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The noisy voter model is a stylized representation of opinion dynamics. Individuals copy opinions from other
individuals, and are subject to spontaneous state changes. In the case of two opinion states this model is known
to have a noise-driven transition between a unimodal phase, in which both opinions are present, and a bimodal
phase, in which one of the opinions dominates. The presence of zealots can remove the unimodal and bimodal
phases in the model with two opinion states. Here we study the effects of zealots in noisy voter models with
M > 2 opinion states on complete interaction graphs. We find that the phase behavior diversifies, with up to six
possible qualitatively different types of stationary states. The presence of zealots removes some of these phases,
but not all. We analyze situations in which zealots affect the entire population, or only a fraction of agents, and
show that this situation corresponds to a single-community model with a fractional number of zealots, further
enriching the phase diagram. Our study is conducted analytically based on effective birth-death dynamics for the
number of individuals holding a given opinion. Results are confirmed in numerical simulations.
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I. INTRODUCTION

Three main components of individual-based models of
natural and social processes are the states the individual
constituents can be in, the topology of interactions, and the
dynamics of these interactions. The term “states” refers to
dynamic properties agents can hold, for example, they may
be infected or recovered in a model of an epidemic, or be
of a particular opinion in a model of social dynamics. The
interaction network describes who a given individual can in-
teract with, and the dynamical rules specify the details of
the interaction process (for example infection, or adopting an
opinion held by another agent) [1,2]. It is well established that
the details of state space, topology, and interaction rules have
significant consequences on the global behavior emerging in
interacting-agent systems [1,3].

The so-called voter model (VM) is a good illustration of
this. The VM provides a stylized description of the dynamics
of opinions in a population of voters [4,5]. In the most basic
version, each individual holds one of two possible opinions.
An individual’s state can change by means of an imitation
process. More precisely the individual copies the opinion
state of one of its neighbors on the interaction graph. This
dynamics comes to a halt when consensus on one opinion is
reached. If the effective dimension of the network is below
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two, populations described by the VM will always evolve
towards consensus. In higher dimensions multiple opinions
can coexist indefinitely [6–8].

The VM is not only sensitive to the topology (dimension)
of the interaction network, but also to the inclusion of addi-
tional randomness in the dynamics. This is very apparent in
the context of the so-called “noisy voter model” (NVM). In
this model individuals interact via the above imitation process,
but they can also change opinion spontaneously without inter-
action with anyone else in the population [9–11]. One main
consequence of this modification is the removal of consensus
states as absorbing endpoints of the dynamics. We note that
care needs to be taken when interpreting the word “noisy” in
“noisy voter model.” The standard (“non-noisy”) VM contains
an element of stochasticity as well: At any iteration an agent
is chosen at random for update, and then copies the state of
a randomly chosen neighbor. The term noisy in NVM is used
to indicate the possibility of spontaneous state changes of the
individuals.

One main object of interest in the NVM with two opin-
ion states (labeled 1 and 2) is the stationary distribution
Pst (n1), for the number of agents n1 holding opinion i = 1.
The number of individuals who are in opinion state i = 2 is
n2 = N − n1, if N is the total size of the population. Assum-
ing a nonzero noise strength, the support of this distribution
is 0 � n1 � N . If the noise is sufficiently small, the system
spends most of its time close to the consensus states (n1 = 0
and n1 = N , respectively), and travels from one consensus
state to the other. The system is said to be in the “bimodal”
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state: Ps(n1) has bimodal shape, with peaks at n1 = 0 and
n1 = N . On the other hand, if the population is finite and the
noise strength is above a certain threshold value, the system is
in the so-called “unimodal phase.” Assuming that there is no
intrinsic preference for any of the opinion states, the stationary
distribution has one single maximum at n1 = N/2. The topol-
ogy of the interaction networks does not affect the nature of
this transition. It only acts to modify the threshold value of the
noise amplitude separating the two phases [12–14].

Owing to its simplicity and analytical tractability, the NVM
has been studied and generalized [9,11,15–25] in various dif-
ferent directions. This includes nonlinearity in the imitation
rates [26,27], memory effects [28–31], the introduction of
contrarians [32] or zealots [33], and multistate noisy voter
models [34].

Multistate VM are variants of the VM in which each in-
dividual holds one of M � 2 opinions. One main focus of
the analysis of multistate VM without spontaneously opinion
changes has been the time it takes to reach consensus (the
so-called consensus time) [35–37]. Other works are concerned
with the geometry of the ordering process by which the
system approaches consensus [38–40]. The consensus time
was found to be a slowly increasing function of the number
of states, saturating when the number of states tends to in-
finity [41,42]. The geometry of the evolution to consensus
depends on, amongst other things, the effective dimension
of the interaction network. In two dimensions for example
the logarithmic coarsening of the two-state VM can turn into
algebraic ordering with an effective surface tension [39,40].

Multistate extensions of the NVM have been considered
for example in [34,43,44]. In [34] it was shown that there is no
unique transition point in the multistate NVM with more than
two states M > 2. Instead, the marginals of the stationary dis-
tribution change shape at their left and right edges at different
threshold values of the noise strength. This is a consequence
of a breaking of symmetry. In the two-state model, one has
Pst (n1) = Pst (N − n1) by constructions. In multistate models,
this symmetry no longer holds for the marginal distributions
Pst

i (ni ) for the number ni of individuals holding a particular
opinion i = 1, . . . , M. Instead, the marginal distributions for
the ni are often concentrated on small but nonzero values.

As a separate aspect, the study of zealots in VMs has
attracted attention. Zealots are agents who never change opin-
ion. Their influence on “free individuals” (individuals who
can change opinion) has been analyzed in variants of the
VM [45–48], and in related models [49–55]. The presence of
zealots gives rise to a broader phenomenology. In particular,
in [33] it was shown that zealots in the two-state NVM affect
the nature of the transition between unimodal and bimodal
states. Changes of shape of the stationary distribution can hap-
pen near ni = 0 and ni = N , respectively, at different ratios
of noise and imitation strengths. As a necessary condition to
this, the number of zealots for each of the two opinion states
must not be the same [33]. There is then again a breaking
of symmetry in the stationary distribution. The transition is
removed entirely when there is an equal number of zealots
for each opinion state, and if these zealots affect all free
individuals.

The objective of this work is to study the effect of zealots
in multistate NVM. More specifically, we consider the NVM

with all-to-all interaction (“mean-field”), and two types of
individuals: free voters, who can be in any of the opinion
states, and zealots. Our main aim is to understand how the
combination of multiple states, noise, and zealots affects the
nature of the transition between multimodal and unimodal
states.

The remainder of the paper is set out as follows. Section II
contains the definitions of the model. In Sec. III we analyze
the baseline case in which all zealots affect the entire popu-
lation of free agents. Our results are exact, and allow us to
construct the phase diagram for the shapes of the marginals of
the stationary distribution. In Sec. IV we then consider a more
general situation in which free agents are divided into different
communities, and where zealots in any one community only
affect free agents in that community. This is shown to extend
the range of possible phases. Theoretical predictions of the
previous sections are compared against numerical simulations
in Sec. V. We summarize and discuss our work in Sec. VI.

II. MODEL DEFINITIONS

We consider population of N “free” individuals and Z
zealots. At any one time, each individual holds one of M opin-
ions. We label opinion states i = 1, . . . , M. Free individuals
can change opinion in an imitation process, to be described
below. The set of agents is divided into K communities, which
we label k = 1, . . . , K . The community any one agent belongs
to is fixed in time. We write N (k) for the number of free
agents in community k, and Z (k) for the number of zealots
in community k. The letters “Z” and “z” are pronounced
zet throughout this paper, not zee. We have N = ∑K

k=1 N (k)

and Z = ∑K
k=1 Z (k). We always assume K � 1, M � 2, and

N � M.
Zealots are agents of a particular opinion state who can

influence other agents but who never change opinion them-
selves. Our definition of a zealot is different from that in Ref.
[45], our zealots are ‘inflexible’ in-line with [49] and similar
models [56–59]. We write z(k)

i for the number of zealots of
opinion i in community k. Hence we have Z (k) = ∑M

i=1 z(k)
i .

