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Invasion percolation is a model that was originally proposed to describe growing networks of fractures.
Here we describe a loopless algorithm on random lattices, coupled with an avalanche-based model for bursts.
The model reproduces the characteristic b-value seismicity and spatial distribution of bursts consistent with
earthquakes resulting from hydraulic fracturing (“fracking”). We test models for both site invasion percolation
and bond invasion percolation. These have differences on the scale of site and bond lengths l . But since the
networks are characterized by their large-scale behavior, l � L, we find small differences between scaling
exponents. Though data may not differentiate between models, our results suggest that both models belong
to different universality classes.
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I. INTRODUCTION

Invasion percolation (IP) was proposed in Ref. [1] as a
model for the displacement of one fluid in a porous medium by
another “invading” fluid. It has since been applied to a variety
of other dynamical processes including drainage [2], magnetic
depinning of domain walls [3], contact line motion [4], and
propagation of crack fronts [5].

Though all these examples have radically different small-
scale behavior, their large-scale statistics reveal the universal-
ity of how the inherent randomness of each system grows to
dominate their respective critical phases. Hydraulic fracturing
(HF) is a similar process. During HF, low-viscous, high-
pressure fluid is pumped into porous rock which produces a
network of fractures within the deep, thin reservoirs. Previ-
ous studies have made attempts to characterize this fracture
network for purposes of efficient gas extraction [6,7].

More recently, studies have shown significant increased
seismicity in regions previously seismically inactive [8,9].
They attribute HF as the likely candidate. This is not alto-
gether surprising since fracking is somewhat analogous to
steam production via geothermal pumping. Here steam is gen-
erated by injecting fluid into the geothermal fields. In doing
so, the fluid injected into basin sediments interacts with the
ambient stress fields to nucleate earthquakes [10] in much a
similar way.

A key feature of IP is that networks grow according to ran-
dom percolation (RP) near the critical point. Critical systems
are described by a family of critical exponents which charac-
terize all aspects of the system. These power laws arise from
a system having no characteristic length scale and therefore
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becomes symmetric under scale transformations. We observe
that in classical, tectonic seismicity essentially all of the sta-
tistical properties are described by a power law: Magnitude
frequency distribution (G-R magnitude scale) [11], temporal
aftershock clustering (Omori aftershock law) [12], and the
two-point correlation distribution [13]. In hydraulic fracturing
and geothermal injection, studies show power laws describ-
ing both the magnitude-frequency distribution and two-point
correlation function [14]; therefore, we believe much of the
observed seismicity is well described as a system near a criti-
cal point.

Previous authors have noted the self-similar and invariant
properties present in rock fractures [10], and since naturally
occurring porous structures are well described by a lattice of
sites connected by bonds [15], we choose to model the pump-
ing of high-pressure, low-viscosity fluid into the sediment
as a modified invasion percolation (IP) process. Here single
phase liquid invades sediment by propagating through bonds
adjoining sites in a two-dimensional (2D) N × N square lat-
tice. The result is a percolation network that is self-similar
and scale invariant. Aki initially proposed using the fractal
dimension, D f , of a network to determine the power-law
Gutenber-Richter b parameter that characterizes the associ-
ated seismicity arising from the fracture network [16].

The observed magnitude-frequency distribution of induced
seismic events differs from those localized in tectonic fault
environments having Gutenberg-Richter b value near 1 [17].
Instead, a range of b values (1.2–1.5) have been observed [18].
Rather than the traditional fault slip mechanisms hosted in
regions tectonically active, this kind of induced seismicity can
occur in regions absent major fault structures. This suggest
different universality classes describe tectonic and induced
seismicity. These differences in part correspond to a different
fracture mechanism for induced seismicity which is better
described as the rapid reopening of the preexisting fracture
network and the disturbance of the local stress field [6]. If the
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TABLE I. A comparison of percolation models considered in this paper. Random percolation (RP) and invasion percolation (IP) are both
percolation models which generate percolating clusters. We consider variants of IP. Loopless(L) invasion percolation model coupled with the
avalanche burst mechanics is the model we propose in this paper. We distinguish it from the regular variant [1] and the nontrapping(NT) variant
[7] since the clusters in those models are clusters of the defending fluid. Our LIP model considers clusters and bursts of invading fluid. All IP
models have bond or site variants corresponding to whether the random weights are bond strengths or site sizes.

