,
it is of general interest to find a relationship between the char-
acteristic spatial and temporal scales for the processes driving
surface chlorophyll. In this short section we will not distin-
guish between the specific processes driving chlorophyll, but
we will demonstrate (Fig. 10) a methodology (developed in
[76]) on how to find a relationship between the spatial and
the temporal scales for the magnitude of chlorophyll variabil-
ity. In essence, the relationship is defined by computing the
magnitude of temporal variability for a sequence of low-pass
filtered CMEMS chlorophyll spatial distributions at a range
of spatial scales (125, 500, and 2000 km). Spatial filtering
removes processes that occur on the subfilter spatial scales and
those processes typically influence the chlorophyll dynamics
on some specific range of temporal scales. For example, the
processes removed by the spatial filtering may lead to a sub-
stantial decrease in the CMEMS chlorophyll daily variability
(Fig. 10). As one increases the temporal scale, the spatial
high-resolution scale processes that were removed by the low-
pass filter play a lesser role in the magnitude of chlorophyll
temporal variability (��ρ) and the ��ρ curves of the spatially
filtered and the unfiltered chlorophyll start converging to each
other. This means that the difference in the daily variability
between the filtered and the unfiltered chlorophyll (we will
call it “missing daily variability of the filtered data” and ab-
breviate it with MDVFD) is reduced when we increase the
temporal scales. The connection between spatial and temporal
variability is provided as follows: For each spatial filter (at
spatial scale �) we subdivide the temporal scales into different
ranges (<1 month, 1–6 months, >6 months) and ask how
much was MDVFD reduced at each specific range of temporal
scales. Then if MDVFD reduces by N% at a certain range
of temporal scales (e.g., 1–6 months), then we say that this
specific range of temporal scales contains N% of MDVFD.
It is then clear that as one increases the spatial scale of the
low-pass filter, one removes processes with longer temporal
scales and larger fraction of MDVFD will be concentrated
at larger temporal scales (e.g., above the scale of 6 months).
This provides a connection between the spatial scale of the
low-pass filter and the ranges of temporal scales of MDVFD.
Figure 10 shows this spatiotemporal relationship: while the
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FIG. 7. Panel (a) shows the percentage reduction in the magni-
tude of chlorophyll spatial variability (��ρ) when compared to the
magnitude of its spatial variability at the scale L = 2500 km (�Lρ)
or, equivalently, it compares the spatial scaling slopes (�̃�ρ) for the
different simulations. Panel (b) shows the absolute values for the
magnitude of spatial variability ��ρ (in mg/m3). The ��ρ (b) and
�̃�ρ (a) curves represent the 2018 annual averages of the spatial
scaling of the daily data. Both x and y axes are on a log-scale.
We show the relative (a) and absolute (b) chlorophyll magnitude of
spatial variability for the different dynamical scenarios of the RDA
model: (i) model forced by both mean and eddy surface currents
(“RDA, adv”), (ii) model forced only by the mean currents (“RDA,
only mean adv”), and (iii) model with all the (eddy and mean)
advection removed (“RDA, no adv”). In addition to the chlorophyll
variability, the cyan line marked with diamonds in (a) shows the
magnitude of spatial variability for the 2017–2018 averaged nutrient
concentrations (“CMEMS, nutrient clim”). The dashed lines parallel
to the variability curves mark a 100% and 300% increase in the mag-
nitude of spatial variability with respect to the RDA model forced
by both eddy and mean advection. The vertical lines show the scales
from which the relative scaling remains within 10% from the fully
(eddy and mean advection) forced RDA model.

125 km spatial filter has 50% of MDVFD on submonthly
scales and only 2% of MDVFD on scales larger than half-year,
the 2000 km spatial filter corresponds to 17% of MDVFD
on the submonthly scale and almost 50% of MDVFD on the
scales larger than half-year.

D. Impact of nutrients and eddies on chlorophyll

In the climate change scenarios the upper ocean warms
up, leading to increased ocean stratification. The increasingly
stratified ocean acts as a barrier to vertical nutrient mixing
and lowers the surface nutrient concentrations [89,90]. Aside
from nutrients, the increased vertical stratification influences
the first baroclinic Rossby radius impacting on the mesoscale
eddy kinetic energy (EKE, [91,92]). In this section we will
use the RDA model to explore the impact of the changed

nutrients and EKE on the surface chlorophyll. Although the
RDA model is a major simplification, we believe it might
offer at least some qualitative insights into how phytoplankton
might respond to some of the environmental changes. A form
of analytical relationship between the mean chlorophyll and
the mean nutrients has been derived for the stochastic steady
state of the RDA model in Eq. (4). However, in reality chloro-
phyll might be far from a stochastic steady state prediction
described by Eq. (4) and we have found (not shown here) that
the stochastic steady state model does not approximate well
the simulations from this study.