The number of zealots is fixed at the beginning and does not
change with time.

We denote the number of free agents in community k who
are in opinion state i by n(k)

i . We will use the words “opinion
state” and “type” interchangeably, and refer to an individual
who is of opinion i as an agent of type i. The population
of free agents has no further structure beyond the division
into communities. The state of the system at any one time is
therefore fully specified by the vectors n(k) = (n(k)

1 , . . . , n(k)
M ),

k = 1, . . . , K . The total number of agents in opinion state i
is ni = ∑K

k=1 n(k)
i , and we have N (k) = ∑M

i=1 n(k)
i . We write

n = (n(1), . . . , n(K ) ).
Changes of opinion occur following the usual rules of the

multistate noisy voter model. Free agents can change opinion
by interacting with another individual (free voters or zealots)
in the population. In this process a free agent copies the opin-
ion state of the interaction partner. We assume that any free
agent can interact with any other free agent in the population,
regardless of the communities they belong to. Free agents in
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one community can however only be influenced by zealots in
that community.

Spontaneous opinion changes of free voter are also possi-
ble. The rate by which such state changes occur is proportional
to the model parameter ε. This quantity can be seen as a
“mutation rate” [34]. We assume that there is no particular
ordering of the opinion states; when a mutation occurs the new
opinion state of the agent is chosen at random and with equal
probability from the applicable M − 1 opinion states (the state
the agent is in just prior to mutation is excluded).

We assume that the dynamics unfolds in continuous time.
The processes in the population can then be defined by the
rates

T (k)
i→ j (n) = r

n(k)
i

(
n j + z(k)

j

)
N + Z (k)

+ εn(k)
i . (1)

This quantity is the rate with which free agents of type i in
community k convert into agents of type j. The first term on
the right-hand side describes events in which an individual of
type i in community k interacts either with a free agent of type
j of any community, or with a zealot of opinion j influencing
community k. As a consequence of this interaction the focal
agent changes state to j. The coefficient r > 0 in Eq. (1)
describes the “imitation rate.” Its role is mainly to set the units
of the time axis, and we will set r = 1 throughout. We can
then also think of the imitation dynamics as follows. An agent
is chosen at random from the entire population. Suppose this
individual is in community k. The individual then interacts
with a partner chosen at random from the N + Z (k) members
in community k, and adopts that individual’s opinion.

The second term in Eq. (1) describes spontaneous opinion
changes in community k from state i to state j. These are taken
to occur with per capita rate ε. This noise term distinguishes
the model for example from [48,51], to which it reduces
when ε = 0.

The focus of our investigation will be on the total number
of free agents holding any particular opinion. This is described
by the vector n = (n1, . . . , nM ). We note that only M − 1
of the entries of n are independent, since

∑M
i=1 ni = N . To

describe the dynamics of these variables we introduce rates
T +

i and T −
i . These are the rates for events in which the total

number of agents of type i across communities is increased
or reduced by one, respectively, ni → ni ± 1. The T ±

i (n) are
obtained as

T +
i (n) =

K∑
k=1

∑
j �=i

T (k)
j→i(n),

T −
i (n) =

K∑
k=1

∑
j �=i

T (k)
i→ j (n). (2)

Assuming a given configuration of zealots, and noting that∑
j �=i n j = N − ni and Eq. (1), the rates T ±

i for a fixed i can

be written in terms of the n(k)
i . That is to say knowledge of

the n(k)
j , j �= i is not required to compute T +

i and T −
i . The

reason for this reduction is as follows: From the point of
view of an individual of type i, other free individuals in the
population are either also of type i, or in different state j �= i.
Imitation and mutation rates are uniform across types, and

it is irrelevant for the birth-death rates for type i how many
of the other free agents belong to what types j �= i. All that
matters for the purposes of the imitation of other free agents
is how many individuals are not of type i. If there are multiple
communities, and if the configuration of zealots varies in the
different communities, then a breakdown of ni into the n(k)

i is
required to formulate the transition rates T ±

i .
The imitation and mutation rates r = 1 and ε in our model

do not vary across opinion states. In addition, we assume
all-to-all interaction between free agents. The only minimal
structure we allow is through the division of the population
of free agents into communities, each influenced only by a
subset of zealots. While many extensions are possible, we
deliberately choose a relatively stylized setup in order to be
able to systematically investigate the effects of the combina-
tion of noisy, multiple states and zealots in voter models. Our
main interest is in the statistical mechanics of a dynamics with
these different components. Nevertheless, we also think that a
model with multiple separate communities, each influenced
by different sets of zealots, can reflect some features of hu-
man social systems. For example, one can imagine different
communities in a city, all interacting with each other, but
influenced by different sets of leaders.

In Sec. III we focus on the case in which there is only one
single community (K = 1). The phase diagram can then be
obtained exactly. Subsequently, we will study a population
consisting of K = 2 communities (Sec. IV). Approximations
are then required to carry out the analysis. We test analytical
predictions for both cases against numerical simulations in
Sec. V.

III. ONE SINGLE COMMUNITY: ZEALOTS AFFECTING
THE ENTIRE POPULATION

A. Effective transition rates and marginals of
the stationary distribution

We focus on the case of one single community K = 1. This
means that zealots affect the entire population of agents. We
have ni = n(1)

i for all i, and zi = z(1)
i . The birth and death rates

for individuals of type i are obtained from Eqs. (1) and (2) as

T +
i (ni ) = (N − ni )(ni + zi)

N + Z
+ ε(N − ni ),

T −
i (ni ) = ni

N − ni + Z − zi

N + Z
+ (M − 1)εni. (3)

No approximation has been made to arrive at these expres-
sions. The object T +

i (ni ) is the rate with which individuals of
type i are generated (ni → ni + 1), and the second, T −

i (ni ),
is the rate with which individuals of opinion i change to any
other opinion (ni → ni − 1). The rates T ±

i only depend on ni,
but not on the n j with j �= i. This was observed in [34] in
the absence of zealots, and continues to be the case if zealots
are present. We stress that this approach does not allow us to
capture correlations between ni and n j for i �= j. That is to say,
from Eqs. (3) [or Eqs. (2) in more general] we cannot derive
information about the joint statistics of the ni, i = 1, . . . , M.
Instead our focus is on the shape of the marginal distributions
for individual variables ni.
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Using well-known results for one-step processes [60], the
marginal stationary distribution for ni is

Pst
i (ni ) =

∏ni
k=1

T +
i (k−1)
T −

i (k)

1 + ∑N
k=1

∏k
�=1

T +
i (�−1)
T −

i (�)

, (4)

where ni = 0, . . . , N . As in [33,34] the shape of these
marginals is a good indicator of the overall stationary distri-
bution of the population, and determines the different phases
of the system.

In order to characterize the shape of the marginals we
first formulate the following lemma (a proof can be found in
Appendix A):

Lemma 1. The marginal stationary distribution Pst
i (ni ) in

Eq. (4) has at most one extremum in ni ∈ {1, . . . , N − 1}.
As a consequence of this lemma, we can determine the

qualitative shape of the marginals once we know whether an
interior extremum is present or not, and if it is, whether this
is a minimum or maximum. In order to do this, in turn, we
only need to look at the behavior of the function Pst

i near
ni = 0 (“left edge”) and near ni = N (“right edge”). We will
also examine the central region of the distribution (ni near
ni = N/2).

B. Right edge

We start by looking at the right edge. Specifically,
we would like to decide when Pst

i (ni = N ) is smaller or
larger than Pst

i (ni = N − 1), respectively. This determines the
“slope” of the distribution at the right edge.