Percolation Models

Percolation RP Quasi-static network growth ideal for describing medium properties. Natural clusters. No dynamic burst
cluster growth.

IP L Critical single phase injection with no defending fluid(or highly compressible). Critical burst
growth and cluster formulation for the invading fluid.

NT Critical nontrapping multiphase fluid propagation with natural clusters for incompressible
defending fluid. No burst or clustering for invading fluid.

Reg Critical network growth for multiphase injection with clustering for compressible defending
fluid. No burst or clustering for invading fluid.

newly fractured network mostly follows preexisting natural
fractures which themselves were the result of high-pressure
oil and gas escaping and fracturing the reservoir, then we hy-
pothesize HF as a fundamentally drainage process. Therefore,
a network grown by IP should be appropriate.

Table I shows the landscape of percolation models we dis-
cuss in this paper and where our model fits. When percolation
was introduced it was intended to simulate the quasistatic
movement of fluid through a porous matrix driven by cap-
illary forces. Such a model is better suited to describe the
static properties of a medium. In our case, the fluid is driven
by large pressure gradients generated by the HF process,
and we therefore advocate going beyond static network mea-
sures like the fractal dimension (and those similar to Aki)
and implementing burst dynamics into our IP algorithms to
describe induced microseismicity. In addition hydrodynamic
considerations suggest a loopless network is appropriate [19].
Therefore, we adopt a similar loopless bond IP network as in
Ref. [20] (except here we also compare with site IP) but grow
the network using our own avalanche-burst model (discussed
in Sec. IV). With these added dynamics to the percolation
network, we are able to produce power-law burst-frequency
distributions which have scaling exponent, τ = 1.53, larger
than 1, and falls in the range observed in induced seismicity.

In percolation models which represent porous sediment by
a lattice of sites adjoined by bonds, the precise interactions
at the fluid boundaries is a function of the pore size and the
capillary throat diameter. We therefore consider two loopless
invasion percolation models (LIP) corresponding to the two
limits: If the throat sizes are smaller than all the pores, then
the fluid will tend to become trapped in the larger pores. In
this limit, the pore sizes govern the motion of the invading
fluid. In our simulations we would need to assign strengths to
pores representing the pore size and such a model would be
site invasion percolation (SIP).

In the other limit where the throat sizes dominates the
flow of fluid (for example, throat sizes are small compared to
pore size restricting flow) we would instead assign strengths
to the bonds or throats representing the bond size and such
a model would be bond invasion percolation (BIP). Initially,
we imagined fracking as being necessarily a drainage process
since the invader would have most difficulty with the small-
est constrictions, thereby making BIP the appropriate choice.

However, since the algorithms are characterized using their
global properties, we may be insensitive to the details down
to the bond site scale.

This then becomes a question of whether SIP and BIP share
the same universality class. The literature seems to conflict on
the this point. It was originally argued that SIP and BIP belong
to the same universality class [21] but later it was argued that
important differences arise between the two [19,22]. Here we
perform a careful study of the two, illustrating the differences
on the small scale, and we find that on the largest of scales,
there remains a significant difference in fractal dimension D f ,
though other scaling exponents remain similar. These results
suggest the two processes belong to different universality
classes.

Being able to distinguish between these two processes
serves to illustrate the kind of sensitivity we can expect with
this approach as each corresponds to different small-scale
processes. Ultimately, our choice to model HF as critical phe-
nomena necessarily restricts the phenomenology we consider.
From the theory of critical behavior, the critical point is a
region of phase space where the typical small-scale physics
which governs much of the potential behavior becomes dom-
inated by the inherent random fluctuations which are allowed
to grow to all scales of the system [23]. In this paper we
investigate which model of randomness is appropriate for the
inherent randomness of HF and by which method the random-
ness grows to all scales.

To Summarize Our Results

Because the appropriate model for randomness in HF is un-
clear, we begin by comparing the simplest motivated models:
Loopless site invasion percolation (LSIP) and loopless bond
invasion percolation (LBIP). We are interested in determining
if there are significant differences in the critical exponents of
these two models. If differences do exist, then we may be able
to gain insight into the details of fluid displacement on the
pore or bond scale since each process has different mechanism
for fluid displacement. We find that on the scale of lattice
spacing there are significant differences in networks between
LSIP and LBIP. However, as the scale approaches that of a
very large lattice (104 × 104 for example), their difference in
scaling exponents D f , Dmin, and τ is still significant but be-
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come smaller. Because both models still produce sufficiently
similar networks and our constraining data are limited, neither
is preferred for modeling the fracture networks produced dur-
ing hydraulic fracturing. Still, the small differences between
the two models are significant enough to suggest they are
described by different universality classes, and a sufficiently
careful characterization of observed critical exponents could
shed light into a more appropriate detailed small-scale model.

