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Information processing in tree networks of excitable elements
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We study the collective response of small random tree networks of diffusively coupled excitable elements
to stimuli applied to leaf nodes. Such networks model the morphology of certain sensory neurons that possess
branched myelinated dendrites with excitable nodes of Ranvier at every branch point and at leaf nodes. Leaf
nodes receive random inputs along with a stimulus and initiate action potentials that propagate through the tree.
We quantify the collective response registered at the central node using mutual information. We show that in the
strong-coupling limit, the statistics of the number of nodes and leaves determines the mutual information. At the
same time, the collective response is insensitive to particular node connectivity and distribution of stimulus over
leaf nodes. However, for intermediate coupling, the mutual information may strongly depend on the stimulus
distribution among leaf nodes. We identify a mechanism behind the competition of leaf nodes that leads to
nonmonotonous dependence of mutual information on coupling strength. We show that a localized stimulus
given to a tree branch can be occluded by the background firing of unstimulated branches, thus suppressing
mutual information. Nonetheless, the mutual information can be enhanced by a proper stimulus localization and
tuning of coupling strength.
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I. INTRODUCTION

Networks of coupled excitable elements serve as models
for a wide range of phenomena such as population dynamics
and epidemic spread [1–3], pattern formation in chemical
reactions [4,5], and neuronal activity [6,7]. Coupled stochastic
excitable systems show a variety of emergent regimes which
can be controlled by coupling strength, the network topology
and size, or noise strength [8–12].

Tree networks of stochastic excitable units are in use as
models of large active dendritic arbors in neurons of the
central nervous system [13–15], representing the dendritic
network as an excitable medium. Stimuli applied to nodes
trigger excitation waves propagating through the tree, result-
ing in highly nonlinear collective response with extended
dynamical ranges [13]. In regular tree networks, propagation
of excitations from the central node toward the periphery
depends on the branching ratio and the coupling strength. It
may fail for branching ratios beyond the critical values [16].
In large tree networks, a combination of bidirectional and
unidirectional coupling may form effective loops, leading to
self-sustained oscillations [17].

Here we focus on small random tree networks that
model certain types of sensory neurons whose dendrites are
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myelinated. Examples of such sensory neurons include mus-
cle spindles [18,19], cutaneous mechanoreceptors [20,21],
and electroreceptors in paddlefish [22,23]. In such neurons,
branches of the dendritic tree are wrapped with myelin, in-
terrupted by the nodes of Ranvier at each branch point,
exemplified in Fig. 1. Branching progresses from the primary
node (green circle) for a small number (2–5) of generations
and terminates at heminodes (red semicircles). The external
sensory stimuli generate input currents which are conveyed by
thinner neurite processes to heminodes. All nodes, including
heminodes, are nodes of Ranvier, the active hot spots of the
tree network. Because of the high concentration of Na+ chan-
nels in nodes, an action potential (AP) can be triggered by a
stimulus at any of the heminodes, resulting in several possible
spike initiation zones [18,24,25]. APs emerging at multiple
heminodes excite nodes in the tree, resulting in a collective
response registered at the primary node. Despite the existence
of multiple potential spike initiation zones with uncorrelated
noise, muscle spindles [25] and paddlefish elecroreceptors
afferents neurons [26] show coherent periodic spiking.

Myelin decreases the capacitance of and the leak across
the dendrite membrane so that a myelinated dendritic arbor
can be described by a discrete cable model [28]. In such a
model, nodes of Ranvier are connected by passive resistors,
leading to a tree network of diffusively coupled excitable
units [29,30]. The coupling between units is determined by
the geometry of nodes and links and is strong for dendrites
with relatively large diameter, such as in muscle spindles and
electroreceptors. The latter results in synchronous firing of
all nodes in the network, even when peripheral nodes are
subjected to uncorrelated noise [29]. Thus, synchronization of
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FIG. 1. Examples of tree networks. (a) A muscle spindle affer-
ent from Ref. [27]. (b) An artificial tree with different numbers of
heminodes per tree branch. (c) A mechanoreceptor afferent from
Ref. [20]. Nodes of Ranvier are shown by circles and semicircles:
The primary node is labeled by the green circle, internal nodes are
shown by the blue circles, and peripheral nodes (heminodes) are red
semicircles. The numbers (H,N ) next to each tree show the number
of heminodes, H, and the total number of nodes, N .

strongly coupled excitable nodes may serve as a mechanism
for coherent spiking observed in muscle spindles and paddle-
fish electroreceptors afferents mentioned above.

Structure of myelinated terminals, such as the number of
nodes, heminodes, and their connectivity, varies among neu-
rons [20,22,27], which may explain the observed population
variability of both spontaneous and response dynamics. A
model of random trees of coupled identical excitable nodes
showed that the tree structure determines the variability of
collective firing rate [30]; however, the effect of structural
variability on the stimulus response was not studied.

In addition to variability in the tree structure, heterogeneity
of stimuli applied to the leaves provides another level of ran-
domness, which is the focus of this paper. The heterogeneity
of stimuli to a tree results in distinct responses, which might
be an important aspect in sensory information processing and
coding because response diversity can be employed on a pop-
ulation level, where outputs of an array of sensory afferents
converge to a secondary neuron [21,31]. In touch receptors,
for instance, the Merkel-cell neurite complex receives the
sensory input and generates an input current to heminodes.
Due to the uneven distribution of unmyelinated neurites and
Merkel cells across the heminodes, the input to each heminode
is nonuniform [20,32]. The loss of Merkel cells also translates
into variability in the input to heminodes and may change
the receptor sensitivity [33]. Moreover, even the afferents
innervating the same end organ might have distinct molec-
ular structure leading to a spatial alignment with deferential
sensitivity [31].

Heterogeneous stimulation of muscle spindle afferents
demonstrates the so-called occlusion, a nonlinear summation,
where the response to a combined stimulus applied to two
distinct afferent endings is smaller than the sum of individual
responses [25,34]. However, a particular mechanism of this
effect is still under debate [25,34,35].

