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There are numerous examples of studied real-world systems that can be described as dynamical systems
characterized by individual phases and coupled in a networklike structure. Within the framework of oscillatory
models, much attention has been devoted to the Kuramoto model, which considers a collection of oscillators
interacting through a sinus function of the phase differences. In this paper, we draw on an extension of the
Kuramoto model, called the Kuramoto-Sakaguchi model, which adds a phase lag parameter to each node.
We construct a general formalism that allows us to compute the set of lag parameters that may lead to any
phase configuration within a linear approximation. In particular, we devote special attention to the cases of full
synchronization and symmetric configurations. We show that the set of natural frequencies, phase lag parameters,
and phases at the steady state is coupled by an equation and a continuous spectra of solutions is feasible. In order
to quantify the system’s strain to achieve that particular configuration, we define a cost function and compute the
optimal set of parameters that minimizes it. Despite considering a linear approximation of the model, we show
that the obtained tuned parameters for the case of full synchronization enhance frequency synchronization in the
nonlinear model as well.
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I. INTRODUCTION

Emergence is one of the key concepts in the analysis
of complex systems [1]. Collective properties emerge as a
consequence of irregular interactions among its elemental
constituents [2]. One of the most paradigmatic examples of
emergence is synchronization [3,4], because the interplay
between populations of oscillatory units gives rise to a vari-
ety of global states, ranging from perfect synchronization or
phase locked stationary configurations to chimera states [5–7].
Among the different models that have been used to understand
such collective behavior, a lot of effort has been devoted to
the Kuramoto model (KM), in which phase oscillators interact
continuously with other units through a sine function of the
phase difference [8–10].

In the past few years there has been a growing interest in
the concept of controllability, which quantifies the feasibility
to achieve a desired final state of a given dynamical system
[11]. As stated above, the KM can give rise to a wide va-
riety of stationary (phase or frequency synchronized) or not
stationary states, being chimeras an unexpected mixture of
both types of behaviors [12]. In this context, controllability
can be understood as a tuning of the internal parameters of the
oscillators to reach specific phase configurations. The most
simple settings stand for a collection of identical oscillators
interacting through a sinus function of the phase differences.
In this case it is quite intuitive to see that the final state is
a perfectly synchronized one in which all oscillators have
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exactly the same phase and frequency (the same frequency
than the intrinsic one). It is the existence of a distribution
of frequencies that gives rise to a transition, in terms of the
strength of the coupling, from an incoherent state to a coherent
one [13]; such a transition is robust in the sense that the
introduction of a lag term, a phase added to the argument of
the sinus function, does not change the behavior, as far as it
is kept below π/2 [9]. However, the introduction of this lag
term for identical oscillators changes completely the structure
of the, in principle, synchronized state. In Reference [14] it
was shown that, for small and common values of the lag
parameters, the synchronized state breaks into partially syn-
chronized groups of oscillators, being symmetry the reason for
the phase synchronization of the oscillators. When increasing
this common lag parameter the system enters into a incoherent
chaotic state. Actually, there has been an increasing interest
in the last months on the role that symmetries plays in the
synchronization of oscillatory units and how the lack of ho-
mogeneity in some of the parameters can be compensated by
other choices [15–17].

In a previous work we introduced the concept of “function-
ability” as a measure of the ability of a given node to change
the state of the system by just tuning one internal variable,
the node lag in the argument of the sinus function of the
interaction [18]. Being an intrinsic property of the node, its
change produces a global change in the phases of the system
of oscillators that can be measured. Functionability stands
for the reaction of the whole phase distribution to a small
change in a node. The analytical expression of functionability
reports its quadratic dependence on the node degree and the
node lag value, but also a structural term, such that the most
peripheral nodes in the network have also larger contributions
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to functionability centrality measure. The nodes with higher
functionability values may represent positive actors for the
network, because they enable more variability in the states
of the system, but also potentially dangerous ones, as tiny
perturbations can produce cascade like effects that completely
changes the network dynamics.

As stated, the addition of a phase lag parameter enables a
richer configuration state. However, it is clear that a tuning of
a single parameter will not be enough to generate the wide
variety of stationary states that a population of Kuramoto
oscillators can achieve. Notwithstanding, the question that
arises is whether a fine tuning of a set of individual parameters
can make it possible. In this paper, this is our proposal; we
construct a general formalism that allows us, within a linear
approximation, to compute the set of lag parameters that may
lead to any phase configuration for a fixed set of intrinsic
frequencies. The problem can also be posed the other way
around. Namely, given a set of frequencies, we may derive
the configuration of phases that is produced by a set of lag
parameters.

There are numerous examples of real-world systems that
can be described as dynamical systems characterized by
individual phases and which functioning are object of inves-
tigation. Some examples are the brain functional networks
arising from temporal correlation patterns, ac power in power
grids [19], heartbeats [20], multiprocessors and multicore
processors, or traffic signaling. Not only the synchronization
between their constituents may be intended or prevented, but
also other particular configurations may be of relevant inter-
est. For this reason, we propose a mechanism for tuning the
intrinsic parameters of the system to achieve any desired phase
configuration.

A previous work proposes a methodology to enhance
frequency synchronization for the nonlinear Kuramoto-
Sakaguchi model (extension of the Kuramoto model with a
node phase lag parameter) [21]. Another work suggests that
an unstable synchronized state becomes stable when, and
only when, the oscillator parameters are tuned to nonidentical
values [15]. We highlight the work done in Reference [22],
where the particular configuration of perfect synchronization
is studied and the synchrony alignment function is defined in
order to minimize the order parameter of the system consider-
ing different topologies and frequency scenarios. We address
the most general question, following a similar path to that
pursued by them, forcing the system to achieve any particular
configuration for the linear case of the Kuramoto-Sakaguchi
model by means of a fine tuning of the phase lag or frustration
parameter set. Despite considering a linear approximation of
the model, we show that the obtained tuned parameters for the
case of full synchronization enhance frequency synchroniza-
tion in the nonlinear model as well.