II. SIMULATION ALGORITHM

The invasion begins at the center with a seed site and grows
through the lattice following a principle of least resistance un-
til reaching the lattice boundary. Since this is not a multiphase
flow problem (we treat the defending gas as highly compress-
ible) we do not concern ourselves with complications like
trapping. Further, since our model is loopless, we will never
have any trapped regions in the traditional sense. We first
describe how we simulate SIP, which essentially amounts to
maintaining two list: The first is a list of filled sites, S f , and
second is a list of nearest-neighbor sites to all filled sites, Snn.

(1) The invasion begins at the center of the lattice with a
seed site corresponding to the injection site. (2) The seed site’s
four nearest neighbors are added to the list of available sites,
Snn. This list will be updated serving as the list of “invadable”
sites during each iteration. (3) At each iteration, all new el-
ements to Snn are assigned a number from a random uniform
distribution between (0,1) representing the site’s strength. The
list of “invadable” sites along with its strength is called
the percolation front. (4) The site with the lowest strength in
the percolation front is invaded and added to the list of filled
sites, S f . (5) The invaded site is removed from the percolation
front ensuring it cannot be invaded multiple times. (6) The
new nearest-neighbor sites to the freshly filled site is added to
the list of available sites, Snn. (7) Repeat (3)–(6) until reaching
the lattice boundary or until reaching the desired number of
invaded sites.

Most of the computation time comes in searching the
percolation front at each iteration for the weakest site. Consid-
ering that each iteration changes the percolation front at most
by three values, as the percolation front grows the amount of
change at each iteration is small, therefore searching the list
each iteration becomes highly inefficient. Instead, we main-
tain an ordered list which is simply updated with the new
available sites at each iteration in their respective order. One
then only needs to pick the first element of the list at each
iteration. Even though we are assigning strengths to the sites
we can still infer the path taken from site to site. This inferred
network is similar to that created by assigning strengths to all
bonds.

However, there is a key difference. Since this algorithm
never advances by going from an occupied site to another oc-
cupied site, the inferred bond network will always be loopless.
This is desirable feature for us, since pressure gradients drive
the fluid from filled sites to empty sites. If two neighboring
sites are filled, then no pressure gradient between them exists,
so the bond between the sites should never be allowed to
break. The bond network inferred by SIP naturally imple-
ments this physical condition.

FIG. 1. Bond invasion percolation algorithm illustration. (a) A
seed site is chosen in the center of the square lattice. The four nearest
neighbors are added to the percolation front with random strengths
between (0,1) assigned to the bonds adjoining available sites. (b) The
bond with the smallest value is broken and the adjoining site is filled
and added to the cluster. New values are assigned to the bonds adjoin-
ing nearest neighbors to the freshly invaded site. (c) Weakest bond
again breaks adding the filled site to the cluster and assigning bond
strengths connecting new nearest neighbors. (d) Loopless condition
is enforced by removing all unbroken bonds joining to filled sites.
Bond joining (0,0) and (1,0) is removed in this example.

Next, in order to simulate BIP we need only make a minor
tweak to the SIP algorithm. Figure 1 shows an example of
how BIP might proceed. If we instead assign the strengths
to the sites, then we see that we can largely preserve a one-
to-one correspondence between a site being invaded and the
bond that must have broke. However, if we look at Fig. 1(c),
then we see that there should be two bonds which can break
and cause site (1,0) to be invaded. These bonds correspond to
bonds (0, 0) → (1, 0) and (1, 1) → (1, ) with strength 0.53
and 0.03, respectively. In SIP, since each site is only allowed
to have a single value, there will only ever be one opportunity
for site (1,0) to break.