Here we characterize the collective response of tree net-
works of excitable elements to a stimulus using mutual
information. Mutual information (MI) is a widely used mea-
sure for quantification of the quality of stimulus transmission
[36,37]. In our case, MI characterizes the transmission of a
stimulus from the periphery of a tree to the primary node. The
paper is organized as follows. In Sec. II A we describe a model
of Hodgkin-Huxley type nodes coupled on a tree network.

Section II B introduces the mutual information measures for
static and time-dependent stimuli. Section III A is devoted to
the strong-coupling regime. Effects of coupling strength and
heterogeneous stimulus are discussed in Sec. III B, followed
up by the conclusion in Sec. IV.

II. MODEL AND METHODS

Figure 1 exemplifies coupled excitable elements arranged
on a tree. Leaf nodes (or heminodes) receive an external stim-
ulus, and the collective response is registered at the primary
node.

A. HH-type model and stimulus

We use the same model as in Ref. [30]. All excitable
nodes are identical and governed by a Hodgkin-Huxley (HH)
type system. Nodes are diffusively coupled with identical
links. Stimulus and noise enter the system via leaf nodes
(heminodes). For a tree with N nodes and H heminodes, the
membrane potential of the ith (i = 1, . . . ,N ) node is

CV̇i = −Iion,i + κ

N∑
j=1

Ai, j (Vj − Vi ) + δi,l Ji(t ), (1)

where i = 1 marks the primary node and i = l = N − H +
1, . . . ,N marks the leaf nodes; κ is the coupling strength;
C = 2 μF/cm2 is the nodal capacitance, and A is the sym-
metric adjacency matrix that encodes the structure of a tree. Its
elements, Ai, j , are either 1 for connected nodes or 0 otherwise.

Ionic current, Iion,i, across the nodal membrane consists
of sodium and leak currents: Iion,i = gNam3

i hi(Vi − VNa) +
gL(Vi − VL ), where gNa = 1100 mS/cm2 is the maximum
sodium conductance, VNa = 50 mV is the sodium reversal po-
tential, gL = 20 mS/cm2 is the leak conductance, and VL =
−80 mV is the leak reversal potential. The gating activation,
mi, and inactivation, hi, variables obey the dynamics

ṁ = αm(V )(1 − m) − βm(V )m,

ḣ = αh(V )(1 − h) − βh(V )h,

with the rate functions:

αm(V ) = 1.314(V + 20.4)/{1 − exp[−(V + 20.4)/10.3]},
βm(V ) = −0.0608(V + 25.7)/{1 − exp[(V + 25.7)/11]},
αh(V ) = −0.068(V + 114)/{1 − exp[(V + 114)/11]},
βh(V ) = 2.52/{1 + exp[−(V + 31.8)/13.4]}.

The external current, Ji(t ), in Eq. (1) is applied to the H leaf
nodes only, hence the Kronecker delta, δi,l , where the index
l marks leaf nodes. The external current comprises the offset
constant current, I0, zero mean Gaussian white noise, ξl (t ),
and a stimulus s(t ):

Jl (t ) = I0 +
√

2D ξl (t ) + σl s(t ), l = N − H + 1, . . . ,N ,

(2)
where noise of intensity D is uncorrelated for different leaf
nodes, i.e., 〈ξl (t )ξk (t + τ )〉 = δl,kδ(τ ). In the following for
simplicity, we consider a static stimulus, s(t ) ≡ s, where s
is sampled from a Gaussian random distribution with zero
mean and unit standard deviation (SD). A set of σl weighs the
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stimulus applied to leaf nodes and thus models a heteroge-
neous stimulation of a tree.

In the absence of noise and stimulus, D = s = 0, the
isolated HH node’s equilibrium passes through a subcriti-
cal Andronov-Hopf bifurcation at I0 = IAH ≈ 29.06 μA/cm2.
The corresponding pair of stable and unstable limit cycles
disappears at I0 = ISN ≈ 28.15 μA/cm2 via the saddle-node
bifurcation [29]. For I0 < ISN the node is in excitable regime.
In the narrow range of ISN < I0 < IAH, the single node is
bistable with coexisting stable equilibrium and stable limit
cycle.

Model equations were integrated numerically using the
explicit Euler-Maruyama method with a time step of 0.1 μs.

B. Collective response and mutual information

We quantified the collective response of a tree network
to a stimulus applied to leaf nodes by the MI between the
stimulus and the response of the primary node. For the static
stimulus used in this study, we used the spike count, n(T ),
as the response of the primary node in a long time window.
Spikes generated by a node were counted when the potential
of the node crossed a threshold value of 20 mV on its rising
phase. Multiple presentations of the stimulus, s, drawn from
the Gaussian distribution generate an ensemble of the spike
counts as in Ref. [38]. The collective response of a tree is then
characterized by the mutual information [36,38,39],

I =
∑

i

∑
j

P(ni, s j ) log2

[
P(ni, s j )

P(ni )P(s j )

]
, (3)

where P(ni ) is the probability that spike count attains the
value ni, P(ni, s j ) is the joint probability that the spike count
attains ni and the stimulus has the value s j , and P(s j ) is the
probability that s = s j .

Estimation of MI with Eq. (3) involves the binning of the
Gaussian stimulus and demands lengthy simulations [38]. In-
stead, we used an accurate binning-free nearest-neighbor MI
estimator described in Ref. [40] (outlined in Appendix). We
estimated the MI from K = 1000 stimulus trials of duration
T = 5 s each. For each trial, we set the initial values of the
membrane potentials to V = −80 mV, and those of gating
variable to random values between 0 and 1. Every trial was
preceded by a 0.5-s period for transition to a steady state. For
each trial, the static stimulus was sampled from a Gaussian
distribution, giving rise to the integer random spike counts of
the primary node.

For a long stimulus trial window as used in this study,
the discrete random spike count can be approximated by a
continuous Gaussian model [38],

x = M(s) +
√

Q(s)ξ, (4)

where x is a continuous analog of the spike count, M(s) and
Q(s) are the mean and variance of the spike count in response
to the stimulus, respectively, and ξ is the Gaussian noise with
mean 0 and a standard deviation of 1. The mean spike count
versus stimulus, M(s), represents the transfer function of a
tree, akin to the so-called f-I curve.