The structure of the paper is the following. In Sec. II we
present the Kuramoto-Sakaguchi model (a variation of the
Kuramoto model) as the proper framework for our purposes.
Next, in Sec. III, we derive the analytic expression of the fine
tuning of the frustration parameters so as to achieve any phase
configuration. Then, in Sec. IV, we define a cost function
to assess the expense of achieving a particular phase config-
uration by its corresponding tuning and derive the analytic
solution for the cases of symmetric and fully synchronized

configurations, in Secs. V and VI, respectively, as well as
comment on the nonlinear validity of our results. We conclude
in Sec. VII. An easy-to-follow example and further mathemat-
ical derivations can be found in the Appendix.

II. THE KURAMOTO-SAKAGUCHI MODEL

In 1975, Kuramoto suggested one of the best-known dy-
namical equation to model interacting oscillatory systems [8]:
a set of N phase oscillators characterized by their phase, θi,
and coupled between each other by the sine of their phase
differences. Each unit is influenced directly by the set of its
nearest neighbors via the adjacency matrix of the network
corresponding to the system, G(V, E ). The coupling strength
describes the intensity of such pair-wise interactions, Ki j . The
set of nodes of the network, V (G) consists of all the oscilla-
tors, while the set of edges, E (G), is made of the links between
them. In his original work, Kuramoto assumed homogeneous
interactions, i.e., Ki j = K ∀(i, j) [8,10]. Taking into account
the connectivity or topology of the network and the oscillatory
dynamics, the dynamics of the system can be written as a
system of differential equations [5]:

dθi

dt
= ωi + K

∑
j

Ai j sin(θ j − θi ) i = 1, . . . , N j ∈ �i, (1)

where �i is the set of neighbors of node i and ωi is the natural
frequency of each unit.

We consider that two nodes are phase synchronized when
their phases have the same value,

θi(t ) − θ j (t ) = 0 ∀t > t0.

When the phase difference has a constant value, that is,
θi(t ) − θ j (t ) = c ∀t > t0, we say there is a phase locking
between nodes i and j. Similarly, we consider that two nodes
are frequency synchronized when their frequencies have the
same value:

dθi

dt
− dθ j

dt
= 0 ∀t > t0.

We say that two nodes are fully synchronized when they are
phase synchronized, because this implies frequency synchro-
nization.

As long as the distribution of natural frequencies is homo-
geneous, namely, all units have the same natural frequency,
there is only one attractor of the dynamics: the fully synchro-
nized state. It can be shown that, if the distribution of natural
frequencies is unimodal, the system becomes frequency syn-
chronized as long as the coupling strength is larger than a
threshold value [10].

In 1986, Kuramoto together with Sakaguchi presented a
similar model which incorporated a constant phase lag be-
tween oscillators [9] which can be written as follows:

dθi

dt
= ωi + K

∑
j

Ai j sin(θ j − θi − α) i = 1, . . . , N j ∈ �i,

(2)
where α is a homogeneous phase lag parameter. This model
has also become well known and several variations of the
model have been studied. It has been shown that, as long as
|α| < π/2, the system is not chaotic and a threshold value for
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the coupling strength exists above which the system becomes
synchronized to a resulting frequency [9]. In the particular
case that considers homogeneous natural frequencies, i.e.,
ωi = ω0 ∀i, the frustration parameter, α, forces the system to
break the otherwise original fully synchronized state. How-
ever, partial synchronization is conserved for symmetric nodes
in the network [14,15]. As the frustration increases the asyn-
chronous groups’ phase move away from each other.

We are interested here in a more general case, where the
frustration parameter is not homogeneous but an intrinsic
property of each unit:

dθi

dt
= ωi + K

∑
j

Ai j sin(θ j − θi − αi ) i = 1, . . . , N j ∈ �i.

(3)
In this context, a recent work studies a particular effect of this
frustration parameter by defining functionability, a new cen-
trality measure of the nodes in a network, in order to address
the issue of which nodes, when perturbed, move the system
from a synchronized state to one that is more asynchronous
in the sense that it enhances the phase differences between all
pairs of oscillators [18].

III. ANALYTIC EXPRESSION OF THE FRUSTRATION
PARAMETERS TUNING

We address the most general problem, which considers
the same dynamics as in Eq. (3), while allowing the edges
of the network to be weighted, a more realistic scenario for
real-world networks.