In Fig. 6 we show the spatiotemporal means (for 2018
and the RDA spatial domain) of chlorophyll and nutrients
plotted against each other in a series of experiments, where
the CMEMS nutrients and EKE (forcing the RDA model)
were rescaled by constant factors, i.e., as k · N (t, �x), where
N are the nutrients from the CMEMS model. The constant
(k) factors were for nutrients taken from the k ∈ (0.5, 1.4)
interval and for EKE from the k ∈ (0, 1.7) interval (in case
of EKE we rescaled each eddy velocity component with the
same factor). Figure 6 demonstrates that changing EKE by
±50%–70% has a relatively minor impact on the mean chloro-
phyll concentrations, while lowering EKE more substantially
(by ∼85% and more) can have a large impact on the mean
chlorophyll concentrations. Figure 6 also demonstrates that
under the increased EKE, phytoplankton becomes increas-
ingly insensitive to the changing nutrients: with zero EKE
chlorophyll scales almost linearly with nutrients [e.g., 50%
decrease in nutrients amounts to 50% decrease in chlorophyll
concentrations, similar to Eq. (5)], while with increased EKE
the scaling becomes increasingly sublinear (e.g., for CMEMS
EKE 50% decrease in nutrients there is about 20% decrease
in chlorophyll concentrations). This is an interesting result
implying that in the increased EKE scenario the phytoplank-
ton concentrations become more stable. In particular, the RDA
model suggests (Fig. 6) that within ±70% of the current EKE
levels, a dramatic decline of nutrients has comparably small
impact on chlorophyll. It is not entirely clear how to interpret
this result, nor how seriously it should be taken: we would
recommend to take it with a lot of caution, unless it is recon-
firmed in more realistic simulations using higher-complexity
models.

It is also interesting to explore how the chlorophyll surface
distributions respond to the changes imposed on the nutri-
ents, or EKE. Since in the tropical Pacific the chlorophyll
spatial variability dominates over temporal variability (Fig. 3)
it is useful to understand how the spatial regional patterns
of chlorophyll change under the changed chlorophyll mean.
In Fig. 11 we show the impact of halved nutrient concen-
trations [Figs. 11(a) and 11(b)] and decreased EKE by 88%
[Figs. 11(c) and 11(d)] on the chlorophyll annual mean spatial
distributions. The changed nutrient concentrations and the
eddy velocities were rescaled versions of the original CMEMS
data, where by “rescaled” we mean the original CMEMS
distributions multiplied by a spatiotemporally constant factor.
Figure 11 shows that the resulting chlorophyll 2018 mean
spatial distributions are far from being the rescaled versions
of the 2018 mean chlorophyll forced by the CMEMS data.
In particular, Fig. 11(a) shows that under the nutrient de-
cline chlorophyll changes by substantially larger proportion
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FIG. 8. The impact of the turbulent diffusion term in the RDA model on the chlorophyll magnitude of spatial variability (2018 averages
from daily ��ρ, all in mg/m3) depending on the advection input: no advection (a), only mesoscale eddy advection (b), only mean advection
(c), both mean and mesoscale eddy advection (d). The dashed lines parallel to the ��ρ curves mark a 10% and 100% increase in the magnitude
of spatial variability with respect to the RDA model with the turbulent diffusion. The vertical lines show the scale from which ��ρ matches
the fully forced model within 10%. When there is no advection, the turbulent diffusion term has a spatially limited impact up to ∼70 km scale.
With mesoscale eddies and/or mean currents the impact of turbulent diffusion on the chlorophyll magnitude of spatial variability increases
two to four times at the resolution scale and becomes substantial up to 600–700 km scale with mean currents having non-negligible impact up
to the largest scale (∼4000 km). The overall impact of mesoscale eddies and mean currents on the turbulent diffusion term is comparable.

in the areas with higher chlorophyll concentrations (eastern
tropical Pacific). This indicates that areas with the highest
biological activity are also most vulnerable to change. It is
perhaps surprising that reducing nutrients [Figs. 11(a) and
11(b)] has proportionally the largest impact on chlorophyll
in the chlorophyll-rich areas, since the same areas have cor-
respondingly highest eddy activity (Fig. 1) and chlorophyll is
less sensitive to the nutrient concentrations in the presence of
eddies (Fig. 6).