In the stationary state, there is no net flux of probability be-
tween states ni = N − 1 and ni = N , i.e., Pst

i (N − 1)T +
i (N −

1) = Pst
i (N )T −

i (N ). As a consequence, Pst
i (N − 1) = Pst

i (N )
if and only if T +

i (N − 1) = T −
i (N ). From this, and using

Eqs. (3), we find that the marginal distribution for ni changes
sign at the right edge when

1

N + Z
[zi(N + 1) − N (Z − 1) − 1]

− ε[(M − 1)N − 1] = 0. (5)

This leads to a threshold value of ε:

εr,i ≡ 1

N + Z

zi − 1 − N (Z−i − 1)

(M − 1)N − 1
(6)

at which the slope of the distribution at the right edge changes
sign. We have introduced the quantity Z−i ≡ ∑

j �=i z j . This the
number of zealots of any type j, except i.

If the expression in Eq. (6) is positive, then the shape
of the marginal at the right edge changes as ε crosses εr,i.
More precisely, for ε < εr,i the marginal distribution is an
increasing function of ni near the right edge, and for ε > εr,i it
is decreasing. If εr,i < 0, then no change of shape can occur,
one then always has a decreasing shape at the right edge, i.e.,
Pst

i (N ) < Pst
i (N − 1).

We note that the square bracket multiplying ε in Eq. (5) is
always positive (reflecting the fact that mutation acts in a di-
rection away from the edges of state space). This contribution
can only be overcome by the imitation process if the term in
the first square bracket is positive. This term describes the net
force due to imitation processes, and can be directed towards

or away from the state ni = N , depending on the number of
zealots for the different opinion states. A change of shape can
only occur if the net imitation force is towards opinion state i,
and when it balances mutation.

If there are no zealots in the population at all (zi = 0, Z−i =
0), then εr,i as defined in Eq. (6) is always positive, and the
change of shape of the marginal at the right edge occurs when
ε = εr,i = 1

N
N−1

(M−1)N−1 .
However, if Z−i > 0, i.e., if there are zealots of a any

type j �= i, then an O(N ) number of zealots for opinion i is
required to generate a net imitation force towards state i. A
change of shape can then occur when ε = εr,i. If there are not
sufficiently many zealots of type i, then mutation away from
state i combined with the zealots for opinions j �= i dominate,
and Pst

i (N − 1) > Pst
i (N ).

We now focus on the case with equally many zealots for the
different opinions states (zi ≡ Z/M for all i). The condition for
the existence of a transition εr,i > 0 becomes

zi <
N − 1

N (M − 1) − 1
. (7)

The right-hand side is evidently strictly smaller than one for
M � 3. This means that the transition at the right edge cannot
occur in noisy voter models with three or more opinion states
and a nonzero number of zealots equally distributed across
the opinion states. Similar behavior was previously noted for
M = 2 in [33]. Our analysis shows that this result holds for a
general number of opinion states.

C. Left edge

The shape of the distribution near the left edge (ni = 0) is
determined by the sign of the following quantity:

T +
i (0) − T −

i (1) = 1

N + Z
[Nzi − N + 1 − Z + zi]

+ ε[N − M + 1]. (8)

The second term on the right-hand side is always positive
(mutation is directed towards the center of state space). As
a consequence, a shape change as a function of ε can only
occur if Nzi − N + 1 − Z−i < 0. For a given value of Z−i, this
means that there must not be too many zealots of type i. A
change of shape at the left edge then occurs at ε = ε�,i, with

ε�,i ≡ 1

N + Z

Z−i − 1 − N (zi − 1)

N + 1 − M
. (9)

If the expression on the right-hand side is negative, then the
marginal distribution is always increasing at the left edge
[Pst

i (1) > Pst
i (0)].

In the case of balanced numbers of zealots, zi = Z/M for
all i, the condition εi,� > 0 can be written as Z

M (N + 1) < N −
1 + Z . For M = 2 this turns into Z/2 < 1, so the shape change
is possible only if Z = 0, see [33]. For general M we require

Z

M
<

N − 1

N + 1 − M
. (10)

We note that this inequality turns into Z < M(M − 1) for
M = N . This means that a change of shape at the left edge
can occur for quite a large number of zealots.
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D. Central region and symmetry of the marginal distribution

We now look at the shape of the marginal distribution for ni

in the central region near ni = N/2. In particular we determine
the conditions for which any possible extremum of Pst

i (ni ) is
at N/2. To do this, we first note the following:

Lemma 2. The marginal distribution Pst
i is found to be

symmetric [Pst
i (ni ) = Pst

i (N − ni ) for all ni ∈ {0, 1 . . . , N}]
for M > 2 when ε takes the value

εc,i ≡ zi − Z−i

(M − 2)(N + Z )
. (11)

This can be seen by direct algebra as follows. The condi-
tion in Eq. (11) implies T +

i (ni ) = T −
i (N − ni ) for the rates

in Eq. (3). The symmetry of the stationary distribution then
follows.

We have already shown that the marginal distribution for
ni can have at most one extremum in the interior (Lemma 1).
Therefore, at ε = εc,i the distribution must either be flat, or
have an extremum at ni = N/2.

Conversely we can show for even N that the distribution
Pst

i takes its extremal value at ni = N/2 in a corridor of values
for ε around εc,i. The corridor has a width of order O(N−1).
The existence of such a corridor is a consequence of the
discreteness of the variable ni. Further details can be found
in Appendix A 2.

For M = 2 the distribution P1(n1) is symmetric only when
z1 = z2 [33]. If there are more than two opinion states M > 2,
and noting Z−i = Z − zi, the expression for εc,i in Eq. (11)
is positive only when zi > Z/2. If εc,i is negative, then the
marginal for ni does not have an extremum at the center for
any choice of ε [61]. A zero or negative value for εc,i is
for example found if there are equally many zealots for each
opinion state zi = Z/M and M � 2.

We also note that there can be at most one possible opinion
i for which zi > Z/2. As a consequence, only at most one
of the numbers εc,i, i = 1, . . . , M can be positive. This must
then be the opinion state with the most number of zealots.
Only the marginal distribution for this opinion state can have
a maximum or minimum at the center.

E. Phase diagram: Shapes of the marginals

1. General structure of the possible phases

For fixed N , M, and Z−i the phase diagram for the marginal
distribution Pst

i can be illustrated using the lines for εr,i, ε�,i,
and εc,i in the zi-εi plane. These lines are given by the expres-
sions in Eqs. (6), (9), and (11), respectively.

Direct algebra shows that the three lines intersect at the
point given by

z∗
i = Z−i + M − 2

M − 1
,

(12)

ε∗ = 1 − Z−i

(M − 1)(N + 1) + MZ−i − 1
,

and that there are no other intersection points between any of
the lines.

As an aside, it is interesting to note the following (a proof
can be found in Appendix A):

LB

ELU
LU

RU

ERU
RB

εr,i

εl,i εc,i

ε

zi

FIG. 1. Illustration of the possible phases for the behavior of the
marginal stationary distribution for opinion state i. This is for the
model with a single community k = 1. We show the phase diagram
in the zi-ε plane, assuming that Z−i remains fixed. The purpose of this
diagram is to indicate the general structure of the possible phases; it
does not constitute a quantitative phase diagram. Instead, the exact
locations of the phase lines depend on model parameters. For this
reason no tick labels are shown on the axes. Not all phases are nec-
essarily accessible with physically meaningful parameters (see text).
The solid line shows εr,i, the dashed line is ε�,i, and the dotted line
represents εc,i. The lines divide parameter space into six regions, with
different shapes of the marginal probability distribution of opinion i:
LU left unimodal, ELB extreme left bimodal, LB left bimodal, RB
right bimodal, ERU extreme right unimodal, and RU right unimodal.
Further details can be found in the text.

Lemma 3. At the intersection point in Eq. (12) the marginal
stationary distribution function for ni is flat.