For small values of the frustration parameters and phases
close to each other, which is the case in frequency synchro-
nization, we can linearize Eq. (3) as follows:

dθi

dt
= ωi + K

∑
j

Wi j (θ j − θi − αi )

= ωi − K
∑

j

Li jθ j − Kαisi, (4)

where Wi j is the value of the weight of the edge between node
i and node j, si ≡ ∑

j Wi j is the weighted degree of the ith
node and L is the weighted Laplacian matrix defined as Li j ≡
δi j si − Wi j . In the stable regime, a synchronized frequency
is achieved and, for all oscillators θ̇i = �. We can derive
the value of the common frequency oscillation, �, summing
Eq. (4) over i:∑

i

� =
∑

i

ωi − K
∑

i

∑
j

Li jθ
∗
j − K

∑
i

αisi. (5)

Taking into account the steady state θ̇i = � ∀i and arranging
summations:

N� =
∑

i

ωi − K
∑

j

θ∗
j

∑
i

Li j − K
∑

i

αisi, (6)

and, finally,

� = 〈ω〉 − K〈αs〉, (7)

where we have used the Laplacian matrix property:
∑

i Li j =
0 and defined the averages

∑
i αisi/N = 〈αs〉 and

∑
i ωi/N =

〈ω〉. Now we can plug expression Eq. (7) to Eq. (4) to get the
stable phases of oscillators, θ∗

i :

∑
j

Li jθ
∗
j = ωi

K
− 〈ω〉

K
+ 〈αs〉 − αisi ∀i. (8)

The solution of Eq. (8) regarding phases is undetermined due
to the singular nature of the Laplacian matrix. Hence, Eq. (8)
is, in general, an undetermined system of linear equations,
that is, there is one free phase, which we should use as a
reference value for the solution. Nonetheless, we do not work
directly with the functional form of phases because they are
time dependent {θ∗

i } = fi(t ), but with the phase differences
with respect to a reference node, once the stationary state is
achieved,

φi ≡ θi − θR. (9)

In this way, we work with time independent values. In this
situation, φR = 0, by definition, as φR ≡ θR − θR = 0.

On the other hand, the contribution 〈αs〉 − αisi of the right-
hand side of Eq. (8) can be written in matrix form as:

−

⎛
⎜⎜⎝

N−1
N − 1

N − 1
N ...

− 1
N

N−1
N − 1

N ...

... ... ... ...

− 1
N − 1

N 1 ... N−1
N

⎞
⎟⎟⎠ ·

⎛
⎜⎝

s0 0 ... 0
0 s1 ... 0
0 ... ... 0
0 ... 0 sN−1

⎞
⎟⎠

·

⎛
⎜⎝

α0

α1

...

αN−1

⎞
⎟⎠ = (−M · Ds)�α

where we have defined: M ≡
( N−1

N − 1
N − 1

N ...

− 1
N

N−1
N − 1

N ...

... ... ... ...

− 1
N − 1

N 1 ... N−1
N

)
and

Ds ≡
(

s0 0 ... 0
0 s1 ... 0
0 ... ... 0
0 ... 0 sN−1

)
. We write Eq. (8) in matrix as

L�θ∗ = 1

K
�
ω − M · Ds �α, (10)

where 
ωi ≡ ωi − 〈ω〉. Finally, we obtain the set of un-
knowns {αi}:

M · Ds �α = 1

K
�
ω − L�θ∗. (11)

Equation (11), however, does not have a solution, because of
the singular nature of M · Ds matrix. M matrix is singular, too,
and hence, its inverse matrix does not exist. Mathematically,
det(M · Ds) = det(M )det(Ds) = 0.

Similarly as we did for phases [18], we solve the singu-
larity problem by setting a reference node, which we call
control node, regarding frustration parameters, i.e., we would
not obtain the value for each of the parameters, but a relation
between them:

κi ≡ αi − αC, (12)

where αC is the value of the control node. In this situation,
κC = 0, by definition, as κC ≡ αC − αC = 0.

To easily write the matrix expressions, we define the selec-
tion matrix J(n,m), which is, in general, an (N − 1) × (N − 1)
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identity matrix after the removal of the mth row and the nth
column.

L�θ∗ turns to L̃(k, R) �φ∗, where we have removed the kth
row and the Rth column. The result does not depend on
which row we remove, hence we can choose any k. Using
the selection matrix, L̃(k, R) = J(,k) · L · J(R,) ≡ L̃. Similarly,
�̃φ(k) = J(,k) · �φ ≡ �̃φ, where we have removed the kth row.

In an equivalent way as the definition of the reduced Lapla-
cian:

˜MDs(k,C) = J(,k)MDsJ(C,) ≡ ˜MDs,

where ˜MDs is MDs without the kth row and the Cth column.
Similarly, �̃κ (k) = J(,k) · �κ ≡ �̃κ and �̃
ω(k) = J(,k) · �
ω ≡

�̃
ω, where we have removed the kth row.
Considering all the previous definitions and remarks,

Eq. (10) can be rewritten as:

˜MDs �̃κ = 1

K
�̃
ω − L̃ �̃φ∗ − αC · J(,k)

→∑
j

[MDs]i j, (13)

and, finally,

�̃κ = ( ˜MDs)
−1

(
1

K
�̃
ω − L̃ �̃φ∗ − αC · M̃�s

)
, (14)

where we have used J(,k) �∑
j[MDs]i j = M̃�s. Notice that MDs

matrix is singular, but the row sum is not zero, although it is
so for the column sum. Hence, we need to set αC = 0 if we
want to avoid extra constant arrays in the final expression. In
this particular case:

�̃κ = ( ˜MDs)−1
(

1

K
�̃
ω − L̃ �φ∗

)
(15)

and keep in mind that κC = 0.
The obtained values of �α depend on both the chosen control

node, C, and the value we set for its frustration parameter, αC .
Notice, therefore, that there is a continuous spectrum of values
for the frustration parameter in order to achieve a particular
phase configuration.

Moreover and more importantly, due to the non-row-sum
equal to zero of MDs matrix, the differences between the
obtained values are dependent of the control node choice.
Mathematically, αi − α j (C = l ) 
= αi − α j (C = k) if l 
= k.
This property will lead us to the definition of a cost for the
system to move to the final configuration, which will depend
on both the control node and the value of its frustration pa-
rameter.