To perform BIP we can still assign values to sites, but
sites must be allowed to take on multiple values. Since the
numbers were assigned randomly, we can randomly choose
which bond broke. By doing this we can preserve one-to-one
correspondence between a site being invaded and the associ-
ated bond which broke. Further, because the cluster can only
grow by invading an unfilled site, we do not need to implement
additional logic to ensure loops in the bond network do not
arise. The bond in joining sites (0,0) and (1,0) in Fig. 1(d) will
never be allowed because those sites are already filled.
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FIG. 2. Examples of LSIP (top) and LBIP (bottom) at different
scales. On the left is an example of a lattice size of ∼50 × 50 and
the right is 2000 × 2000. LBIP seems to be much more compact on
smaller scales, but this difference becomes less noticeable at larger
scales.

Fig. 2 shows clusters generated by the two algorithms
(LSIP, LBIP) at different scales. Because the networks pro-
duced are loopless, we can apply to our clusters much of
the rich theory associated with trees. This is also very con-
venient and insightful way to store the percolation clusters
because it in many ways reflects the self-similar structure of
the percolation cluster. We implement a recursive algorithm to
create a tree data structure that reproduces the connectedness
of the sites in our percolation clusters. Not only is this a
natural way to represent our clusters but it allows one to
quickly traverse the various paths through the cluster, which
is key since traditional path finding algorithms can be more
computationally expensive than creating the entire cluster.
With a tree structure and a recursive path finding algorithm
we can efficiently extract the path characterization to further
characterize the network of our algorithms.

We also utilize the tree structure in defining and charac-
terizing our avalanche burst model. We discuss this in more
detail in Sec. IV, but quickly, our burst model defines a
burst to be all connected sites which sequentially break below
some threshold strength. Since we can produce different burst
statistics by changing the threshold while using the same tree,
we can more efficiently characterize the affects of our burst
model. By changing the burst threshold we merely change
how the root tree is broken down into sets of subtrees where
each subtree represents a burst. This takes less time than
creating a cluster grown by bursts with a particular threshold
each time to generate burst statistics for a different thresholds.

III. NETWORK CHARACTERIZATION

Following traditional percolation theory we characterize
networks through various scaling relations. Initially, it was ar-
gued that the scaling relations would be insensitive to whether
or not one simulated bond or site percolation [15], and thus
they would fall under the same universality class. More recent
work has called this into question [19].

In this work,we highlight the difference between BIP and
SIP and the changes one must make to SIP to reproduce
BIP. In effect, it supports the more recent work finding
differences in the scaling relations between the two and sug-
gests they should belong to different universality classes.
Still, the significance of universality classes is somewhat
undermined because even if they did belong to the same uni-
versality classes, the universality would be broken depending
on whether or not an IP model is trapping or nontrapping.
Much of the literature focuses on two phase dynamics (the
displacement of one fluid by another) which makes the trap-
ping variety more appropriate. We focus on the invasion of
a fluid into an empty lattice, so we opt for the less common
nontrapping variety.

The first and perhaps most important scaling relation is the
fractal dimension of the network. If the number of filled sites
represents the mass of a cluster, then its mass should scale
according to the following relation:

M(L) ∼ LD f , (1)

where D f is called the fractional or fractal dimension. There
are multiple techniques for determining the fractal dimension
of the sample spanning cluster (SSC). The standard approach
in the literature relies on counting the number sites within
circles of increasing radii with a fixed center [24]. Norris et al.
[20] relied on a similar technique, but rather than randomly
choosing the center of the set of circles to be random sites
within the SSC, they chose the injection site to be the center
and averaged the counts over many clusters (1000) with fixed
mass (m = 100 million). These results are possibly somewhat
problematic because they do not properly factor in finite-size
effects. Moreover, the fractal dimension should not depend on
the choice of the center (which is why Reference [24] argued
for taking an average over many choices). References [25,26]
used a technique similar to before, but instead defined a local
fractal dimension, D f (M ) which follows from Eq. (1),

D f (M ) ≡ dlogM

dlogL
, (2)

and estimate how this function approaches the asymptotic
value of in the infinite limit.

Since periodic boundary conditions are not implemented
and because both previous work [20] and our models take the
center to be sole injection point, the fractal dimensions of the
clusters are more affected by finite-size issues. The effect is
especially pronounced if one percolates the cluster within a
lattice of fixed size rather than percolating clusters up to a set
mass.