E. Scale propagation of a multiplicative stochastic noise

In the last part of our analysis we investigate the impact of a
stochastic Gaussian white noise on the chlorophyll dynamics
across a range of spatial scales. Such white noise usually
represents a number of higher-complexity, scale-constrained
processes that were not explicitly included into the dynam-
ical model. If such processes have linear relationship to the
dynamical model variables, their impact on the model vari-
ables will remain constrained to the (spatiotemporal) scales of
those processes. However, if the relationship between those
processes and dynamical model variables is highly nonlinear,
the impact of those processes on the model variables may

propagate beyond the original scale of the process. A simple
example is the impact of wind stress on the vertical mixing
and primary productivity in the water column: the phenom-
ena observable on weekly timescales, such as phytoplankton
blooms (e.g., see the critical turbulence hypothesis in [93]),
may be sensitive to such details, as to whether we capture
wind stress with an hourly, or three-hourly, resolution [94].

We have run the 2017–2018 model simulation with a
multiplicative white noise [95,96] to account for a ran-
dom variability in the growth rate parameter P [Eq. (1)].
The multiplicative Gaussian noise has already proven to
be both realistic and useful in the population dynamics
models [97,98]. Figure 12 compares simulations in which
the growth parameter (P) was perturbed by the Gaussian
noise with 20% standard deviation (corresponding to �P =
±1.4.10−8 m3 mmol−1 s−1). The random perturbations were
applied as a white noise on the RDA model-grid spatiotempo-
ral scale (25 km and 1 day). Figure 12 shows the magnitude
and scale propagation of the stochastic noise impact on
chlorophyll in simulations using different sets of dynamical
drivers (the RDA model, the RDA model without mean cur-
rents, the RDA model without eddies, the RDA model without
any advection). The outputs for the stochastic simulations
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FIG. 9. The impact of the turbulent diffusion term in the RDA model on the chlorophyll magnitude of temporal variability (in mg/m3)
depending on the advection input: no advection (a), only mesoscale eddy advection (b), only mean advection (c), both mean and mesoscale
eddy advection (d). The dashed lines parallel to the variability curves mark a 10% and 100% increase in the magnitude of temporal variability
with respect to the RDA model with the turbulent diffusion. The vertical lines show the scale from which the variability matches the fully forced
model within 10%. The combined impact of mesoscale eddies and mean currents on how turbulent diffusion spreads across timescales is highly
nonlinear: removing mean currents close to the daily timescale impacts chlorophyll temporal variability more (in both absolute numbers and
proportionally) than removing both mean currents and mesoscale eddies. If there is no advection, turbulent diffusion has no impact on the
chlorophyll temporal variability above the daily scale (upper left panel). By including mean currents, but no mesoscale eddies, turbulent
diffusion increases the magnitude of chlorophyll temporal variability by >10% on the full range of scales (1 day–1 year). By including eddy
advection, but no mean currents, turbulent diffusion has <10% impact on the magnitude of chlorophyll temporal variability above the ∼80
day scale, which is broadly consistent with Fig. 6. Removing both mesoscale eddies and mean currents has <10% impact on the magnitude of
chlorophyll temporal variability above the scale of a half-year.

were low-pass filtered at different scales (25, 100, 400, and
1600 km and at the “regional” scale, 6400 km, where only
total spatial averages were calculated) and compared with
the corresponding low-pass filtered deterministic simulations
(with the fixed P value). The chosen metric for the comparison
was the root mean square difference (RMSD). Figure 12(a)
shows the percentage of the 25 km scale RMSD that remains
on scales >25 km. The larger the percentage, the more the
25 km white noise is propagated to the larger scales by the
model dynamics. The reduction of chlorophyll RMSD as a
function of scale is compared to the scaling of the mean ab-
solute value of the white noise originally applied to the RDA
model [shown by the black dashed curve in Fig. 12(a) labeled
as “noise”]. The white noise is by definition uncorrelated on
the scales above 25 km, but it remains visible also on the 100–
1000 km spatial scales (on the level of <10%, Fig. 12) since
the low-pass filtering applied at �100 km scales effectively
averages out the white noise over a finite number of samples,
so the low-pass filtered mean will differ from the theoretical
zero mean of the sampling Gaussian distribution. The number