We illustrate the general topology of the resulting phase
diagram in Fig. 1. The purpose of the figure is not to provide
quantitative information about the location of the phase lines,
instead these depend on the remaining model parameters. We
note that not all phases can be physically realized for all
choices of N , M, and Z−i. This includes situations in which
the values for εr,i, ε�,i, or εc,i are negative, such that the
corresponding phase lines are in an unphysical part of the
phase diagram. The details depend on the choice of remaining
model parameters, and in order to keep the diagram general
we therefore do not show tick labels on the axes. We also note
that zi can only take integer values. In the diagram in Fig. 1 we
ignore this for the time being and treat zi as continuous. We
discuss the limitations due to the restriction to integers below.

To understand the diagram we note that the marginal for
opinion i has a maximum at ni = 0 for ε < ε�,i, otherwise it
is an increasing function at the left edge. It has a maximum
at ni = N for ε < εr,i, and is a decreasing function at the
right edge otherwise. In the region to the upper right of the
diagram, where ε > εr,i and ε > ε�,i, the marginal is therefore
increasing near ni = 0 and decreasing near ni = N . As a con-
sequence, it has a maximum in the interior ni = 1, . . . , N − 1.
This is the combined region of the phases marked LU and
RU, where U indicates a unimodal shape. The region is di-
vided into LU and RU by the line ε = εc,i. Along this line
the distribution is symmetric, and the interior maximum is at
ni = N/2. If ε > εc,i, then the maximum is found at ni < N/2
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(LU phase, “left unimodal”), for ε < εc,i the maximum is at a
value ni > N/2 (RU phase, ‘’right unimodal”).

Conversely, in the regions labeled LB and RB in the lower
left region of the diagram, ε < εr,i and ε < ε�,i. The marginal
distribution is then bimodal as indicated by the letter “B,” it
has a minimum in the interior, and maxima at ni = 0 and ni =
N . We note that Lemma 1 only forbids multiple extrema in
the interior (n = 1, . . . , N − 1), but not at the edges ni = 0
and ni = N . The line ε = εc,i divides the region into the LB
and RB phases. Along the line the distribution is symmetric,
the minimum is at ni = N/2, and the maxima at ni = 0 and
ni = N have equal height, Pst

i (ni = 0) = Pst
i (ni = N ). In the

LB phase the distribution takes a higher value at ni = 0 than
at ni = N (“left bimodal”), and in the RB phase the higher
maximum is at ni = N (“right bimodal”).

The remaining regions in the phase diagram are those with
ε > εr,i, ε < ε�,i and vice versa. In the diagram in Fig. 1
these are the regions in the upper left and lower right re-
spectively. These are marked ELU and ERU (“extreme left
unimodal”, “extreme right unimodal”). In the ELU phase the
marginal distribution for ni is decreasing across the entire
range ni = 0, . . . , N , and has a single maximum (unimodal)
at the extreme left (ni = 0). In the ERU phase the distribution
is increasing throughout and has a single maximum at the
extreme right (ni = N).

Physically, the phase diagram can be understood as fol-
lows. Suppose we fix zi and Z−i, along with N and M. If
ε is sufficiently large (larger than ε�,i, εc,i, and εr,i for this
particular value of zi), then the system is dominated by the
noise component of the dynamics (the mutation term). In the
extreme case ε → ∞, imitation plays no role at all, and all
opinions are equally represented on average. All marginals are
unimodal, and ni = N/M on average for all i. The maximum
of the unimodal distribution is near this value ni = N/M, and
the marginals are therefore of the LU shape.

Suppose now we are in the LU phase and have zi > 0. We
now move counterclockwise in the phase diagram in Fig. 1.
If we reduce the number of zealots zi influencing agents of
type i, but keep the rest of the parameters fixed (including
Z−i), then the maximum of the distribution for ni moves to
the left towards ni = 0. When ε = ε�,i is reached, the system
enters the extreme left unimodal (ELU) phase. The marginal
is a decreasing function of ni, with its maximum at ni = 0.

We now move downward in the phase diagram by decreas-
ing ε. This tends to shift probability towards the edges ni = 0
and ni = N . When ε crosses εr,i, the distribution changes
slope (from decreasing to increasing) at the right edge, and
the system enters the LB phase. The marginal for ni is now
bimodal, with maxima at ni = 0 and ni = N , and a minimum
at a value ni > N/2.

Next, we move to the right in the phase diagram by adding
further zealots of type i (while keeping Z−i constant). The
minimum of the distribution then moves towards smaller val-
ues of ni, and reaches ni = N/2, when ε = εc,i. Beyond this
value, the marginal takes its minimum at values ni < N/2,
and the system is in the right bimodal (RB) phase. We have
Pst

i (ni = N ) > Pst
i (ni = 0).

Further increasing zi raises the distribution at larger values
ni ≈ N , and lowers it near ni = 0. When ε = ε�,i, the marginal
becomes an increasing function of ni throughout with its

maximum at ni = N , and the system is in the extreme right
unimodal phase (ERU).

Increasing the noise strength ε, the maximum is shifted
away from ni = N . The system is in the right unimodal (RU)
phase. The marginal is a unimodal function with its maximum
at a value ni > N/2.

Removing zealots of type i finally, shifts the position of the
maximum to smaller values of ni. At ε = εc,i the maximum
is found at ni = N/2 and upon further reduction of the noise
strength the system enters the LU phase.

2. Not all phases are always realized

Not all six phases shown in Fig. 1 are physically feasible
for all choices of N , M, and Z−i. Phases can for example be-
come unphysical when they require formally negative values
of ε, or when there are no integer values for zi in the respective
region in the phase diagram.

We illustrate this for the RB phase. In order to be in this
phase, ε must be such that ε < εr,i, ε < ε�,i, and ε > εc,i. We
therefore require εr,i > 0 and ε�,i > 0. Using Eqs. (6) and (9)
this means that zi − 1 > N (Z−i − 1) and Z−i − 1 > N (zi −
1). This is only possible simultaneously when zi = Z−i = 0. If
that is the case however, then εc,i = 0 [Eq. (11)]. We therefore
conclude that the conditions to be strictly in the RB phase can
never be fulfilled for M > 2. For M = 2, the RB phase is not
present either as was shown in [33].

Further insight can be drawn from the limit in which the
number of free agents is much larger than the number of
opinions and the number of zealots, N 	 M, Z . Recalling
Z−i = Z − zi, the expressions for εr,i, ε�,i, and εr,i then become
linear in zi:

εr,i ≈ 1

(M − 1)N
(1 − Z−i ), ε�,i ≈ 1

N
(1 − zi ),

εc,i ≈ zi − Z−i

(M − 2)N
. (13)

It is then manifest that several of the phases in Fig. 1 cannot
be realized if zi � 1 or Z−i � 1. This is a consequence of the
global influence of the zealots on all free agents, an aspect that
we relax in the following section.

IV. ZEALOTS AFFECTING ONLY SUBPOPULATIONS

We now generalise the setup to situations in which the
population of agents divides into K � 1 communities. Free
agents can interact across communities, but zealots in any one
community can only influence free agents in that community.

A. Approximation for effective dynamics and phase diagram

For models with more than one community the birth-death
rates T ±

i , for type i in Eq. (2), cannot be expressed only in
terms of ni. Instead a number of free agents of type i in each
of the communities is needed, i.e., T ±

i = T ±
i (n(1)

i , . . . , n(k)
i ).

This complicates further the analysis, and we therefore char-
acterize the shape of the resulting marginal distributions using
an approximation similar to the one in [33]. The approxi-
mation is justified retrospectively through comparison against
simulations.
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FIG. 2. Examples of the phase diagram for the shape of the stationary marginal distribution Pi(ni ) for the number of agents holding opinion
i. This is for a model with two communities (K = 2), and with zealots only in community k = 1. The phase diagrams shown are for (a) zi = Z/2
and (b) zi < Z/2. Only the LU, ELU, and LB phases can then be realized. The solid line in each panel is εr,i and the dashed one ε�,i.