With these considerations, we used a box counting tech-
nique(more commonly used in fractal dimension studies) to
determine the mass scaling, and generated clusters with fixed
mass rather than fixed lattice size. Moreover, rather than a
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FIG. 3. The behavior of the local fractal dimension Df (M ) as
defined by (2) for LSIP (solid) and LBIP (dash dotted). We compute
an ensemble average 〈Df (M )〉 for lattices in the range [50, 104]
and fit the results to an exponential function via minimization of
least squares. We determine the asymptote of each curve from the
fit and the gray region around the asymptotes indicates the error in
asymptopte fit parameter.

simple linear fit, we use the approach of Refs. [25,26] to
determine how the local fractal dimension approaches its
asymptotic limit. Finite-size scaling theory argues that at crit-
icality the correlation length of the system becomes infinite.
This means there is only one fundamental length scale to the
system. Since the mass scales with L according to some power
law, the mass itself should also follow a power law. This leads
to the following assertion:

|D − D f (M )| ≡ Mω, (3)

where local fractal dimension, D f → D f (M ) in the infinite
mass limit. If we plug (1) into (2) we get the following differ-
ential equation (approach asymptotic value from below):

dlogM

dlogL
= −CA−ωL−ωD f + D f . (4)

The solution of which is found to be of the form:

logM = c0

ωD f
L−ωD f + D f logL + c1, (5)

where c0, c1 are constants. If we perform a log-log plot then
the first term is the nonlinear correction. This can be compared
to what is done in Ref. [25] which writes the scaling along
with the smallest correction term:

logM = LogA + D f logL + log(1 + aL−ω )

≈ LogA + D f logL + aL−ω.
(6)

Thus, rather than fitting to a line in a log-log plot one fits to
(5) or (6) (gave comparable results) and simultaneously finds
the best D f , ω. We found this technique to produce marginal
success but still found evidence of finite-size effects. Instead,
we chose to directly reproduce (3) by extracting the local
fractal dimension for lattices in a range of sizes [50, 104] and
fitting the asymptote directly. The results are shown in Fig. 3.

In order to determine whether SIP and BIP share the same
universality class, one must determine at least two of the scal-
ing parameters. From these, all others can be determined. A

common measure is the percolation backbone which is closely
related to the transport properties of a sample-spanning clus-
ter. The backbone is defined to be the subset of the cluster
which has all dangling ends removed (ends not in contact with
the lattice boundary). It serves as a measure of conductivity,
since it is the set of paths through the lattice if one begins
on one boundary side and ends at another. The backbone is
characterized by the path distance, D, of the connected sites
composing the backbone, and the lattice size L which hosts
the cluster according to:

D(L) ∼ LDbb . (7)

A closely related quantity is how the distance between two
arbitrary lattice points scale in terms of lattice site spacing l .
This follows another power law:

M(l ) ∼ lDl , (8)

where M(l ) is the number of sites within lattice spacing l
and Dl is the chemical dimension [27]. With backbone studies
one must be more careful with how boundary conditions are
imposed (periodic, etc.). Thus it is preferable to use Dl which
is largely independent of such affects. Further, what we are
really interested in is characterizing the compactness of a
cluster which describes the types of paths connecting sites.
We can relate the Pythagorean distance r and l as:

l ∼ rDmin . (9)

Therefore if d is the path distance from the origin to the
boundary of lattice size L, then L = nl and by Eq. (9) we can
write:

d ∼ rDmin , (10)

where Dmin is the fractal dimension of the shortest path. A
peculiar affect is how diffusion slows near criticality because

FIG. 4. An example of a typical path (darkened line segment)
produced by the LSIP algorithm. We use a recursive algorithm to
find the path from the injection site to the the end of cluster. The end
of the cluster is defined to be the site of the lattice boundary.

012310-5



ORTEZ, RUNDLE, AND TURCOTTE PHYSICAL REVIEW E 103, 012310 (2021)

FIG. 5. Dmin and τ characterization for LSIP and LBIP. Plots (a) and (c) are a log-log plot of an ensemble average of the path distance
between sites, d (l ), where the lattice spacing between sites is l . We averaged over 100 samples for each L in the range [10,2000]. Plots (b) and
(d) show the burst magnitude-frequency scaling for LSIP and LBIP respectively. For each, we generated ≈120 000 bursts which ranged from
size 1 to ∼4 × 103. We binned the counts of each burst size (blue dots) using log sized bins in order to extend the fit data range. The fits were
all done via minimization of least squares.

the sizes of the holes in the cluster become scale invari-
ant, thus allowing holes of all sizes to form. The paths are
then forced to become more circuitous. Because the IP pro-
cess is always critical, we expect the path length to follow
Eq. (10).