of samples increases with the spatial scale of the low-pass
filter and in the limit of infinite scale the mean absolute value
of the noise is precisely zero. Since the nonlinear dynamics
of the RDA model is expected to propagate the white noise
to larger scales, the mean absolute value of the white noise
applied to the RDA model is expected to reduce faster than the
RMSD of chlorophyll. The black dashed curve in Fig. 12(a)
can be then interpreted as a “theoretical maximum” for the
chlorophyll RMSD reduction as a function of scale, such
theoretical maximum being reached when the RDA does not
scale propagate the stochastic noise.

For a nonadvective RDA model (�u = κT = 0) the mul-
tiplicative noise generates at each spatial point a type of
random-walk solution which is constrained to some neigh-
borhood of the steady state solution [Eq. (7)]. The steps of
the random walk are larger in nutrient-rich areas, however,
this might be compensated by the fact that the convergence
of a perturbed solution to the unperturbed solution might
be faster in the areas with larger nutrient concentrations
[Eq. (8)]. Figure 12 shows that the multiplicative noise with
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FIG. 10. The upper panel (a) shows the magnitude of temporal
variability (in mg/m3) for the spatially filtered CMEMS chlorophyll
data (moving median filter) at a range of scales: 25 km (original
resolution), 125 km, 500 km, 2000 km, and the magnitude of tempo-
ral variability of the regional mean value (“CMEMS reg. average”).
The two local minima (dashed vertical lines) in the curve for the
regional mean value correspond to the biannual periodicity in the
CMEMS chlorophyll. The scale where the temporal variability of the
spatially filtered data meets with the temporal variability of the orig-
inal CMEMS (25 km) data is the scale where the processes removed
by the spatial filtering have no longer impact on the magnitude
of chlorophyll temporal variability. The upper panel then provides
connection between the spatial and the temporal scales shown in the
bottom panel (b). The bottom panel demonstrates how the temporal
variability of the spatially filtered data (at 125, 500, and 2000 km)
splits (in %) into three categories: <1 month variability, 1–6 months
variability, and >6 months variability. We see that when we remove
processes beneath 125 km the >6 months variability is only 2% of
the missing daily variability, while in the case of 2000 km spatial
filter it grows to 50%.

20% standard deviation leads to 4% RMSD in chlorophyll
when the model has no advection, or runs with only mean
advection [Fig. 12(b)]. The RDA model without mesoscale
eddies (and subgrid eddy diffusion) does not propagate the
noise to the �100 km scales, as the noise reduction in those
simulations is close to its “theoretical maximum” [Fig. 12(b)].
When mesoscale eddies (and subgrid eddy diffusion) are
included, the fluctuations in chlorophyll introduced by the
stochastic noise on the 25 km scale, decrease to 2%, or 1%
depending on whether we include also the mean currents
[Fig. 12(b)]. However, mesoscale eddies and the turbulent
diffusion term introduce scale propagation into the chloro-
phyll noise, with 10%–30% of the 25 km fluctuations visible
on the 100–500 km scales [Fig. 12(a)]. The reason for this
scale propagation of the chlorophyll noise is the eddy mixing,
which smooths the chlorophyll noise, lowering the size of

the chlorophyll random fluctuations [see the lower RMSD
at the 25 km scale, Fig. 12(b)], but introducing larger-scale
correlations to the random fluctuations. These larger-scale
correlations explain why the RMSD reduces comparably
slowly as a function of scale [Fig. 12(a)].

F. Summary

Low-complexity reaction-diffusion or reaction-diffusion-
advection models have been often used to study conceptual
questions in population biology, such as the critical patch
size for population survival [35]. However, a realistic simu-
lation of phytoplankton dynamics in a specific global region
is typically assumed to require a medium- or high-complexity
model. Here we demonstrate that for very specific purposes
in a suitably tailored choice of region (e.g., tropical Pacific),
the RDA model forced by a higher-complexity model out-
puts for nutrients and surface currents, provides a sufficiently
realistic simulation for the phytoplankton chlorophyll concen-
trations (a proxy for primary productivity and phytoplankton
biomass). The advantage of the RDA model is that the model
depends only on few external inputs and model parameters,
all of which are straightforward to interpret and modify. Since
the model is computationally cheap to run and can be easily
perturbed with a stochastic noise, one can produce an almost
arbitrary number of both deterministic and stochastic simula-
tions.