The fundamental assumption underpinning the approxima-
tion is that the fraction of free agents who are in a given
opinion state i is constant across communities, i.e.,

n(k)
i

N (k)
≈ ni

N
for all k. (14)

Making this assumption, the rates in Eqs. (2) become

T +
i (ni ) = (N − ni )(αni + z̃i )

N + Z
+ ε(N − ni ),

(15)

T −
i (ni ) = ni

α(N − ni ) + Z̃ − z̃i

N + Z
+ (M − 1)εni,

where we have introduced

z̃i =
∑

k

q(k)z(k)
i , (16)

with coefficients

q(k) ≡ N (k)/(N + Z (k) )

N/(N + Z )
. (17)

We have also written Z̃ = ∑
i z̃i and α ≡ ∑

k q(k) in
Eqs. (15).

The relations in Eqs. (16) and (17) have a particularly
straightforward interpretation when N 	 Z . We then have
q(k) ≈ N (k)/N , and therefore z̃i = ∑

k (N (k)/N )z(k)
i . We can

therefore think of z̃i as an effective number of zealots for opin-
ion i. It is a weighted average of the number of zealots of type
i across communities, where each community is weighted
according to the number of free agents in the community.
The prefactor α reduces to unity for N 	 Z . For general
values of N and Z , the number of effective zealots for opin-
ion i continues to be a linear combination of the number of
zealots in each community, but now with coefficients given
in Eq. (17). The approximation in Eq. (14) therefore leads to
a model with an effective number of zealots who influence
the entire population of free agents. These zealots arise from
distributing the zealots in the different communities across the
entire population with suitable weights. As a consequence of
this the effective number z̃i of zealots for any one opinion i is
not necessarily an integer number.

The rates in Eqs. (15) reduce to those in Eqs. (3) in the
case of one single community K = 1. For K � 2 they remain
of a form which is very similar to those in Eqs. (3). The main

differences are the coefficient α inside the imitation term, and
the replacement of zi by z̃i.

As a consequence, the analysis proceeds along very similar
lines as for the model with a single community in Sec. III,
and the general structure of the phase diagram remains un-
changed. The expressions for εr,i, ε�,i, and εc,i can be obtained
from those in Eqs. (6), (9), and (11) by the replacement
N + Z → (N + Z )/α in the denominator of each expression,
and zi → z̃i/α, Z−i → Z̃−i/α, where Z̃−i ≡ Z̃ − z̃i. As an ex-
ample, we discuss a model with two communities in the next
section.

B. Partial influence: Two communities (K = 2)

We now look at a population consisting of two commu-
nities, K = 2. Zealots are only present in the first community,
but not in the second, i.e., Z (2) = 0. We then have zi = z(1)

i and
similarly, Z = Z (1) and Z−i = Z (1)

−i . We focus on the shape of
the marginal distributions Pst

i (ni ), where ni is the total number
of agents of type i in both communities, ni = n(1)

i + n(2)
i .

Similar to the one-community case, the marginal for opin-
ion state i is a symmetric function of ni [Pst

i (ni ) = Pst
i (N − ni )

for ni = 0, . . . , N] when ε = εc,i. For fixed N , M, and Z−i the
lines for εr,i, ε�,i, and εc,i intersect in one single point. If this
occurs at physical parameters the marginal distribution for ni

is flat. Further properties of the phase lines are discussed in
Appendix B.

We find that there are two topologically distinct phase
diagrams for the shape of the marginal for a particular opinion
i. These are illustrated in the N (1)/N-ε plane in Figs. 2 and 3.

Figure 2 shows cases for which zi � Z/2. One then has
εi,c < 0, and only the left bimodal (LB), extreme left uni-
modal (ELU), and left unimodal (LU) phases are realized.

In Fig. 3 we have zi > Z/2, and all six phases described
in Sec. III E can be realized. In particular, the intersection
point of the lines ε1,r , ε1,�, and ε1,c can be reached with
physical control parameters. An example of this will be shown
in Sec. V A.

The phase diagrams in Figs. 2 and 3 indicate the shape of
a single marginal for opinion state i. The situation becomes
more complicated if we look at combinations of shapes for
the marginals for different opinion states. In particular, if
the number of zealots is different for the different opinion
states, then the marginals for the different ni can have different
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FIG. 3. Examples of the phase diagram for the shape of Pst
i (ni ) for the model with two communities, and with zealots only in community

k = 1. In contrast with Fig. 2 we now have zi > Z/2, (a) zi = Z and (b) Z/2 < zi < Z . All six phases shown in Fig. 1 can then be physically
realized. The solid line in each panel is εr,i, the dashed line is ε�,i, and the dotted line εc,i.

shapes. Examples of this are shown in Fig. 4, where we focus
on a model with M = 3 opinion states, i = 1, 2, 3, and with
decreasing numbers of zealots, zi = z(1)

i , from i = 1 to i = 3
(z1 > z2 > z3). The diagrams show the phase lines εr,i, ε�,i,
and εc,i in the N (1)/N-ε plane for i = 1, 2, 3. A number of
combinations of shapes for the different marginals can then
be found. The number of combinations is particularly high in
the example shown in Fig. 4(b).

V. NUMERICAL SIMULATIONS

We now compare the theoretical predictions for the phase
diagrams against numerical simulations. We focus on the case
of partial influence in Sec. IV. Simulations are of the model
defined by the rates in Eq. (1), and are carried out using the
Gillespie algorithm [62]. In the context of our model, this is
implemented as follows:

1. For given time t and state of the system n compute all
rates T (k)

i→ j (n) as given by Eq. (1).
2. A time increment �t is drawn from an exponential

distribution with mean T −1, where T ≡ ∑
k

∑
i �= j[T

(k)
i→ j (n) +

T (k)
j→i(n)].

3. One type of event is selected with a probability propor-
tional to its contribution to the total rate. That is, an event
converting an agent of type i into an agent j in community k

is selected with probability T (k)
i→ j (n)/T . Time is incremented

by �t , and the state of the system n is updated by executing
the selected reaction. Then go to step 1.

A. Shape of marginals

We first verify the predictions for the shape of the marginal
distributions. For a population of N = 300 free agents divided
into K = 2 communities holding M = 3 possible opinions,
we take the simplest case of one zealot of opinion 1 influ-
encing the first community, and no other zealots (z(1)

1 = 1 and
z(k)

i = 0 for all other combinations of k and i). Since z1 = 1 >

Z/2 = 1/2, the approximate theory in Sec. IV predicts a phase
diagram of the form shown in Fig. 3. In particular we expect
all six phases to be physically possible for the right choice of
the model parameters.

Results from simulations are shown Figs. 5 and 6. The
two figures show the distribution of n1, the total number of
agents holding opinion i = 1 across the two communities.
We focus on how the marginal changes shape as we increase
the mutation rate ε. Each panel in the two figures is labeled
to indicate the shape of the marginal as predicted from the
analytical approach. We use the notation A ∩ B to indicate the
border between phases A and B. For example, in the top left
panel of Fig. 5 parameters are such that the system is on the
line separating the LB and RB phases. The marginal is then

 0
 0  1

(a)

ε

N(1)/N

 0
 0  1

1/N
(b)

ε

N(1)/N

FIG. 4. Representations of two topologically different types of phase diagram for a model with K = 2 communities and M = 3 opinion
states. There are no zealots in community k = 2. Numbers of zealots are such that z(1)

1 > z(1)
2 > z(1)

3 . The solid lines are εr,i with i = 1, 2, 3
from top to bottom. The dashed lines are ε�,i with i = 1, 2, 3 from bottom to top. The dotted line in (b) is εc,i for the opinion with the most
zealots (i = 1). (a) The number of zealots for opinion state i = 1 is z(1)

1 � Z/2. (b) z(1)
1 > Z/2.
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FIG. 5. Marginal probability distributions for opinion i = 1, Pst
1 ,

as a function of 2n1/N − 1 for N = 300, K = 2, M = 3, N (1) =
30, and z(1)

1 = 1, all other z(k)
i = 0. From top-left to bottom-right:

ε = 3.45 × 10−4 (LB ∩ RB), 10−3 (LB), 1.65 × 10−3 (LB ∩ ELU),
2.25 × 10−3 (ELU), 3 × 10−3 (ELU ∩ LU), 4 × 10−3 (LU). The no-
tation A ∩ B means points in parameter space on the line separating
phases A and B. The phases indicated above each panel are those
predicted by the theory for the given set of model parameters.

predicted to be symmetric, with the maximum value taken
at the boundaries n1 = 0 and n1 = N . In the panel labeled
LB ∩ ELU the system is at the interface of the LB and ELU
phases. This means that the theory predicts a single maximum
at n1 = 0, and that Pst

1 (n1) is decreasing in n1, with Pst
1 (n1 =

N − 1) = Pst
1 (n1 = N ), i.e., vanishing slope at the right edge.