We provide an example of a toy network for the case of a
homogeneous natural frequencies distribution, i.e., ωi = ω ∀i.
In this case, Eq. (14) turns to:

�̃κ = ( ˜MDs)−1(−L̃ �̃φ∗ − αC · M̃�s),

FIG. 1. Network of seven nodes.

which in the case of the network depicted in Fig. 1, leads to
the solution

⎛
⎜⎜⎜⎜⎜⎝

κ0

κ2

κ3

κ4

κ5

κ6

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2α1+3φ1+φ3+3φ6

4
3(φ1−φ2 )

2
2φ1−φ2−2φ3+φ4

2
2φ1−φ2+φ3−2φ4+φ5

2
2φ1−φ2+φ4−2φ5−φ6

2
2φ1φ2+φ5−2φ6

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (16)

where we have chosen κ1 = 0 and φ0 = 0. Hence, the results
are written as a function of the value α1 and φi i 
= 0. There-
fore, we can achieve any phase configuration, given by the
set {φi} by tuning the frustration parameters set {α}, where
αi = κi + αC .

To illustrate how we obtain the final values, let us consider
the following phase configuration:

�̃φ(R=0) = (0.1, 0.2, 0.25,−0.2,−0.1, 0.0). (17)

In the general case where αC = α1 
= 0:

�̃κ(C=1) =
(

0.1375 − α1

2
,−0.15,−0.35, 0.275, 0.0,−0.05

)
.

If we choose αC = 0, then αi = κi, we can include the value
of the control node C = 1:

�̃α = (0.1375, 0.0,−0.15,−0.35, 0.275, 0.0,−0.05).

Alternatively, we can choose whatever value we need regard-
ing the control node. For instance, if αC = α1 = 0.1:

�̃α = (0.1875, 0.1,−0.05,−0.25, 0.375, 0.1, 0.05)

and the phases configuration is the same. Importantly, we
recover the same phase differences using the nonlinear model
with the tuned α’s, up to an error. For this last example and
using the frustration parameters obtained by setting α1 = 0.1,
the nonlinear model leads to final phases vector

�̃φ(R=0) = (0.09969, 0.19944, 0.25097,

− 0.19798,−0.09897, 0.00012), (18)
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which represents ∼0.3% of relative error with respect to the
initial Eq. (17). See the full derivation of the analytical solu-
tion in Appendix A.

IV. OPTIMAL COST TUNING OF FRUSTRATION

As pointed out in Sec. III, there is a continuous spectrum
of values for the choice of the frustration parameters that en-
ables the system access a particular phase configuration. The
following question arises naturally: Among all the possible
solutions, which is the one that makes the system achieve
a particular phase configuration with the minimum required
cost?

This question is of particular relevance when we consider
the plausible real nature of the system. If a real system needs
to access a particular phase configuration, which may be as-
sociated with a precise function, then it will tend to minimize
the effort or cost to do so.

In order to quantify the required cost, we define it as fol-
lows:

eT (C) ≡
∑

i

|αi(C)|. (19)

Henceforth, the cost associated to each node is given by the
absolute value of the required frustration parameter. The abso-
lute value operator allows for a sign-free contribution of each
node, a very convenient choice in the case that the system is
not beforehand specified, and a general definition is proposed
instead. Furthermore, unlike other nonlinear cost functions
such as the square sum of the parameters, no extra weight is
given to larger values, besides the corresponding to a linear
function.

As previously remarked, eT (C) will depend both on the
chosen control node, C, as well as the particular choice of its
frustration parameter, αC .

The optimal configuration is given by the solution of the
minimization problem

min
C,x

eT (C, x) = min
C,x

N∑
i

αi(C, x), (20)

where the x variable is not yet specified. Depending on the
problem we are interested in we would set it either to ωi, si

or any other combination of the parameters of the model. The
minimal value of the cost will depend on the proper choice of
the control node, C, in addition of the particular value of its
frustration parameter, αC , as the free parameter left to be set.
In Secs. V and VI we provide a thorough analysis of it.

The cost required to achieve a particular phase configura-
tion depends on that configuration, the control node and the
chosen value of αC . In Fig. 2 we present an example, following
with the network presented in Sec. III and choosing different
values of αC , we compute numerically the values of the re-
quired cost using Eq. (19) to achieve the phase configuration
given in Eq. (17). Notice that the global minimum depends on
the control node and its frustration parameter. In Sec. III we
have derived the general analytical solution of the frustration
parameters as a function of a particular choice for the phase
configuration. In this section we have defined a cost function
in order to assess the optimal choice of such configuration.

FIG. 2. Implied cost to achieve the phase configuration in
Eq. (17) as a function of the chosen control node, C, for the network
in Fig. 1 and considering five different values of αC . Notice that the
minimum cost is given, in this case, by αC = 0 and C = 1 or C = 5.

Depending on the phase configuration one is interested in
achieving, results will vary and the analytical expressions will
have different features.

In the following sections we will focus on two particular
configurations, due to its intrinsic importance, in order to
obtain and discuss the analytical solution of Eq. (20): The
configuration given by the symmetries of the network [14] and
the fully synchronized state.

V. SYMMETRIC PHASE CONFIGURATION

As explained in Sec. II, a particular example of the
Kuramoto-Sakaguchi model is the symmetric case, obtained
by a homogeneous distribution of frustration parameters, i.e.,
αi = αh ∀i. For our purposes, we consider αh > 0. In this
situation, the trivial solution of the frustration parameters,
αi = αh, is another one of the values out of the continuous
spectrum. That is, we can recover the landscape given by
the symmetric configuration in many different ways. We are
however, interested in computing the analytical expression of
the cost function in order to select the one corresponding to
the minimum cost.