To determine the path length described by Eq. (10), we
make use of the loopless condition which allows us to reor-
ganize the cluster of connected sites into a tree. We show an
example of the shortest path for LSIP in Fig. 4. Since there
only exists a single path between two points this path trivially
represents the shortest path between two points, we use re-
cursive search routines to find paths between sites much more
efficiently. We create an ensemble of clusters with lattice size
L in range [10, 2000] and calculate the path length from the
origin to the boundary. The results are shown in Fig. 5 where
we find Dmin = 1.215 ± 0.002 and Dmin = 1.200 ± 0.002 for
LSIP and LBIP, respectively.

The loopless condition simplifies the paths within our
clusters since there can only be one. Absent recursive meth-
ods, path search algorithms can take more time finding paths
between sites than creating the original cluster. Also, this
simplification creates paths with other applications like the

paths which resembles domain walls in the strong disorder
limit of spin glass systems [28]. The paths also resemble
Prim’s algorithm for finding the shortest spanning tree of a
weighted random graph. It represents the minimum energy
tree spanning all vertices [29].

IV. BURST CHARACTERIZATION

Physically, we think of a burst in our model as a rapid
accumulation of filled sites which corresponds to a formation
of sublattice regions having different permeability or conduc-
tivity from which the sublattice originates. In fracking, these
would be the regions where the stress field rapidly changes
and hosts the observed microseismicity. Our burst model must
then follow a power law, and we also expect to reproduce
similar spatial distribution of burst centers to the epicenters
of earthquakes from fracking.

IP was intended to simulate the quasistatic displacement of
one fluid by another through capillary forces. The networks
produced simulate long time expectations of systems eventu-
ally able to achieve equilibrium. Though at each iteration a
site is invaded or a bond breaks, the network characteristics
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are loosely coupled to these details (as we see SIP and BIP
sharing nearly identical network characteristics). While there
does not seem to be inherent time dynamics in IP models,
different attempts have been made to understand or uncover
inherent time dynamics Furuberg et al. [30].

These authors examined the dynamics that arise when a
time step corresponds to the invasion of a single site. They
found r ∼ t1/D, which we expect since here t is also the
number of invaded sites or has the equivalent interpretation as
being the mass (number of invaded sites) for a cluster with size
r. Here D is the fractal dimension of the SSC and in the limit
where the fractal dimension ∼2 (an SSC completely filling all
sites of a lattice) we recover the results of distance traveled in
a diffusion process.

If paths can only traverse filled sites, then a lower frac-
tal dimension will mean a more sparsely filled lattice which
will limit potential trajectories on the lattice. The result is
that we recover the path length of a random walk on typical
percolation cluster. The authors took this relation to mean
that at time t , most of the region within r is likely already
invaded, and it is unlikely to have growth at distances larger
than r. Their notion of a burst was that in time t , growth
can be found to be in some distance r. Yet, it seems this is
merely restatement of the behavior of a random walk on a
percolation cluster and does not introduce any true burst dy-
namics.

Much of the dynamics associated with IP has to do with
the transport exponents which are mostly governed by the
kinds of paths which can form through the percolating cluster.
However, RP does follow a cluster size scaling law described

by the Fisher exponent, τ :

ns(p) = s−τ f [(p − pc)sσ ], (11)

where for (p → pc), the cluster size,ns(p) ∼ s−τ . So, there is
credence to the idea that a network can grow in bursts if IP
grows its SSC by different realizations of these RP clusters.

The growth algorithm for IP is different from RP since
IP will always grow indefinitely and further exhibits a kind
of self-organized criticality, since the cluster will grow by
a self-organized selection of bonds strengths less than the
critical probability. Reference [33] defined a notion of a burst
resulting in a power law similar to that of RP when (p → pc).
The authors showed that if we consider the sequence of broken
bonds to be a signal x(t ) [where x(t ) is the bond strength
broken at time t], then over some signal length x(t + s),
there will be a sequence of bonds broken. For all t ′ in range
t < t ′ < t , the bond strengths broken, x(t ′), will be x(t ) <

x(t ′) < x(t + s).
The number of bonds broken in time range (t + s) can

be made to follow a power law if the threshold strength of
x(t ) is chosen to be near the critical probability as was also
shown by authors in Ref. [20]. That is, IP clusters will grow
by a self-organized selection of bonds strengths less than the
critical probability, but if the threshold is chosen to be near
the critical probability, the SSC will grow in iterations of
clusters similar to those of RP though with a different value
for the Fisher exponent. In particular, from Fig. 6 we see that
if the threshold, T ∼ pcrit , then the average burst size exhibits
critical behavior. Choosing our threshold to be in this range