The MI for the Gaussian model is given by [38]

I =
∫∫

ds dx p(s) p(x|s) log2

[
p(x|s)∫

ds′ p(s′)p(x|s′)

]
, (5)

where p(s) is the stimulus probability density

p(s) = 1√
2πσ 2

e− s2

2σ2 ,

and the conditional probability density, p(x|s), is also Gaus-
sian,

p(x|s) = 1√
2πQ(s)

e− [x−M(s)]2

2Q(s) .

Eq. (5) can be simplified for the case of small spike count
variance to [38,39],

I ≈ 1√
8πσ 2

∫
ds e− s2

2σ2 log2

[
σ 2M ′2(s)

Q(s)

]
, (6)

where M ′(s) = dM(s)/ds is the local slope of transfer func-
tion and determines the sensitivity of a neuron to stimulus
variations. Equation (6) indicates that the MI results from a
competition of sensitivity and spike count variance. In the
following we use the stimulus-averaged slope of the transfer
function,

χ = 1√
2πσ 2

∫
ds e− s2

2σ2 |M ′(s)|, (7)

to quantify the sensitivity of tree networks to static stimulus.
We estimated M(s) and Q(s) from simulations of tree

networks using the stimulation procedure as outlined above,
except that the number of stimulus trials was K = 100, i.e.,
an order of magnitude less than that for direct MI estimation.
Integrals in Eqs. (5)–(7) were evaluated numerically.

In addition to MI, we characterized the temporal coherence
of the primary node firing by the coefficient of variation (CV)
of corresponding interspike intervals (ISI). Given a sequence
of spike times {ti} within the stimulus windows, the ISI se-
quence is τi = ti+1 − ti, i = 1, . . . , n − 1, where n is the spike
count. For each stimulation window we calculated the CV
as the ratio of the ISI standard deviation to the mean ISI,
CV = std(τ )/τ , and then averaged the CV over all stimulus
trials.

III. RESULTS

A. Strong-coupling limit

In the case of strong coupling, κ → ∞, spiking of all nodes
is perfectly synchronized and a tree network with a total of
N nodes and H leaf nodes is equivalent to a single node that
receives an effective external current, Ieff, and its dynamics are
governed by [29,30]:

CV̇ = −Iion + Ieff + σeff s +
√

2Deff ξ (t ),

Ieff = H
N I0, σeff = H

N σ, Deff = H
N 2

D,
(8)

where I0 is the base current, σ is the average stimulus SD, and
D is the noise intensity for the corresponding tree network.
That is, the base current and the stimulus SD applied to
leaf nodes scale as (H/N ) and the noise intensity scales as
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FIG. 2. Response of a single node to static Gaussian stimulus.
(a) Mean spike count versus base current. (b) Stimulus-averaged
sensitivity (Sen) and spike count variance (Var) versus base current.
Units of the sensitivity are [spk/(μA/cm2)]; units of spike count
variance are (spk2). The dashed vertical lines show the saddle-
node (ISN = 28.15) and Andranov-Hopf (IAH = 29.06) bifurcations
for the single HH node. Other parameters are: stimulus SD, σeff =
1 μA/cm2; noise intensity Deff = 0.5 (μA/cm2)2 ms.

(H/N 2). Consequently, the collective response of a tree can
be predicted from a single node with effective parameters of
stimulus and noise. Given the base current, noise intensity,
and stimulus, the response is determined by the total number
of nodes and leaves, while their particular connectivity and
stimulus distribution over leaf nodes are irrelevant [30]. The
MI is thus a function of H, N , in addition to the external
current parameters: I (I0, D, σ ;H,N ).

Figure 2 illustrates a single node’s response to static stim-
ulus. The mean spike count versus the base current, shown
in Fig. 2(a), possesses a sigmoid shape. The slope of this
curve is maximal at I0 ≈ 28.2 μA/cm2 and corresponds to
the saddle-node bifurcation point in the deterministic single-
node system. Stimulus-averaged sensitivity Eq. (7) and spike
count variance peak at the same value of the base current,
Fig. 2(b). This illustrates the fact that, on the one hand, the
system becomes most sensitive to a stimulus when poised
close to the onset of periodic firing, and on the other hand,
high sensitivity to external perturbations implies vulnerability
to noise, which is reflected by the maximum of the stimulus-
averaged variance of the spike count. The MI shown in Fig. 3
reflects this competition of sensitivity and variability. Initially,
MI grows steeply with the increase of base current owing to
the increase of sensitivity. The growth of MI is slowed down
by the increase of the spike count variance. MI saturates for
I0 > 30 μA/cm2, following saturation of the sensitivity and
spike count variability in Fig. 2(b). Figure 3 also demonstrates
that the Gaussian model Eq. (4) provides a reliable estimate of
the MI (solid line) according to Eq. (5).

Figure 3 also compares the MI estimated from the sin-
gle node Eq. (8) simulations with the MI estimated for
the three trees shown in Fig. 1 for a strong coupling κ =
500 mS/cm2. For such a comparison the parameters of ex-
ternal currents applied to leaf nodes were scaled to yield
the same values of the effective single node. For example,
tree in Fig. 1(a) (tree a) has H = 8 leaf nodes and the total
N = 17 nodes. To match the effective node parameters (filled
circles in Fig. 3), this tree was simulated with the stimulus
SD, σa = (17/8)σeff = 2.125 μA/cm2, and noise intensity
Da = (N 2/H)Deff = 18.0625 (μA/cm2)2 ms.
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FIG. 3. Mutual information versus base current for the effec-
tive single node (Eff) and for the three trees from Fig. 1 (trees
a, b, and c) in the strong-coupling limit. Symbols show the direct
estimation of MI using nearest-neighbor method [40]; solid line
shows Gaussian estimation, Eq. (5). As in Fig. 2, the dashed ver-
tical lines show the saddle-node and Andranov-Hopf bifurcations
for the single HH node. Other parameters are as follows: stimu-
lus SD, σeff = 1 μA/cm2; noise intensity Deff = 0.5 (μA/cm2)2 ms;
κ = 500 mS/cm2. Values for the number of leaf nodes and total
number of nodes for trees a–c are indicated in Fig. 1.