In Fig. 5 we have N (1) = 30, that is the zealots in com-
munity k = 1 only interact directly with 10% of all N = 300
free agents. In Fig. 6 we choose N (1) = 240 so that 4/5 of
all free agents can directly interact with zealots. The direct
influence of the zealots is therefore much stronger in the
second example than in the first.

For N (1) = 30 the system can be in the RB, LB, ELU,
or LU phases. We show examples for LB, ELU, and LU in
Fig. 5, as well as limiting shapes when parameters are such
that the system is precisely on a line separating two phases.
For N (1) = 240, the marginal can be of the RB, ERU, RU, or
LU shapes, and the corresponding intermediate shapes right
on the phase lines. Examples are shown in Fig. 6. In all panels
of both figures the shapes of the distributions obtained in
simulations are as predicted from the theory, hence confirming
the validity of the analytical approach, and in particular of the
approximation made in Eq. (14).

When the noise strength ε is sufficiently small for the
imitation process to dominate, the distribution for n1 accu-
mulates around extreme values of n1. This is the case both
in Fig. 5 and 6. For increasing mutation rate, the mode of

FIG. 6. Marginal probability distributions for opinion i = 1, Pst
1 ,

as a function of 2n1/N − 1 for N = 300, K = 2, M = 3, N (1) = 240,
and z(1)

1 = 1, all other z(k)
i = 0. From top-left to bottom-right: ε =

10−4 (RB), 6.7 × 10−4 (RB ∩ ERU), 1.2 × 10−3 (ERU), 1.67 × 10−3

(ERU ∩ RU), 2.1 × 10−3 (RU), 2.65 × 10−3 (RU ∩ LU). The phases
indicated above each panel are those predicted by the theory for the
given set of model parameters.

the distribution moves to intermediate values of n1, similar
to what was observed for the two-opinion case [33]. When
probability accumulates near the edges, then the strength of
the influence of zealots determines the edge of the interval
(n1 = 0 or n1 = N) dominating the accumulation. When the
influence of zealots is small (Fig. 5), the probability tends to
accumulate around smaller values of n1, similar to the case
without zealots Z = 0 [34]. On the other hand, when zealots
have direct influence on a larger proportion of the population

 0.1

 1

−1 −0.5  0  0.5  1

P
1st

2n1/N−1

FIG. 7. Marginal probability distribution for opinion i = 1, as a
function of 2n1/N − 1 at the intersection point of the phase lines,
ε = ε1,r = ε1,� = ε1,c ≈ 1.65 × 10−3. Remaining parameters: N =
300, K = 2, M = 3, N (1) = 150, and z(1)

1 = 1, z(k)
i = 0 for all other

combinations of i and k.
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FIG. 8. Phase boundaries ε1,r (solid lines, circles) and ε1,� (dashed line, squares) and εc,i (dotted line, triangles) for N = 300, K = 2, and
M = 3. (a) z1 = 1, z2 = z3 = 0; black (filled) symbols are for opinion 1, blue (open) symbols for opinions 2 and 3. (b) z1 = z2 = 1, z3 = 0;
black (filled) symbols are for opinions 1 and 2, blue (open) symbols for opinion 3. Lines are from the approximate theory of Sec. IV and
symbols from numerical simulations of the full model defined by Eqs. (1).

(Fig. 6), then probability accumulates around larger values
of n1. For ε ≈ 1.65 × 10−3 and N (1) = 150, the system is
precisely at the intersection of all three phase lines, and the
resulting marginal is flat, as shown in Fig. 7.

B. Phase lines

We have conducted further tests of the analytical approxi-
mation, focusing on the quantitative verification of the phase
lines. We use the N (1) and ε as the main control parameters.

The different shapes of the marginals (i.e., the different
phases) are identified by fixing a value of N (1) in simulations,
and then varying ε. The boundaries of the phases are then
found by determining the approximate values of ε at which
the marginal changes shape.

We start by looking at the parameters used in Figs. 5 and 6.
Results for the phase lines are shown in Fig. 8, for further
details see also Appendix B. As seen in the figure, we find
near perfect agreement despite the approximations made in
the analytical approach. In Fig. 8(a) we have z1 > Z/2, and all
six phases discussed in Fig. 1 are realized for opinion i = 1.
There are no zealots for opinion states i = 2 and i = 3. The
marginals for these two opinion states are identical by con-
struction, but their shape differs from that for i = 1. Given that
z2 = z3 < Z/2 only three phases are found for the marginals
of opinion states i = 2 and i = 3 (LU, ELU, and LB).

In Fig. 8(b) we consider the case z1 = z2 = 1 and z3 = 0.
As before, all zealots are in community k = 1, and there are no
zealots directly affecting community k = 2. The marginals for
states i = 1 and i = 2 are now identical, but may differ from
that for i = 3. However, since zi < Z/2 = 1 for all i, only the
LU, ELU, and LB phases are found. As in Fig. 8(a) numerical
simulations quantitatively confirm the analytical predictions
for the phase lines. As a further test we consider the case z1 =
z2 = z3 in Fig. 9. The phase lines are then identical for the
three different opinion states. Again, simulations confirm the
validity of the theoretical approach.

VI. SUMMARY

In this work we have studied the influence of zealots on
the dynamics of multistate noisy voter models with all-to-
all interaction graphs. To do this we have used analytical
approaches, confirmed by numerical simulations. Individu-
als can change states following two different mechanisms:
they can copy the state of other agents, or they can change
state spontaneously. Zealots are agents who can influence
other agents, but who never change opinion themselves. We
have considered models describing one single population of
free agents and zealots, and generalizations in which there
are multiple communities of free agents, each influenced
by a different group of zealots. The model is motivated

10−6
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10−4

10−3

10−2

 0  0.2  0.4  0.6  0.8  1

(a)

ε

N(1)/N

10−6

10−5

10−4

10−3
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 0  0.2  0.4  0.6  0.8  1

(b)
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FIG. 9. Phase boundaries ε1,� (a) and ε1,r (b) for N = 300, K = 2, M = 3, z1 = z2 = z3 and z1 = 1 (diamonds), z1 = 2 (asterisks), and
z1 = 5 (triangles). Lines are from the approximate theory, and symbols from simulations.
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by processes of opinion formation, but at the same time
we think its study contributes to better understanding of
the effects of disorder on spin models and nonequilibrium
phenomena.

We have used the shape of the marginal stationary proba-
bility function for the number of agents with a given opinion
to characterize the system. For the model with one single
community we find up to six possible phases (Fig. 1) as the
noise strength and the number of zealots varied. However, not
all of these phases can be realized at physically meaningful
parameters. Our work generalizes findings from existing stud-
ies of multistate noisy voter models without zealots [34], and
of two-state noisy voter models with zealots [33].

Symmetric noisy two-state voter models show a transition
between a state with a bimodal stationary distribution and a
state with unimodal stationary distribution [9,11,15–20]. One
main result of [34] is the observation that this transition splits
up into sequences of different transitions at the right and
left edges of marginal stationary distributions in multistate
noisy voter models. In [33] it was found that the presence of
zealots can remove unimodal behavior in two-state models.
The analysis in this paper shows that these statements transfer
to multistate noisy voter models with zealots. We observe
separate changes of shape at the right and left edges of the
marginals of the stationary distribution, indicating that there
is no single transition between a unimodal and a multimodal
state. At the same time, the presence of zealots can remove the
transition at the right edge. In contrast to the two-state model
we find that shape changes at the left edge are possible even
in the presence of zealots. Contrary to the multistate model
without zealots, flat marginal distributions are possible for
selected model parameters (Fig. 7).