A. Optimal cost tuning when αC = 0

Let us first consider the case where αC = 0 and homoge-
neous natural frequencies ωi = ωh ∀i. In the particular case of
the symmetric configuration, that is, the phase configuration
given by αi = αh ∀i the solution of the frustration parameters
is given by:

�̃κ = ( ˜MDs)
−1

(
1

K
�̃
ω − L̃ �̃φ∗

)
= −( ˜MDs)

−1
L̃ �̃φ∗. (21)

But �̃φ∗ corresponds to the symmetric case. Hence (see Sec. II),

�̃φ∗ = αhL̃−1 �̃
s, (22)
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where �̃
si ≡ 〈s〉 − si and the tilde touches on kth row re-
moval.

Plugging Eq. (22) into Eq. (21):

�̃κ = −αh( ˜MDs)
−1

L̃L̃−1 �̃
s = −αh( ˜MDs)
−1 �̃
s.

But �̃
s can be written as:

�̃
s = −M̃�s. (23)

Putting it all together:

�̃κ = −αh( ˜MDs)
−1

L̃L̃−1 �̃
s = αh( ˜MDs)
−1

M̃�s �̃κ, (24)

which in vector form is written as:

�̃κ = αh( ˜MDs)
−1

M̃�s �̃κ = αh

⎛
⎜⎜⎝

1 − sC
s0

1 − sC
s1· · ·

1 − sC
sN−1

⎞
⎟⎟⎠. (25)

And considering the relation between α and κ , in Eq. (12):

�α = αh

⎛
⎜⎜⎜⎜⎜⎜⎝

1 − sC
s0

1 − sC
s1· · ·

0 (C node)
· · ·

1 − sC
sN−1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (26)

Equation (25) gives us the tuned values of the frustration
parameters as a function of the chosen control node, C, when
αC = 0. Notice that the result depends nonlinearly only on the
ratio between the degree of each node and the control node.
This informs us that nodes with the same degree would be
tuned to the same value or, in other words, the tuning depends
only on the degree sequence of the network.

Once we have computed the analytical solution of the frus-
tration parameters, we derive the expression of the required
cost to achieve such state with the particular choice of C.
Using the definition in Eq. (19):

eT (C) = |αh|
N−1∑

i

∣∣∣∣1 − sC

si

∣∣∣∣ = |αh|
N−1∑

i

∣∣∣∣ si − sC

si

∣∣∣∣. (27)

Before we provide the mathematical solution to the mini-
mization problem defined in Eq. (20) for this particular case,
let us gain an intuitive understanding of it. Looking at Eq. (27)
we see that the contribution of the ith node to the cost incre-
ment depends on |sC − si| and, hence, if the chosen control
node, C, has an extreme value, i.e., sC � si or sC  si, the
contribution will be larger. On the contrary, if the degree of
the control node is similar to that of the remaining nodes, then
the increase in cost will be smaller.

For example, the network in Fig. 3(a), with �s =
(1, 6, 2, 1, 2, 2, 2, 2) has the set of unique degrees �sunique =
(1, 2, 6) and hence three possible values of the cost, shared by
some nodes. If C = {0, 3}, sC = 1:

eT (C) = |αh|
(∣∣∣∣1 − 1

1

∣∣∣∣ + 5

∣∣∣∣1 − 1

2

∣∣∣∣ +
∣∣∣∣1 − 1

6

∣∣∣∣
)

= |αh|
(

5

2
+ 5

6

)
= 10

3
|αh|.

FIG. 3. Implied cost to achieve the symmetric configuration as
a function of the degree corresponding to different choices of the
control node, sC , for a network of 8 nodes (upper panels) and 9
nodes (lower panels). The distinct colors and markers correspond to
different values of αC . The symmetric configuration is generated by
a value of αh = 0.1.

If C = {2, 4, 5, 6, 7}, sC = 2:

eT (C) = |αh|
(

2

∣∣∣∣1 − 2

1

∣∣∣∣ + 4

∣∣∣∣1 − 2

2

∣∣∣∣ +
∣∣∣∣1 − 2

6

∣∣∣∣
)

= |αh|
(

2 + 2

3

)
= 8

3
|αh|.

And, finally, if C = 1, sC = 6:

eT (C) = |αh|
(

2

∣∣∣∣1 − 6

1

∣∣∣∣ + 5

∣∣∣∣1 − 6

2

∣∣∣∣
)

= |αh|(10 + 10) = 20|αh|.

The minimum value of the energy is 8
3 |αh|, corresponding to

the choice C ∈ {2, 4, 5, 6, 7} with sC = 2.
Notice that the optimal choice of the control node (or

nodes) does not depend on the value of αh in the symmetric
configuration, but only on the degree sequence of the net-
work. Moreover, this example illustrates that the degree of the
control node corresponds to an intermediate value within the
degree sequence of the network and not an extreme value. A
more detailed inspection of Eq. (27) discloses that the proper
choice of the control node (or control nodes) corresponds to
the minimization of the relative error of degrees. In order to
find the particular value of the degree that the control node
must have we should solve the minimization problem defined
in Eq. (20):

min
C,x

eT (C, x) = min
C,x

N∑
i

αi(C, x),
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which, when considering the symmetric configuration case,
turns to

min
sC

|αh|
N−1∑

i

∣∣∣∣1 − sC

si

∣∣∣∣ = |αh| min
sC

N∑
i

∣∣∣∣ sC − si

si

∣∣∣∣. (28)