We use the RDA model to develop a multiscale view of a
driver (eddy and mean advection, eddy diffusion) impact on
the chlorophyll distributions. The impact of different drivers
on chlorophyll is explored in a series of simulations, where
we remove specific set of drivers and analyze the changes to
the chlorophyll variability on a range of spatial (25–2500 km)
and temporal (1 day–1 year) scales. We show that for the 1/4◦
model, advection has a major impact on the mean chlorophyll
concentrations. Turbulent diffusion has a negligible impact on
the mean chlorophyll concentrations, but it is propagated by
the larger-scale currents and influences chlorophyll variability
on a wide range of spatial and temporal scales. The scale
impact of drivers on the phytoplankton was evaluated through
the magnitude of spatial or temporal variability corresponding
to the first statistical moment of chlorophyll increments (e.g.,
[65]); in the future this analysis might be extended to a more
complete statistical view of chlorophyll scaling that would
include also higher statistical moments.

We analyzed the impact of surface nutrient decline and
changes to the mesoscale eddy kinetic energy (EKE) on the
mean surface chlorophyll concentrations (some changes to
nutrients and EKE are projected in the future climate sce-
narios). The RDA model indicates that unless EKE radically
changes from its current levels, chlorophyll tends to scale
sublinearly with nutrients, which implies that the chlorophyll
concentrations are relatively stable with respect to the nutrient
decline. However, the RDA model also shows that the chloro-
phyll sensitivity to nutrients goes through a sudden transition
and becomes substantially larger if we minimize the EKE to
0%–15% from its current value. In the limit of vanishing EKE,
chlorophyll scales with nutrients approximately linearly. We
also investigate the spatial scale propagation of a white mul-
tiplicative Gaussian noise, introduced into the RDA model on
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FIG. 11. Panels (a) and (b) show the impact of 50% nutrient decrease on the annual 2018 mean chlorophyll concentrations. Similarly to
(a) and (b), the (c) and (d) show the impact of 88% decrease in the EKE on the mean annual 2018 chlorophyll concentrations. Panels (b) and
(d) show the absolute change (in mg/m3) in chlorophyll concentrations when compared to the simulation forced by the CMEMS nutrients and
EKE. Panels (a) and (c) show the same change, but relative (in %) to the values of the simulation using the CMEMS data.

FIG. 12. The two panels show the impact of different drivers (e.g., mean and eddy advection, biological activity) on the propagation of a
white stochastic noise in the RDA model. Panel (b) shows the root mean square difference (RMSD) in chlorophyll between the stochastic run
and the corresponding deterministic run (y axis) vs spatial log-scale (x axis). The RMSD values are divided by the mean 2018 chlorophyll of
the deterministic run and shown in %. Panel (a) shows the same quantity, only compared (in %) to its own value at the lowest, 25 km scale.
The purpose of (a) is to show how the impact of the stochastic noise propagates through the spatial scales under different dynamical scenarios.
The different scenarios are (i) the RDA model configuration with the mean and eddy currents (“RDA, adv”), (ii) the RDA model with the mean
currents removed (“RDA, only eddy adv”), (iii) the same RDA configuration with the mesoscale eddies and diffusion removed (“RDA, only
mean adv”), and (iv) the RDA model without any advection (“RDA, no adv”). Panel (a) compares the chlorophyll RMSD to the scaling of a
white noise (“noise”) applied at the model resolution scale.
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the model resolution scale. We demonstrate that the impact of
the stochastic noise on the chlorophyll concentrations prop-
agates to 100–500 km spatial scales through the mixing by
eddy advection and diffusion term.

This study aims to provide an inspiration for researchers
to further explore specific contexts in which low-complexity
models could serve as a sufficiently realistic tool to address
questions that would often be beyond the computational af-
fordability of the higher-complexity models. The limitations
of the low-complexity model need to be always recognized,
but this should not mean that low-complexity models have
to be always discarded as a tool of realistic modeling. Even-
tually, the future modeling could become a multicomplexity
effort, where high- and medium-complexity models become

integrated with low-complexity models, each serving its opti-
mal purpose while mutually achieving the desired goal with
a reduced computational cost. Moreover, the low-complexity
models such as the RDA model used in this study could
provide a priceless public educational tool to enhance the
understanding of marine biogeochemistry in different realistic
situations.
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