The analysis can be extended to compartmental models, in
which the population of free agents divides into several com-
munities. We have shown that analytical progress is possible
for such a model, based on the approximation in Eq. (14).
Numerical simulations confirm that the resulting predictions
are qualitatively and quantitatively accurate.

Using the approximation an interesting connection be-
tween the model with multiple communities and an effective
single-community model emerges. Multicommunity models
can be mapped onto a single-community model with an ef-
fective imitation rate and a noninteger number of zealots.
Alternatively, the effective dynamics can be interpreted as
a model with an integer number of “soft” zealots, who are
able to change the states of free agents not with certainty
upon interaction, but only with a certain probability. This can
be seen from Eq. (15), and is discussed in more detail in
Appendix B 1.

Furthermore, the model with zealots can be mapped onto a
noisy voter model with heterogeneous mutation rates, similar
to the one studied in [34]. This can be seen from Eqs. (3),
which can be re-written as

T +
i = (N − ni )ni

N + Z
+

∑
j �=i

ε j→in j,

(18)

T −
i = ni(N − ni )

N + Z
+

∑
j �=i

εi→ jni,

with εi→ j = ε + z j/(N + Z ). A similar mapping can be per-
formed starting from Eqs. (15).

The results of our work are not restricted to the multistate
noisy voter models with zealots, but include a family of mod-
els whose rates can be written or approximated as those of
a birth-death process of the form T ±(n) = a± + b+n + cn2,
with a± � 0, b±, c so that T ± � 0 for any possible n. In par-
ticular, we would expect models in this class to have similar
phases as the ones for the current model.

This work can be extended in different directions. One
obvious extension is to consider networked populations and
communities, rather than all-to-all interaction between free
agents. For instance, the interaction within communities could
be made stronger than that across communities. Our work is
a basic approximation to this more general scenario. Another
possibility is to include memory effects (aging), as previously
considered for example in [29–31,63]. It would then be inter-
esting to see if and how such memory effects change the phase
behavior of the dynamics.

As a final note, we remark that it is not entirely obvious
when the approximation in Eq. (14) is valid. How justified the
approximation is can be determined from the probability dis-
tribution of the differences x(k)

i ≡ n(k)
i /N (k) − ni/N . The more

concentrated these distributions are around zero, the better
the approximation. In a preliminary numerical study we have
investigated this for different choices of the model parameters.
We find that the distribution of x(k)

i is more concentrated on
zero for larger values of N (k). The dependence on the total
number of agents N , the noise ε, and the distribution of zealots
z(k)

i is much weaker.
The fact that the outcomes of our analytical work are

confirmed in simulations suggests that approaches based on
approximations of this type can be useful for compartmental
individual-based models in other contexts. Further investiga-
tion is needed to understand the nature and validity of the
approximation.
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APPENDIX A: PROOF OF THE LEMMAS

1. Proof of Lemma 1

We prove the following result, which is a generalization of
Lemma 1 of the main text:

Proposition 1. The steady-state probability distribution
Pst (n) of a one-step Markov process for a discrete variable
n ∈ {0, 1, . . . , N} with rates

T +(n) = a+ + b+n + cn2,
(A1)

T −(n) = a− + b−n + cn2,

has at most one extremum in n = 1, . . . , N − 1.
Proof. Suppose nM ∈ {1, . . . , N − 1} is a maximum of

P(n). Then Pst (nM − 1) < Pst (nM ), and Pst (nM ) > Pst (nM +
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1). Using the steady-state condition T +(n − 1)Pst (n − 1) =
T −(n)Pst (n), the latter inequalities turn into T −(nM ) <

T +(nM − 1) and T −(nM + 1) > T +(nM ). Using the explicit
form of the rates, this is equivalent to the conditions

B − A < AnM < B, (A2)

with A ≡ b− − b+ + 2c and B ≡ a+ − a− − b+ + c. Division
by A (and inverting the inequality signs as appropriate, de-
pending on the sign of A) shows that there is at most one
possible natural number nM fulfilling both inequalities in
Eq. (A2).

Analogously, in order for nm to be a minimum of P(n), we
require

B − A > Anm > B, (A3)

which, again, only has at most one possible integer solution
nm.

For a given set of parameters, A and B are fixed. There can
then not be simultaneous solutions nM and nm of the relations
in Eq. (A2) and (A3), respectively, as this would require B −
A < B and B − A > B at the same time. Hence, Pst (n) can
have at most one extremum in {1, . . . , N − 1}. �

Lemma 1 of the main text follows after realizing that the
rates in Eqs. (3) can be written in the form in Eqs. (A1).

2. Proof of statement related to Lemma 2

Assume N is even, and that the marginal for opinion
state i has a maximum at ni = N/2. Following the argument
in Appendix A 1 this requires T +

i (N/2 − 1) > T −
i (N/2) and

T −
i (N/2 + 1) > T +

i (N/2). Using the rates in Eq. (3), the first
of these conditions translates into

ε <
zi − Z−i − 2(1 − zi )/N

(N + Z )(M − 2 − 2/N )
. (A4)

The condition T −
i (N/2 + 1) > T +

i (N/2) on the other hand
turns into

ε >
zi − Z−i + 2(1 − Z−i )/N

(N + Z )[M − 2 + 2(M − 1)/N]
. (A5)

The expression on the right-hand side in (A4) is larger than εc,i

in Eq. (11), and that on the right-hand side of (A5) is smaller.
This means that the distribution Pst

i attains its maximum at
ni = N/2 in a corridor of values for ε. This is a natural
consequence of ni being a discrete variable. As ε is varied,
the location of the maximum of Pst

i jumps from one integer
value of ni to the next, but remains fixed at any one value of
ni throughout a finite interval of values for ε. The corridor
includes εc,i and its width is proportional to 1/N .

Analogous arguments can, in principle, be developed for
the case of a minimum at ni = N/2. Such a minimum would
be realized on the segment of the line ε = εc,i separating the
LB and RB phases in Fig. 1. We notice however that this
segment cannot physically be reached for M > 2, see the
discussion in Sec. III E 2.

3. Proof of Lemma 3

We prove the following, more general statement:
Proposition 2. The steady-state probability function Pst (n)

of a one-step Markov process of a discrete variable n ∈

{0, 1, . . . , N}, with rates given by Eqs. (A1) is flat if and
only if P(n) = P(n − 1) for at least two different values of
n ∈ {1, . . . , N}.

Proof. If the distribution is flat, then Pst (n) = Pst (n −
1) for all n = 1, . . . , N so the condition of the proposi-
tion is fulfilled. To prove the reverse, we note that the
equality Pst (n − 1) = Pst (n) is equivalent to the condition
T +

i (n − 1) = T −
i (n), due to the fact that the equality Pst (n −

1)T +
i (n − 1) = Pst (n)T −

i (n) holds at stationarity. Using the
rates in Eqs. (A1), the last condition turns into a linear
equation for n of the form C + Dn = 0, where C and D are
functions of the parameters of the system, but independent of
n. If the condition C + Dn = 0 holds for at least two different
values of n, then necessarily C = D = 0. The condition then
holds for all n. Hence, Pst (n) is flat. �

Lemma 3 in the main text follows from the fact that
Pst

i (ni − 1) = Pst
i (ni ) holds for ni = 1 and ni = N at the in-

tersection point of the lines ε�,i and εr,i.