Equation (28) is equivalent to the minimization of the absolute
value of the relative error of the degree:

|αh| min
sC

N∑
i

|Ei|, (29)

where Ei = | sC−si
si

|.
The most general minimization problem of the relative

error of a variable [23] can be written as

min
d

N∑
i=1

wi|xi − d| ; d > 0, (30)

where d is the variable one is interested in and wi is the weight
corresponding to each xi variable. The solution of Eq. (30) is
given by

d = xm, where m ≡ min

{
i

∣∣∣∣
i∑

k=1

wk �
n∑

k=i

wk

}

i ∈ {1, . . . , n}. (31)

In other words, the value of d that minimizes Eq. (30)
corresponds to the weighted median of the variable x or,
equivalently, the 50% weighted percentile. The weighted me-
dian of a set n distinct ordered elements x1, x2, . . . , xn with
positive weights w1,w2, . . . ,wn, is the element xk satisfying
min{i| ∑i

k=1 wk � ∑n
k=i wk}. In other words, the solution is

given by xk , the value such that the sum of the weights at each
side of the pivot, k, are as even as possible.

The particular case defined in Eq. (28) can be mapped
to the most general problem defined in Eq. (30), choosing
wi = 1/si, xi = si, and d = sC . Accordingly, the solution of
sC corresponds to the weighted median of the set {si}, with
weights given by the inverse of the node degree.

Following the example of the network in Fig. 3(a), with
degree sequence �s = (1, 6, 2, 1, 2, 2, 2, 2), let us compute the
optimal value of sC by using Eq. (31),

sorted(�s) = (1, 1, 2, 2, 2, 2, 2, 6)

�w =
(

1, 1,
1

2
,

1

2
,

1

2
,

1

2
,

1

2
,

1

6

)
.

To find the weighted median, we have to find the minimum
value such that the sum of the weights at each side of the pivot
are as even as possible,

1 + 1 + 1

2
+ 1

2
= 3 � 2.17 = 1

2
+ 1

2
+ 1

2
+ 1

2
+ 1

6
,

which corresponds to sC = 2, in agreement with the location
of the minimum for αC = 0 in Fig. 3(b) corresponding to the
network in Fig. 3(a).

B. Optimal cost tuning when αC �= 0

We next ask which is the optimal choice of the control node
in the case we let αC 
= 0 and ωi = ωh ∀i. In this case, we

should look at Eq. (13) and set �̃
ω = 0. Making use of the
analytical solution of the symmetric configuration in Eq. (22):

˜MDs �̃κ = −αhL̃L̃−1 �̃
s − αC ·
→∑
j

[MDs]i j .

Using the properties L̃L̃−1 = I and �̃
s = M̃�s,

�̃κ = αh( ˜MDs)
−1

[
M̃�s − αC ( ˜MDs)

−1
→∑
j

[MDs]i j

]
.

Finally, in vector form,

�̃κ = αh

⎛
⎜⎜⎝

1 − sC
s0

1 − sC
s1· · ·

1 − sC
sN−1

⎞
⎟⎟⎠ − αC

⎛
⎜⎜⎝

1 − sC
s0

1 − sC
s1· · ·

1 − sC
sN−1

⎞
⎟⎟⎠. (32)

Using Eq. (12),

�α = (αh − αC )

⎛
⎜⎜⎜⎜⎜⎜⎝

1 − sC
s0

1 − sC
s1· · ·

0 (C node)
· · ·

1 − sC
sN−1

⎞
⎟⎟⎟⎟⎟⎟⎠

+ αC, (33)

where we have used the result in Eq. (25) and the relation

( ˜MDs)
−1

→∑
j

[MDs]i j = ( ˜MDs)
−1

M̃�s

=

⎛
⎜⎜⎝

1 − αC
α0

1 − αC
α1· · ·

1 − αC
αN−1

⎞
⎟⎟⎠.

In the particular case that αC = αh we recover the trivial initial
configuration αi = αh ∀i, as expected from the model.

Once we have computed the analytical solution of the frus-
tration parameters, we derive the expression of the implied
cost to achieve such state with the particular choice of C.
Using the definition in Eq. (19):

eT (C) =
N−1∑
i=0

∣∣∣∣(αh − αC )
(

1 − sC

si

)
+ αC

∣∣∣∣. (34)

We next derive the analytical solution of the optimal choice
of the control node and finally proof that the global minimum
corresponds to a value of αC = 0. Equation (34) can be rear-
ranged as

eT (C) =
N−1∑
i=0

∣∣∣∣ si − (
1 − αC

αh

)
sC

si/αh

∣∣∣∣ (35)

and thereby can be easily mapped to the solution of the
minimization problem defined and solved in Eq. (30) and
Eq. (31), respectively. Looking at Eq. (34), we should choose
xi = si, wi = αh/si and d = (1 − αC/αh)sC . With this choice,
the value of d that minimizes Eq. (34) corresponds to the
weighted median of the set {si} with weights αh/si. Therefore,
the value of d is the same as the solution of the case αC = 0,
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but d 
= sC and thus we must apply a transformation in order
to obtain the optimal choice of sC . We have to distinguish
several cases, considering αh > 0:

(a) αC > 0. In this case we inspect Eq. (35) and distin-
guish two more cases:

(i) αC > αh: In this case, the prefactor of sC is negative,
and we can write:

eT (C) =
N−1∑
i=0

∣∣∣∣∣
si + ∣∣1 − αC

αh

∣∣sC

si/αh

∣∣∣∣∣
=

N−1∑
i=0

∣∣∣αh + Mαh
sC

si

∣∣∣,
where M ≡ |1 − αC

αh
| > 0 is a positive number. Hence, as

the cost function increases with increasing sC , the mini-
mum is achieved when sC = min(si ) (See Fig. 3 at αC =
0.2).