Figure 3 demonstrates an excellent agreement between
the direct stimulation of trees and the corresponding strong-
coupling approximation. Thus, for strong coupling, the MI
can be predicted for an entire ensemble of random trees. As
a representative illustration, we consider an example of full
binary trees used in Ref. [30]. In such trees, every internal
node has two offsprings, while the leaf nodes have none.
Given the probability of zero branching, p0, and the maximal
allowed number of generation, G, an ensemble of binary trees
can be built, e.g., using a Galton-Watson branching process
[41,42]. We imposed two additional constraints: (i) the max-
imum number of generation is 4, G = 4 and (ii) branching
extinction is allowed only after the second generation. This re-
sults in 13 possible configurations with unique number of leaf
nodes and total number of nodes: (H,N ) = (H, 2H − 1),
where H = 4, 5, . . . , 16 (see Fig. 4 in Ref. [30]). Note that
for this simple example of binary trees, the total number of
nodes is fully determined by the number of leaves in a tree,
N = 2H − 1. The probability of tree configurations is given
by [30],

P(H, p0) =
[

4∑
i=0

2i∑
j=0

δi+ j,H−4

(
4

i

)(
2i

j

)
p4+i− j

0

]
(1 − p0)H−4.

(9)
Instead of fixing parameters of the effective node as was

done for Fig. 3, we consider an ensemble of binary trees
receiving a given stimulus, base current, and noise. This
allows for a comparison of responses versus configuration
of tree networks. Given the stimulus SD, base current and
noise, the MI can be calculated from the effective single
node for each of 13 possible configurations, I (H). For the
effective node, the base current and the stimulus SD scale
as (Ieff, σeff ) = [H/(2H − 1)](I0, σ ), and noise intensity as
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FIG. 4. Mutual information for full binary trees estimated in the
strong-coupling limit. (a) MI of 13 possible tree configurations for
the indicated values of base current, I0. (b) Ensemble average MI
versus probability of zero branching, p0, for the indicated values
of base current, I0. The shaded areas show errorbars calculated as
〈I〉 ± σI . Other parameters are as follows: σ = 2 μA/cm2, D =
50 (μA/cm2)2 ms.

Deff = [H/(2H − 1)2]D. Further, the ensemble average, 〈I〉,
and the standard deviation, σI , are calculated as

〈I〉(p0) =
16∑

H=4

I (H)P(H, p0),

σ 2
I (p0) =

16∑
H=4

I (H)2P(H, p0) − 〈I〉2. (10)

The latter measure quantifies the structural variability of re-
sponses [30].

Figure 4(a) shows the MI for 13 possible configurations of
the considered binary trees and for three values of the base
current. The smallest tree with 7 nodes including 4 leaves
is characterized by the largest scaling factor, H/(2H − 1),
for the stimulus SD and the base current. The scaling factor
decreases for larger trees and is minimal for the largest tree
with 16 leaf nodes. Thus, the effective base current, stimulus
SD, and noise intensity decrease with the increase of the
number of leaf nodes. For I0 = 45 μA/cm2 the corresponding

effective node is in the excitable regime for all possible tree
configurations, as the effective base current Ieff is smaller
than the threshold current of the onset of periodic firing,
ISN = 28.15 μA/cm2. For I0 = 50 μA/cm2 the condition
Ieff < ISN is satisfied for all, but one tree configuration with
H = 4 leaf nodes. Consequently, the firing rate decreases with
the increase of tree size, while the coefficient of variation of
interspike intervals and the variability of spike count increase
[29,30]. Combined with the decrease of effective stimulus
SD, this results in the observed decrease of MI. For I0 =
55 μA/cm2, most of the tree configurations are in the oscil-
latory regime where a tree fires periodically in the absence
of noise and stimulus. In the oscillatory regime, the reduc-
tion of the noise intensity, Deff = [H/(2H − 1)2]D, for larger
trees leads to less variable firing [29], which compensates the
reduction of the firing rate and stimulus SD. Consequently,
the MI is smaller for the smallest tree and increases slightly
toward larger trees.

Figure 4(a) shows bounds of MI for possible tree config-
urations. For excitable trees, e.g., I0 = 45 μA/cm2, the MI
can vary from 0.11 to 2.84 bits, while for oscillatory trees
I0 = 55 μA/cm2, the MI range is smaller, from 2.99 to 3.58
bits. Since tree configurations are not equally probable, but
follow the probability mass function, Eq. (9), parameterized
by the zero branching probability, p0, we calculated the en-
semble average MI, and its SD according to Eq. (10), shown in
Fig. 4(b). The limit of no zero branching, p0 = 0, refers to the
biggest tree with 16 leaves in the last (fourth) generation and a
total of 31 nodes, which occurs with probability P(16, 0) = 1.
The opposite limit, p0 = 1, corresponds to the smallest tree
with 2 generations only containing 4 leaves and a total of 7
nodes occurring with P(4, 1) = 1 (see Fig. 4 in Ref. [30]). In
both these limits, the variability of MI is zero. In the excitable
regimes, I0 = 45 or 50 μA/cm2, smaller trees respond more
reliably to the stimulus, as shown in Fig. 4(a). Consequently,
the ensemble average MI increases with p0, as the contri-
bution of smaller trees grows. For larger base currents (e.g.,
I0 = 55 μA/cm2) the trees are in the oscillatory regime, there
is an opposite dependence, where larger trees possess higher
MI values. We also note that the variability of MI is larger
for excitable trees, consistent with the previous results on the
firing statistics [30].

B. Effect of coupling and heterogeneous stimulus

When the constraint of strong coupling is removed, the
response dynamics of a tree depends on the particular con-
nectivity. Trees with the same number of nodes and leaves but
different connectivities may show distinct responses that de-
pend on coupling strength, as discussed in Ref. [30]. Besides,
a particular arrangement of stimulus becomes important,
which we address in this section.