FIG. 6. Critical behavior of LSIP and LBIP. Utilizing our notion of a burst, there exists a particular threshold where the average size of a
burst, 〈S〉, behaves critically for LSIP and LBIP. This value corresponds to the critical occupation probability, pcrit for BIP and SIP which is
known to be 0.5 and ∼0.592, respectively. The left plot, shows how the number of bursts decreases to 1 if the threshold, T > pcrit . Similarly,
the right plot shows how the average burst size, 〈S〉, grows to include all sites if the threshold T > pcrit . If the threshold T ∼ pcrit , then our
burst magnitude frequency distribution will follow a power law with b value ∼1.54.
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FIG. 7. Avalanche tree burst example for SIP with a burst thresh-
old set to be T = 0.57 near pc = 0.59. Each burst is shown by a
different color, where the injection site is marked by “×” in the red
burst and migrated to the yellow, blue, and green. The bond strengths
are shown to illustrate all the sequence of connected bonds with
strength less than T belong to the same burst.

will result in a burst-size frequency distribution that is scale
invariant and reproduces a power law.

In addition to this choice of burst threshold, we demand
that our bursts be spatially connected in addition to sequen-
tially (previous studies only demanded sequentially connected
bonds or sites [20,33]). Our bursts should only be allowed
to grow from the local percolation front of a burst rather
than the global percolation front from the entire cluster. Since
our networks are necessarily loopless, we can utilize the tree
structure to define sequentially and spatially connected bursts
in a very natural way.

Again, the critical aspect of a burst is that it should fill up
a certain portion of a lattice until it exhausts all the easiest
bonds. Once a strong bond is forced to break, a new region of
weak bonds should become available, allowing a quick suc-
cession of bonds to break. The successive breaking of weaker
bonds below a threshold defines a burst. Again, because a
percolation cluster has no intrinsic time dynamics, we are free
to retroactively say how the tree grew and that it in fact grew
in bursts.

Figure 7 shows how a cluster can be divided into different
colored subtrees where each subtree is made to corresponds to
a burst. The tree structure advantage is that one can define a
burst to be its own subtree which connects at only one point to
the original tree. The process of determining bursts becomes
a process of cutting a single tree cluster into a collection of
subtrees, all of which are connected to each other through only
1 node (i.e., a similar connectedness criteria as before).

To define a burst we then traverse the tree from the origin
until we exhaust all bonds less than the threshold strength; we
cut the tree at this point, and define this cut point to be the
root node of the subsequent tree. The process continues again
traversing all the nodes weaker than the threshold strength. A
similar mechanism is used to explain the opening of bronchial
airways in lungs [34]. We note that generalized avalanche
models on trees also follow power laws [35].

V. RESULTS

Detailed studies of fluid injection into a porous medium on
the pore scale reveals very complex behavior. This is largely
the result of porous medium morphology being itself highly
disordered and random [36]. Therefore a statistical charac-
terization seems appropriate and it is this characterization
these (invasion) percolation models aim to reproduce. Within
percolation theory we can model fluid displacement as two
different processes. The process by which a fluid is drawn
into a network of pores is imbibition, whereas a nonwetting
fluid forced into porous volume is drainage. We model these
as SIP and BIP, respectively, and it is our primary interest to
determine if HF is better described by one of these processes.
In doing so, we might gain insight into the appropriate physics
at the individual pore scale. Otherwise, it demonstrates our
sensitivity to the dynamics at different scales.

Since the scaling exponents which characterize the univer-
sality class are the same as those used to constrain our model
via observed microseimicity, a closely related question is
whether SIP and BIP share the same universality class. While
we find small differences between the two models which
does suggest unique universality classes, the differences are
sufficiently small to suggest that we do not have sensitivity in

TABLE II. A comparison of scaling exponents for loopless
site invasion percolation (LSIP), loopless bond invasion percola-
tion (LBIP), random percolation (RP), loopless random percolation
(LRP), nontrapping site invasion percolation (NTSIP), trapping
bond invasion percolation (TBIP), and diffusion limited aggregation
(DLA).