(ii) αC < αh: In this case, the prefactor of sC is positive,
and we can write:

eT (C) =
N−1∑
i=0

∣∣∣∣ si − |1 − αC
αh

sC |
si/αh

∣∣∣∣,
taking into account that d = |1 − αC

αh
sC | and considering

that, in this case, 0 < αC < αh and hence 0 � |1 − αC
αh

| �
1 and the weighted mean is bounded by min(si ) � d �
max(si ), the optimal value of sC falls in the range d � sC �
max(si ). Hence, the optimal value of sC is always larger
than the weighted median, d (see Fig. 3 at αC = 0.05).
(b) αC < 0. In this case we can rewrite Eq. (35) as

eT (C) =
N−1∑
i=0

∣∣∣∣∣
si − (

1 + |αC |
αh

)
sC

si/αh

∣∣∣∣∣
and distinguish two more cases:

(i) |αC | > |αh|: In this case, the prefactor of sC is pos-
itive and bounded by 2 � (1 + |αC |

αh
) � ∞. In this case,

d = (1 + |αC |
αh

)sC and hence 0 � sC � d/2. Hence, the op-
timal value of sC is always smaller than half the value of
the weighted median, d (see Fig. 3 at αC = −0.2).

(ii) |αC | < |αh|: In this case, the prefactor of sC is pos-
itive and bounded by 1 � (1 + |αC |

αh
) � 2. In this case, d =

(1 + |αC |
αh

)sC and hence d/2 � sC � d . Hence, the optimal
value of sC is always smaller than the weighted median, d
(see Fig. 3 at αC = −0.05).
(c) αC = 0: This case is explored in Sec. V A. Equation

(35) turns to

eT (C) =
N−1∑
i=0

∣∣∣∣ si − sC

si/αh

∣∣∣∣.
The optimal value of sC is the same as the weighted median,
d , without any further transformation (see Fig. 3 at αC = 0.0).

(d) αC = αh: This case is discussed in the introduction of
the present section. Equation (35) turns to

eT (C) =
N−1∑
i=0

αh = Nαh

and hence the value of the cost is the same constant value for
all nodes (see Fig. 3 at αC = 0.1).

Amid all the cases considered concerning the value of αC ,
the global minimum cost is given by αC = 0, as shown in
Fig. 3. This result can be proved by considering a simplified
version of Eq. (35), defined as

f (x) =
∣∣∣∣a − (1 − x/b)c

a/b

∣∣∣∣. (36)

The minimum value of Eq. (36) is achieved when x = 0, as
long as a > 0, b > 0 and c > 0. This conditions are equiv-
alent to si > 0, αh > 0 and sC > 0, and are true for all the
summation terms in Eq. (35). Therefore, the minimum value
is given by setting αC = 0.

Summing up, in order to obtain the optimal {αi} parame-
ters’ set in order to achieve the symmetric phase configuration
with the minimum implied cost in the Kuramoto-Sakaguchi
model, we should set αC = 0, independently of the value of
αh. The remaining parameters have to be tuned using Eq. (33).
Moreover, the optimal choice of the control node (or nodes)
corresponds to that with sC located at the weighted median of
{si} (with weight equal to s−1

i ).
Notice also that nodes are grouped by degree regarding

the tuned values of its frustration parameters. In other words,
there may be different potential control nodes, as long as they
share the same degree.

VI. FULLY SYNCHRONIZED PHASE CONFIGURATION

Another particular phase configuration is given by the
phase synchronization of nodes, that is, �φ∗ = �0. If we set, as
in Sec. V, ωi = ωh ∀i, we end up with the trivial solution
αi = 0 ∀i. In the case of full synchronization we want to
recover the completely in-phase state from a phase dispersion
produced by a distribution of natural frequencies, which we
consider to be positive. Hence, applying Eq. (13) to this case:

�̃κ = ( ˜MDs)
−1

(
1

K
M̃ �ω − αC · M̃�s

)
(37)

and in vector form,

�̃κ =

⎛
⎜⎜⎜⎝

αC (sC−s0 )−(ωC−ω0 )/K
s0

αC (sC−s1 )−(ωC−ω1 )/K
s1· · ·

αC (sC−sN−1 )−(ωC−ωN−1 )/K
sN−1

⎞
⎟⎟⎟⎠, (38)

where we have used: �̃
ω = M̃ �ω.
Finally, from the �κ in Eq. (38) we can obtain �α:

�α =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

αC sC−(ωC−ω0 )/K
s0

αC sC−(ωC−ω1 )/K
s1· · ·
αC

· · ·
αC sC−(ωC−ωN−1 )/K

sN−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (39)

Similarly as the result of the symmetric configuration,
given in Eq. (33), the solution of the fully synchronized con-
figuration concerning �α is a continuous spectrum of values,
depending on the choice of the control node, C, the value of
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its frustration parameter αC , which is a free parameter, and
the natural frequencies of the oscillators. In Secs. VI A and
VI B we will make a in-depth analysis of the problem, as
well as comment on the nonlinear expansion of the Kuramoto-
Sakaguchi model and the validity of our approach in this case
(Sec. VI C).