The Gaussian stimulus, s, with SD = Hσ , can be applied
homogeneously to all leaf nodes, so that each leaf receives the
stimulus with the same SD, σ . Alternatively, the stimulus can
be distributed heterogeneously amongst leaves such that the
total stimulus SD is the same as in the homogeneous case,

Hσ =
H∑

l=1

σl , l = 1 · · ·H, (11)
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where σl is the stimulus SD for lth leaf node. In general,
one could randomly sample stimulus SDs, σl , to obtain equal-
sum random variables, σl , and then study the variability of
responses, as was done in Ref. [43] for the firing rate statistics.
The result was that the variability of the firing rate due to stim-
ulus heterogeneity is significant for small and intermediate
ranges of coupling strength and vanishes for strong coupling.
Here we contrast two limiting cases when the stimulus is
applied either homogeneously to all leaf nodes or locally to
just one leaf.

We start with the example of a muscle spindle afferent tree
of Fig. 1(a). This tree has four generations and three main
branches with 2, 3, and 1 leaf nodes (counting left to right) in
its peripheral fourth generation. In the homogeneous scenario,
the stimulus with the SD, σ , is applied to all H = 8 leaf nodes
of the tree. This can be contrasted to a localized scenario when
the stimulus with the entire SD, Hσ , is applied to one of the
leaf nodes in a tree branch. Figure 5(a) shows the stimulus
averaged firing rate versus coupling strength. No matter how
the stimulus is applied, the firing shows almost the same
nonmonotonous dependence on the coupling strength: initial
increase, a maximum at κ ≈ 1 mS/cm2, and saturation toward
a strong-coupling limit value, as discussed in Refs. [29,30].
The stimulus averaged coefficient of variation of interspike
intervals (CV) versus coupling strength in Fig. 5(b) shows no
significant differences for different stimulation scenarios and
follows the dependence discussed in details in Refs. [29,30].
Thus, the temporal coherence of collective firing is similar for
homogeneous and localized stimulation.

Contrary to the mean firing rate and CV, the mutual in-
formation elucidates distinct responses to homogeneous and
localized stimulation, shown in Fig. 5(c). In the case of homo-
geneous stimulation, the MI initially grows with the coupling
strength and saturates for κ > 1 mS/cm2. For localized stim-
ulation, the dependence of MI versus coupling, κ , becomes
nonmonotonous, showing several local extrema. When the
stimulus is applied to the branch with one leaf [red curve in
Fig. 5(c)], for example, MI shows a local maximum for weak
coupling, κ ≈ 1. Then the MI drops to almost zero bits at a
stronger coupling of κ ≈ 20, indicating no stimulus coding
in the spike count of the tree’s primary node, and then grows
again. When the stimulus is applied to the branch with three
leaves, MI shows a quite distinct behavior with a single max-
imum at κ ≈ 20 mS/cm2 [green curve in Fig. 5(c)]. Indeed,
for strong coupling, the MI converges to its strong-coupling
limit for any stimulus configuration. However, for intermedi-
ate coupling, κ = 10–60 mS/cm2, the collective response of
the tree, quantified by MI, is determined by the number of
leaf nodes in a branch where the stimulus is applied. The MI
is maximal when the stimulus is applied to the branch with
three leaves and minimal for stimulation of the single-leaf
branch. Stimulating inner leaf nodes, shows responses similar
to stimulation of peripheral leaf of the corresponding branch.

We confirmed the observed coupling dependency patterns
on a constructed tree, Fig. 1(b). This tree has four branches
with one, two, three, and four leaf nodes in the peripheral
generation, located at the same distance from the primary
node, and no leaves in inner generations. Figure 6 shows
qualitatively identical dependency patterns for the stimulus-
averaged firing rate, CV, and MI versus coupling as for the

muscle spindle afferent tree (Fig. 5). In the following, we use
the constructed tree from Fig. 1(b) to show that the observed
distinct responses to localized stimulation can be explained by
the competition of stimulated and unstimulated leaf nodes in
the process of frequency locking.

Action potentials generated by all leaf nodes contribute to
the firing of the primary node. In the homogeneous stimu-
lation case, the firing of all leaves is equally altered by the
stimulus and contributes to stimulus encoding in the primary
node’s spike count. In the localized stimulation, only the stim-
ulated leaf contributes directly to stimulus-related changes in
the spike count of the primary node and may compete with
unstimulated leaves when the coupling increases. On the one
hand, the firing of unstimulated leaves can be altered by the
stimulus applied to the stimulated leaf due to the coupling of
tree branches through the primary node, tending to increase
MI. On the other hand, by the same token, the background fir-
ing of unstimulated leaves can alter the firing of the stimulated
leaf opposing stimulus-induced variations, thus decreasing
MI. We discuss the mechanism behind this behavior further
below.

The increase of coupling tends to synchronize the firing
of leaf nodes, eventually resulting in synchronous firing of
all nodes of the tree [29]. We illustrate this in Fig. 7 by
contrasting the firing frequencies of the leaf nodes and the
primary node for the homogeneous and localized stimula-
tion. In the case of homogeneous stimulation, Figure 7(a),
all leaves receive a stimulus of the same strength, fire at
the same rate, and become synchronized for weak coupling.
For κ > 0.3 mS/cm2, the primary node starts to fire being
pulled by the leaf nodes. Consequently, the firing frequency
of the primary node increases until it becomes locked to the
frequency of leaf nodes at κ ≈ 1 mS/cm2, and for larger
coupling all nodes of the tree fire at the same rate. In the case
of localized stimulation [Figs. 7(b) and 7(c)], the firing rate
of the leaf node that receives the entire positive stimulus is
higher than that of unstimulated leaf nodes. With the increase
of coupling, firing rates of inner nodes, including the primary
node, are pulled toward the firing rates of unstimulated leaf
nodes and join them at κ ≈ 1.1 mS/cm2. Further increase of
coupling pulls these nodes and the stimulated leaf together,
and for κ > 2 mS/cm2, the firing rates of all nodes are locked.
Thus, frequency locking of the primary node comes in two
main steps: (i) the firing rate of the primary node gets locked
to that of the unstimulated leaves and (ii) the firing rates of the
unstimulated leaves merge with that of the stimulated node,
leading to global synchrony. We note that this is a typical
scenario for ensembles of coupled nonidentical oscillators
[44,45]. Here the heterogeneity of oscillators is introduced by
the stimulus applied to a leaf node.