Df Dmin τ

LSIP (this
paper)

1.902±0.003 1.215 ± .002 1.524 ± .009

LBIP (this
paper)

1.945±0.009 1.200 ± .002 1.534 ± .011

RP [25] 91/48 ≈ 1.896 1.13 ± 0.004 187/91 ≈ 2.05
NTSIP [31] 1.8959±0.0001 1.1307 ± 0.0004 —
TBIP (square
lattice) [31]

1.822±0.008 1.214 ± 0.002 —

DLA [32] 1.69±0.24 1.0 ± 0.02 —
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FIG. 8. An example of a SSC containing 300 000 bonds broken into its separate bursts according to the burst threshold. The bursts are
shown where each burst is drawn as a circle with size proportional to the number of broken bonds and the bursts location determined by
the bursts’ center of mass. The plots (a), (b), and (c) are a comparison of how the burst size distribution changes as the burst threshold
changes (T = [0.45, 0.48, 0.49]), respectively, and approaches the critical probability, pcrit = 0.5. The sizes of the bursts tend to a power-law
distribution as the threshold tends to the critical probability. The purple star indicates the injection site of the entire cluster.

data to distinguish between the two. Table II shows our values
along with their observed error.

There seems to be many conflicting values for the scaling
exponents in the literature. We believe a major reason for
this is inadequate treatment of finite-size effects. Even large
lattices with large SSC’s with 107 sites can have significant
finite-size effects (as seen in Figure 3 where a lattice size of
104 has ∼107 sites). We find evidence that in the limit of

infinite lattice size, the fractal dimension of SIP approaches
the expected value of RP.

For BIP, which seems to be more compact than SIP at
all lengths scales approaches a value of D f = 1.945 ± 0.009.
This value is different from SIP, which has value D f =
1.902 ± 0.003. Figure 3 very clearly shows how the “lo-
cal” fractal dimension can change as a result of the lattice
size.
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We find that because LBIP is more compact, there is a
small difference in the value of Dmin as described by Eq. (10).
The fractional dimension Dmin was found to be Dmin =
1.215 ± 0.002 and Dmin = 1.200 ± 0.002 for LSIP and LBIP,
respectively. Results from the literature for Dmin are 1.2138
[20], 1.2 ± 0.02 [29], 1.22 ± 0.01 [28], 1.23 ± 0.02 [37], and
1.214 ± 0.001 [38]. Regular percolation gives Dmin = 1.13
and a random walk has D = 1.19.

The scaling of the burst magnitude-frequency distribution
allows us to compare how well our bursts reproduce the
scaling associated with fracking microseismicty. We find that
despite small differences in their other scaling exponents, our
models produce the same magnitude-frequency distribution
with their respective errors (τ = 1.524 ± 0.009, τ = 1.53 ±
0.01 for LSIP and LBIP respectively). Fig. 8 gives an example
of how our model of bursts near criticality and our simulated
fracture network produces a representation of the expected
microseismicity within a region.

Our burst scaling is compatible with that observed dur-
ing induced seismicity and is significantly different from the
b-value of typical tectonic earthquakes. In order to account
for the variability of b values associated with induced micro-
seisimicity we find that for thresholds T < pc, we can produce
burst statistics which prefer smaller earthquakes, suggesting
that induced microseismicity may not be characterized by
critical phenomena unlike tectonic seismicity which is known
to be critical [17].

In order to maintain generality we emphasized maintaining
model simplicity. Further, because we believe most of the ob-
served HF seismicity is the result of critical phenomena, only

a subset of system behavior becomes relevant. This subset
being the nature of the inherent randomness and how it grows
to all scales of the system. Our statistical approach means we
avoided introducing much of the local environment conditions
which have a large affect on individual realizations of induced
miscroseismicity. Most notably the spatial distribution of the
epicenters of earthquakes seem to depend on the local stress
field and fracture network. This produces seismicity which
uniquely clusters in some regions and is rather isotropic in
others.

This study shows that this approach can reasonably repro-
duce HF seismicity’s essential statistics and serves to illustrate
the sensitivity to small-scale physics one can hope for with
such an approach.

Our models produce isotropic spatial distribution of bursts
and can therefore only account for some of the observed
features. It is known that pore sizes within rocks are not inde-
pendent and random but rather exhibit correlations. Since we
are insensitive to distinctions between pore or bond dynamics,
by introducing correlations in pore sizes, we should be able to
more accurately describe fracture networks and better account
for the variations of induced microseismicity. This will be the
subject of future work.
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