APPENDIX B: FURTHER PROPERTIES OF THE MODEL
WITH K = 2 AND Z(2) = 0

1. Discussion and interpretation of the model

If there are no zealots in community k = 2, then Z = Z (1).
As a consequence, the weights q(k) in Eq. (17) reduce to

q(1) = N (1)

N
, q(2) =

(
1 − N (1)

N

)
N + Z

N
. (B1)

Writing further

x(1) ≡ N (1)

N
, x(2) ≡ N (2)

N
, (B2)

we also have

z̃i = x(1)zi, Z̃−i = x(1)Z−i, (B3)

and α = x(1) + x(2) N+Z
N . The transition rates in Eqs. (15) then

become

T +
i (ni ) = (N − ni )

[
x(1) ni + zi

N + Z
+ x(2) ni

N

]
+ ε(N − ni ),

T −
i (ni ) = ni

[
x(1) (N − ni ) + Z−i

N + Z
+ x(2) N − ni

N

]

+ (M − 1)εni, (B4)

These rates have a direct physical interpretation. We illustrate
this for the rate T +

i . The term proportional to ε describes
mutation, and is independent of the community structure. The
first term can be thought of as follows: A free agent is chosen
at random from the entire population for potential adoption
of state i. This only contributes to T +

i if this agent is not
already of type i, hence the factor N − ni. We will refer to
this individual as “agent 1.” Given the assumption n(1)

i /N (1) =
n(2)

i /N (2), the probability that agent 1 is from community
k = 1 is x(1), and that for being drawn from community k = 2
is x(2) (x(1) + x(2) = 1). If agent 1 is from community k = 1,
then an interaction partner (agent 2) is chosen at random from
the pool all individuals agent 1 can interact with. This pool
consists of all N free agents and all Z = Z (1) zealots. The
probability that agent 2 is of type i is then (ni + zi)/(N + Z ).
If however, agent 1 is from community k = 2, then interaction
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is only possible with one of the N free agents. The probability
that the interaction partner is of type i is then ni/N .

Alternatively, we can write the rate T +
i in Eq. (B4) in the

following form:

T +
i (ni ) = (N − ni )ni

N + Z

[
x(1) + N + Z

N
x(2)

]

+ N − ni

N + Z
x(1)zi + ε(N − ni ), (B5)

The first term describes interaction between two free
agents. Comparing this expression to that in Eq. (3) for the
single-community model we note the factor x(1) + N+Z

N x(2) >

1. This enhancement of the rate with which pairs of free agents
interact arises from the fact that free agents in community
k = 2 are guaranteed to interact with a second free agent
once chosen for interaction. The expression in Eq. (3) on
the contrary is for a single-population model in which a free
agent, once chosen for interaction, interacts with a second free
agent only with probability N/(N + Z ).

The second term on the right-hand side of Eq. (B5) can
be interpreted as interaction with a “soft zealot.” A free agent
who is not of type i is chosen for potential update, and then
interacts with a zealot of type i. That zealot however only
manages to change the free agent’s state with probability x(1).

The third term in Eq. (B5) finally describes spontaneous
opinion changes as before.

2. Right edge

The expression for εr,i is given by

εr,i = α

N + Z

z̃i/α − 1 − N (Z̃−i/α − 1)

(M − 1)N − 1
. (B6)

For N (1) = 0 the model reduces to the case of a single
community (community k = 2) with no zealots (α = 1, z̃i =
Z̃−i = 0). We then find

εr,i = N − 1

N[(M − 1)N − 1]
, (B7)

which is equivalent to Eq. (16) in [34]. Assuming zi �=
N2+N−1
N (N+1) Z , we have εr,i = 0 when

N (1)

N
= (N − 1)(N + Z )

(N2 + N − 1)Z − N (N + 1)zi
. (B8)

Given that Z̃−i = Z̃ − z̃i, Eq. (B6) shows that the values εr,i

and εr, j for two different opinion states i �= j coincide when
N (1) = 0 [Eq. (B7)] or when zi = z j .

3. Left edge

For the model with two communities and no zealots in
community k = 2 we have

ε�,i = α

N + Z

Z̃−i/α − 1 − N (z̃i/α − 1)

N + 1 − M
. (B9)

For N (1) = 0 this reduces to

ε�,i = 1

N

N − 1

N + 1 − M
, (B10)

which is equivalent to Eq. (15) of [34]. If zi �= Z
N (N+1) , then

ε�,i = 0 is equivalent to

N (1)

N
= (N − 1)(N + Z )

N (N + 1)zi − Z
. (B11)

Similar to the right edge, ε�,i = ε�, j for two different opinions
i �= j when N (1) = 0 or when zi = z j .

Moreover, for a given opinion i, and N (1) = 0,

εr,i < ε�,i. (B12)

for M > 2. For M = 2 (and still assuming N (1) = 0) one has
εr,i = ε�,i. In this latter case, the model reduces to the sym-
metric two-state noisy voter model without zealots.

Focusing now on the model with M > 2 and general values
for N (1), we find that εr,i = ε�,i if and only if

N (1)

N
= (N + Z )(M − 2)

NM

1

zi − N+2−M
N

Z
M

, (B13)

assuming zi > Z/2. If this condition is fulfilled, then

εr,i = ε�,i = 2

NM

zi − Z
2

zi − N+2−M
N

Z
M

. (B14)

The condition zi > Z/2 ensures zi > (N + 2 −
M )Z/(NM ) for M � 2, hence εr,i = ε�,i > 0 and
N (1)/N > 0. The conditions also ensure that N (1)/N < 1.
For Z = 1, and assuming zi > Z/2, the expression in
Eq. (B13) takes its maximum at zi = 1, resulting in
N (1)/N = (N + 1)(M − 2)/[N + (N + 1)(M − 2)] < 1. For
Z � 2 (and zi > Z/2) the denominator on the right-hand
side of Eq. (B13) takes its minimum for zi = Z/2,
hence N (1)/N < (N+Z )(M−2)

NM
1

Z/2− N+2−M
N

Z
M

= 2
Z

N+Z
N+2 . The last

expression is smaller than or equal to one for Z � 2, since it
is a decreasing function of Z , and equal to 1 for Z = 2.

We note that zi > Z/2 can only be fulfilled by one opinion.

4. Further properties of the phase lines in the limit N � Z, M

In the limit N 	 Z, M one has

α = q(1) + q(2) ≈ 1, (B15)

using the relations in Eq. (B1). From this, and z̃i =
N (1)

N zi, Z̃−i = N (1)

N Z−i (which hold whenever Z (2) = 0), we then
find

εr,i ≈ 1

(M − 1)N

(
1 − N (1)

N
Z−i

)
,

ε�,i ≈ 1

N

(
1 − N (1)

N
zi

)
,

εc,i ≈ zi − Z−i

(M − 2)N

N (1)

N
(B16)

in the limit N 	 Z, M. These expressions reduce to those in
Eqs. (13) when N (1) = N .
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The approximations in Eq. (B16) for the case of two com-
munities allow us to infer further properties of the phase lines.
The dependence of εr,i on zi is only through Z−i in the limit
N 	 Z, M, and εr,i is a decreasing function of N (1). When
there are no zealots for any opinion j �= i (i.e., when Z−i = 0),
then εr,i has no dependence on N (1).

The dependence of ε�,i on the number of zealots is through
zi in the limit N 	 Z, M. The value of ε�,i is a decreasing
function of N (1), and constant for zi = 0 within the approxi-
mation of Eq. (B16).

Finally, within the approximation, the lines defined by εr,i

and ε�,i for a particular opinion i never cross in the phase
diagram, for zi � Z/2, that is to say we always have εr,i < ε�,i.

To demonstrate this, we show that εr,i = ε�,i is possible only
for a negative value of εr,i and ε�,i:

εr,i = ε�,i ⇔ 1

(M − 1)N

[
1 − N (1)

N
(Z − zi )

]

= 1

N

(
1 − N (1)

N
zi

)

⇒ N (1)

N
= M − 2

(M − 1)zi − Z−i

= 1

zi − (Z − 2zi )/(M − 2)
� 1

zi

⇒ εr,i = ε�,i < 0. (B17)
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