While Fig. 7 shows frequency locking for a single value of
stimulus, a similar picture is obtained for the whole stimulus
ensemble by calculating stimulus-averaged firing rates versus
coupling. The critical coupling at which stimulus-averaged fir-
ing rates of all nodes become locked is κcrt = 1.1 mS/cm2 for
the muscle spindle tree in Fig. 1(a), and κcrt = 1.45 mS/cm2

for the constructed tree in Fig. 1(b). These values are shown
by the vertical dashed lines in Figs. 5 and 6 indicating that
MI versus coupling dependencies diverge when the coupling
strength exceeds the critical coupling, κcrt. Once the firing
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FIG. 5. The collective response of muscle spindle afferent tree
to homogeneous and localized stimulation. The inset shows the tree;
colored arrows point to the leaf nodes which the stimulus was applied
to. (a) Stimulus-averaged firing rate of the primary node versus cou-
pling strength, (b) stimulus averaged CV versus coupling strength,
and (c) mutual information versus coupling strength estimated di-
rectly using nearest-neighbor method [40]. Line colors correspond
to stimulus locations shown in the inset. Black color shows the
case of homogeneous stimulation. The dashed vertical lines show
the critical coupling, κcrt ≈ 1.1 mS/cm2, at which stimulus-averaged
firing rates of all nodes are locked. The parameters are as follows:
I0 = 60 μA/cm2, σ = 2 μA/cm2, and D = 20 (μA/cm2)2 ms.

rates of all nodes are locked, the stimulated and the un-
stimulated leaves compete for stimulus-induced changes of
their firing as they are connected via the primary node. The
longer the average path between stimulated and unstimulated

FIG. 6. The collective response of the constructed (artificial) tree
to homogeneous and localized stimulation. The inset shows the tree;
colored arrows point to the leaf nodes which the stimulus was applied
to. Stimulus-averaged firing rate (a), CV (b), and MI (c) versus
coupling strength for the constructed tree. Line colors correspond to
stimulus locations shown in the inset. Black color shows the case
of homogeneous stimulation. The dashed vertical lines show the
critical coupling, κcrt ≈ 1.45 mS/cm2, at which stimulus-averaged
firing rates of all nodes are locked. Other parameters are the same as
in Fig. 5.

leaves, the smaller the stimulus’ influence on the firing of
the unstimulated leaves, and the stronger is the opposition of
unstimulated leaves to the stimulus-induced changes in firing
of the primary node. The average path between the stimulated
leaf and the unstimulated leaves (the average number of links
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FIG. 7. Frequency locking in the constructed tree shown in Fig. 1(b). The panels show firing rates of the primary node (Prime) and of the
leaf nodes from branches with a single leaf (Brn. 1), two leaves (Brn. 2), three leaves (Brn. 3), and four leaves (Brn. 4) versus coupling strength
for three stimulation arrangements. (a) Stimulus applied homogeneously to all leaf nodes, (b) localized stimulus to a leaf node in the branch
with four leaves (Brn. 4), and (c) localized stimulus to the leaf in the branch with a single leaf (Brn. 1). In all three arrangements the entire
stimulus is constant, and equals 50 μA/cm2; in the case of “stimulation to all”, each leaf receives stimulus s = 5 μA/cm2. Other parameters
are I0 = 60 and D = 20 (μA/cm2)2 ms.

between stimulated and unstimulated leaves) is longest for the
stimulated branch with the single leaf. It decreases with the
increase of the number of leaves in the stimulated branch, as
several leaves on the stimulated branch are connected by a
single link. In particular, for the tree in Fig. 1(b), leaves on
different branches are separated by L0 = 6 links. The average
path between a stimulated leaf and all unstimulated leaves is

Lb = (H − b)L0 + (b − 1)

H − 1
,

where H is the total number of leaves, and b is the number
of leaves on the stimulated branch. For the single-leaf branch,
L1 = 6, while for the four-leaves branch L4 = 4.333. Thus,
the stimulation of single-leaf branch results in the strongest
resistance of unstimulated leaves to the stimulus, compared
to the weakest resistance when the stimulus is applied to the
four-leaves branch.

Figure 8 illustrates the effect of the competition of the
stimulated and unstimulated leaves on the normalized mean
spike count (same as normalized firing rate) of the primary
node. For small coupling, Fig. 8(a), the tree responds to all
stimulus arrangements. Homogeneous stimulation results in
a linear dependence of spike count versus stimulus, while
localized stimulation shows rectification owing to the strong
stimulus applied to the single leaf. For stronger coupling,

Fig. 8(b), the spike count of the primary node is most affected
by the stimulus when it is applied to the four-leaves branch
having the shortest average path to unstimulated leaves. In this
case, the stimulated branch wins, leading to an increase in MI.
On the contrary, when the stimulus is applied to the single-
leaf branch, the unstimulated leaves dominate, suppressing
changes in the spike count of the primary node due to stimula-
tion [red line in Fig. 8(b)], and resulting in vanishing MI. With
further increase of coupling, Fig. 8(c), the tree approaches its
strong-coupling limit where responses for different stimulus
arrangements eventually coincide.

The described competition mechanism of stimulus en-
coding is well captured by the stimulus-averaged sensitivity
Eq. (7), which is one of the determinants of the mutual in-
formation as discussed in Secs. II B and III A. The resistance
of the unstimulated leaves to stimulus-related changes in the
firing frequency of the primary node flattens the spike count
versus stimulus curve, M(s) [red line in Fig. 8(b)], reduces the
slope, M ′(s), and thus the average sensitivity. Figure 9(a) com-
pares the stimulus-averaged sensitivity for the homogeneous
and localized stimulations. For the localized stimulus applied
to the single-leaf branch, the sensitivity is at maximum for
κ ≈ 1.45 mS/cm2, close to the critical coupling of global
frequency locking and the MI maximum in Fig. 9(b). Once the
frequency-locked state is established, the sensitivity decreases
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FIG. 8. The normalized spike count of the primary node versus stimulus for the constructed tree shown in Fig. 1(b). The spike count for
a given stimulus value, M(s), is normalized to the spike count in the absence of stimulus, M(0). Each panel shows homogeneous (→ All)
and two localized stimulation scenarios- the single-leaf branch (→1) and the four-leaves branch (→ 4). The values of the coupling strength in
(mS/cm2) are indicated in the panel labels. Other parameters are as follows: I0 = 60 μA/cm2, D = 20 (μA/cm2)2 ms.
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FIG. 9. Average sensitivity (a) and mutual information (b) ver-
sus coupling for homogeneous and localized stimulation for the
constructed tree from Fig. 1(b). Black color shows the case of
homogeneous stimulation (→ All). Red refers to the localized stim-
ulation of the branch with a single leaf node (→ 1). In panel
(b), symbols show the direct MI estimation using nearest-neighbor
method [40]; solid line shows Gaussian estimation (5). The param-
eters are as follows: I0 = 60 μA/cm2, σ = 2 μA/cm2, and D = 20
(μA/cm2)2 ms.

with a further increase of coupling, reaching the minimum
at κ ≈ 20 mS/cm2 and then converges to its strong-coupling
limit. Furthermore, the Gaussian model [Eq. (4)] and Gaus-
sian estimate of the mutual information [Eq. (5)] describes the
collective response well as illustrated in Fig. 9(b).

The base current, I0, and the coupling strength, κ , set the
regime of the collective firing of a tree. With the increase
of coupling, the entire input to leaf nodes of a tree must be
large enough to sustain repetitive firing of the primary node
[29,30]. In the deterministic case (no noise or stimulus to leaf
nodes), such threshold value of the base current increases with
the coupling strength, saturating to the strong-coupling limit
value, I∞ = (N /H) Ith, where Ith is a bifurcation value of the
single isolated node [30]. For the Hodgkin-Huxley type model
used in this study, Ith corresponds to the saddle-node bifur-
cation, Ith = ISN ≈ 28.15 μA/cm2 [29]. Irregular collective
firing characterized by large values of CV occurs for I0 < Ith

due to noise excitation [29].
Figure 10 compares the sensitivity and MI for homoge-

neous and localized stimulations for a wide range of the base
current and coupling values. In the homogeneous stimulation
case [Figs. 10(a1) and 10(b1)] the sensitivity is maximal along
the line of threshold current versus coupling shown by dashed
curves, cf. Fig. 2(b) in Ref. [30]. For a fixed value of coupling,

a local maximum of sensitivity versus base current refers to
the transition to repetitive firing [cf. Fig. 2(b)]. If the base
current value is large enough to sustain the primary node
firing for strong coupling, then the sensitivity versus cou-
pling increases saturating toward its strong-coupling value, as
shown in Fig. 9(a), black line. Correspondingly, MI, shown
in Fig. 10(b1), increases with coupling and saturates to its
strong-coupling value. Otherwise, when the base current is
such that the primary node firing vanishes for strong coupling,
the sensitivity passes through a maximum and then vanishes,
indicated by the black area in the heat map of Fig. 10(a1).
In that case, MI also initially increases with coupling, passes
through the maximum, and then vanishes.

The heat maps of the sensitivity and MI for the localized
stimulation, shown in Fig. 10(a2) and 10(b2), clearly demon-
strate the distinct response regimes. For strong coupling,
κ > 100 mS/cm2, both the sensitivity and MI show the same
dependencies as in the case of homogeneous stimulation. For
weak and moderate coupling, the competition of stimulated
and unstimulated leaves results in nonmonotonous depen-
dencies of the sensitivity and MI versus coupling strength,
resulting in significantly different responses compared to the
homogeneous stimulation. In the considered example of local-
ized stimulation, in the intermediate-coupling region of 10–30
mS/cm2, the unstimulated branches of the tree counteract the
stimulus and suppress MI for the whole range of base current.

IV. CONCLUSION AND DISCUSSION

We have studied the collective response of tree networks
of excitable elements to static stimulus. Motivated by the
structure of certain sensory neurons whose peripheral den-
dritic trees are myelinated, we considered a model of small
tree networks of diffusively coupled excitable elements. In
such a model, excitable elements represent nodes of Ranvier
coupled with low-resistant leak-free myelinated links. A stim-
ulus is applied to the leaf nodes, representing the so-called
heminodes. Action potentials can be initiated by any hemin-
odes, firing up the inner nodes of Ranvier and, eventually, the
primary node. Thus, each leaf node is a potential stimulus
encoder, and the collective response is the primary node firing,
which we characterized by mutual information.

We used a static Gaussian stimulus within a long time
window (T = 5 s), similar to as in an experimental study
on touch receptor afferents [46]. Such a long time win-
dow allowed for the large (50–600) number of spikes per
stimulus trial, consistent with firing rates of touch recep-
tor afferents [46], paddlefish electroreceptors [23,26], and
muscle spindle afferents [25]. The long stimulus window
allowed us to use the continuous Gaussian model instead
of the computationally expensive direct estimation of MI
for parameters screening, such as shown in Fig. 10. The
increase or decrease of the stimulus duration did not af-
fect our results qualitatively. In particular the qualitative
dependence of the MI versus coupling for different stimu-
lation scenarios, such as shown in Fig. 5(c), is the same
for shorter stimulus windows. Furthermore, a time-dependent
band-limited Gaussian stimulus gave qualitatively similar
results for the upper bound of mutual information rate as for
the mutual information in case of static stimulus.
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FIG. 10. The average sensitivity and mutual information as functions of the coupling strength, κ , and base current, I0, for the constructed
tree in Fig. 1(b). Left columns correspond to the homogeneous stimulation and right columns refer to localized stimulation of the branch with
a single leaf node. The dashed curves in each panel show the threshold current for the deterministic system, where the primary node starts
firing repetitive action potentials; for more on this see Ref. [30]. Panels (a1) and (a2) show the heat map of mutual information, estimated using
Gaussian model Eq. (5). Panels (b1) and (b2) show the heat map of average sensitivity χ Eq. (7) in units of spk/(μA/cm2). Other parameters
are the same as in Fig. 9.

The morphology of branched myelinated terminals of sen-
sory neurons, such as in muscle spindle [27,47] and touch
receptor [21] afferents, is variable. The underlying random
trees are small with one to five generations, and differ in the
number of nodes, leaf nodes, branching order, and in node
connectivity. This structural randomness may be a source of
the observed variability of neuronal firing across a population.
Besides, a particular distribution of stimulus over the leaf
nodes represents an additional contributor to the observed
variability [21].

A previous study [30], showed that the trees’ structural
randomness results in the variability of the primary node’s
firing rate across the ensemble. Furthermore, in the physio-
logically relevant strong-coupling limit [29], the determinant
of the firing rate variability is a joint probability distribution of
numbers of nodes and leaves in a tree ensemble. In contrast,
particular node connectivity does not play a significant role.
In this work we quantified the collective response of random
trees to external stimuli using mutual information, and ex-
amined the effect of stimulus distribution over leaf nodes on
collective response.

First, we used the strong-coupling approximation to es-
timate mutual information between the stimulus applied to
leaf nodes of a tree and the firing of the primary node. We
showed that mutual information of a tree with a given number
of nodes and leaves could be predicted from an effective single
node which receives a properly scaled input, irrespective of

particular node connectivity. Using full binary trees as an
example, we showed that structural randomness (variation in
N and H) leads to the variability of mutual information. The
extent of the structure-induced variability depends on a partic-
ular dynamic regime of a tree, set by the base current. Touch
receptors in mice, for example, are characterized by diverse
regularity of their discharges: some fire regularly, character-
ized by small coefficient of variation, CV ≈ 0.2, while others
fire randomly with CV ≈ 0.8 [46]. Regular neurons are likely
operating in the oscillatory regime, while irregular neurons
are operating in the excitable regime. We showed that while
the response of oscillatory trees depends weakly on their
particular structure, excitable trees show a wide range of
responses, quantified by mutual information. This structure-
induced diversity may lead to improved information coding
on the level of population, when a large number of primary
sensory neurons converge to a secondary neuron [48,49].
Thus, even though individual primary afferents may not be
tuned for the optimal information coding, a population (an
ensemble of random trees in our case) response benefits from
the response diversity of individual sensors, as suggested for
touch receptors [21,31].

Second, for a finite coupling strength, we showed that a
heterogeneous stimulus distribution over leaf nodes becomes
important: A tree with a given topology may show diverse
responses when the stimulus is applied to leaves on differ-
ent branches. This leads to stimulus-heterogeneity-induced
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variability of responses, as in touch receptor afferents [20].
Here we studied homogeneous versus localized stimulation
and showed that the fate of collective response is deter-
mined by the synchronization-induced competition between
the stimulated and the unstimulated branches of a tree.

A tree network where leaf nodes receive inputs and gener-
ate periodic firing can be viewed as a system of oscillators
coupled via excitable media of inner nodes [45]. With the
increase of coupling strength, the firing of leaf nodes gets syn-
chronized due to communications via inner nodes. Although
a route to synchronization can be quite complicated, involv-
ing various high-order mode-locking between leaf nodes and
primary node [43,45], for large-enough coupling, all nodes in
the tree are frequency locked, eventually. Then, leaf nodes on
the unstimulated branch compete with those on the stimulated
branch, resisting the stimulus-induced variations, resulting
in nonmonotonous dependence of mutual information versus
coupling strength. The winner is determined by the shortest
average path between stimulated and unstimulated leaves.
Thus, mutual information can be enhanced by a proper stim-
ulus localization, e.g., on a branch with the largest number
of leaves, compared to homogeneous stimulation. Otherwise,
when a branch with a small number of leaves is stimu-
lated, background firing of unstimulated branches may win,
obstructing stimulus-induced variations of the primary node
firing, and thus, suppressing the mutual information. We note
that the effect of stimulus coding degradation due to frequency
locking was observed in a P-type electroreceptor model,
where the firing of sensory neurons is locked to a higher
frequency periodic signal [50]. An interesting question of
discrimination between stimuli applied to different branches
based on the primary node response requires further study.

Our results are related to the so-called phenomenon of oc-
clusion observed in muscle spindle afferents [25,34,35,51,52].
In these studies, branched myelinated sensory neurons
were subjected to distinct stimuli administered to different
branches, with the firing of one masking (or occluding) that of

the other. Our results support a model in which the occlusion
was attributed to competitive interactions of encoding sites
separated by long enough conduction path [25].

Finally, we note that we confirmed the results using
other models of excitable nodes such as FitzHugh-Nagumo
and Frankenhaeuser-Huxley model for the nodes of Ranvier
[29,53].
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APPENDIX: NEAREST-NEIGHBOR ESTIMATOR
OF MUTUAL INFORMATION

We used a nonparametric estimator of mutual information
between the discrete variable x (spike count) and continuous
variable y (stimulus) [40]. Instead of binning of continuous
variable, we used the binning-free nearest-neighbor method.
Given a set of N data points, (xi, yi ), the discrete variable x can
have repeated values, while the continuous variable y cannot,
and thus, several values of y may correspond to one value of x.
For each point of the continuous variable, yi, the estimator first
looks at the corresponding x value and extracts the Nxi data
points which all have that same x value. Then, the estimator
locates the nearest neighbor of yi among the extracted data
points and computes the distance, d , between yi and its nearest
neighbor. Then, it counts the number of neighbors, mi, of yi

which lie within distance d in the full data set. The MI is
estimated using [40]

I = ψ (N ) − 〈ψ (Nxi )〉 + ψ (1) − 〈ψ (mi )〉, (A1)

where ψ (z) = �′(z)/�(z) is the digamma function, and the
averaging is over all data points.
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