A. Optimal cost tuning when αC = 0

Using the definition of cost in Eq. (19) and the general
solution of the frustration parameters in Eq. (39) we get:

eT (C) =
N−1∑
i=0

∣∣∣∣αCsC − (ωC − ωi )/K

si

∣∣∣∣. (40)

In the particular choice αC = 0:

eT (C) =
N−1∑
i=0

∣∣∣ωC − ωi

Ksi

∣∣∣. (41)

Equation (41) shows that the relevant piece of information
regarding the control node is given by its natural frequency,
ωC . Similarly to the minimization problem posed in Sec. V,
and in order to find the optimal choice of the control node we
need to solve Eq. (20) considering the solution of Eq. (41):

min
ωC

∣∣∣ωC − ωi

Ksi

∣∣∣ = 1

K
min
ωC

∣∣∣ωC − ωi

si

∣∣∣. (42)

The optimization problem is equivalent to the most gen-
eral problem, described in Eq. (30), with solution given by
Eq. (31). In this case, d = ωC , xi = ωi and the weight wi =
s−1

i . Accordingly, and in a similar way as in Sec. V, the
solution of ωC corresponds to the weighted median of the set
{ωi}, with weights given by the inverse of the node degree.
Notice that the optimal choice of the control node is in general
different to that given in Sec. V A). This is due to the fact
that the weights of the weighted median have to be sorted
according to descending order of natural frequencies instead
of node degree.

Following with the example provided in Sec. V A,
for the network in Fig. 3(a), with degree sequence �s =
(1, 6, 2, 1, 2, 2, 2, 2), let us compute the optimal value of ωC

by using Eq. (31). Consider the following natural frequencies:

�ω = (0.1, 0.2, 0.05, 0.45, 0.3, 0.4, 0.25, 0.15), (43)

which lead to

sorted(�ω) = (0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.45) (44)

and the corresponding weights

�w =
(

1

2
, 1,

1

2
,

1

6
,

1

2
,

1

2
,

1

2
, 1

)
. (45)

To find the weighted median, we have to find the minimum
value such that the sum of the weights at each side of the pivot
are as even as possible,

1

2
+ 1 + 1

2
+ 1

6
+ 1

2
= 2.67 � 2.5 = 1

2
+ 1

2
+ 1

2
+ 1.

Therefore, the optimal value of natural frequency corresponds
to the choice C = 6 [see αC = 0 line in Fig. 4(a)], with ωC =
0.25 [see αC = 0 line in Fig. 4(b)] and a degree of sC = 2.

FIG. 4. Implied cost to achieve the fully synchronized config-
uration as a function of the chosen control node, C (upper panel)
and natural frequencies of nodes (bottom panel) for the network in
Fig. 3(a). Five different values of αC are considered (marked colored
lines). Natural frequencies are set as the example in Eq. (43).

B. Optimal cost tuning when αC �= 0

The cost corresponding to the fully synchronized config-
uration case is given by Eq. (40). In the general case where
αC 
= 0, we can minimize the cost with respect to ωC or to
sC . If we minimize with respect to ωi, we first have to rewrite
Eq. (40) as

eT (C) =
N−1∑
i=0

∣∣∣∣αCsC − (ωC − ωi )/K

si

∣∣∣∣
1

K

N−1∑
i=0

∣∣∣∣ωi − (ωC − αCsCK )

si

∣∣∣∣. (46)

Again, the problem and the solution of Eq. (46) can be taken
from Eq. (30) and Eq. (31), choosing d ≡ ωC − αCsCK , wi ≡
1/Ksi and xi ≡ ωi.

Hence, the value d that minimizes the cost is the weighed
median considering the same weight as in Sec. VI A, wi =
1/si (notice, however, that the ordering is determined by nat-
ural frequencies and not degrees). Let us analyze the different
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possibilities regarding the values of αC , maintaining ωC and
sC constant:

(a) ωC > αCsCK or αC < ωC
KsC

: We can write

N∑
i

∣∣∣∣ωi − |ωC − αCsCK|
Ksi

∣∣∣∣.
The value which minimizes cost is given by d = ωk , corre-
sponding to the weighted median. However this is not directly
the value of ωC , as d = |ωC − αCsCK| in this case. The real
values of the pair {ωC, sC} are given by minC (ωk − (ωC −
αCsCK )). Following with the example in Sec. VI A, the value
of the weighted median is d = 0.25. In the case we are consid-
ering, however, this is not the optimal choice of the parameters
for the control node. We must shift the values considering the
relation between d and the other parameters. If we choose
αC = 0.1, for instance, we find that, |ωC − 0.1sc| = 0.25. In
Fig. 4 we see that the optimal choice is given by ωC = 0.4,
which corresponds to C = 5 and sC = 2.

(b) ωC < αCsCK or αC > ωC
KsC

: We can write

N∑
i

∣∣∣∣ωi + |ωC − αCsCK|
Ksi

∣∣∣∣.
Hence, as the function increases with increasing (ωi −
αCsiK ), the minimum is achieved by minC (ωC − αCsCK ).

C. Nonlinear expansion of the Kuramoto-Sakaguchi model

The results obtained in Sec. VI are based on a linear
approximation of the Kuramoto-Sakaguchi model. We have
derived the results based on the phase synchronization re-
quirement, and assuming that frequency synchronization is
already achieved in the steady state. Nevertheless, when mea-
suring the order parameter with a large dispersion of natural
frequencies or low coupling constant, we do not expect such
steady state. However, we ask to which extend the proposed
values of the obtained frustration parameters are also able to
enhance frequency synchronization considering the original
nonlinear Kuramoto-Sakaguchi model:

θ̇i = ωi + K
∑

j

Wi j sin(θ j − θi − αi ). (47)

We compare the results from Ref. [21] considering its Type II
frustration parameters tuning for both the linear and the non-
linear Kuramoto model and we find that, despite our approach
does not consider the enhancement of frequency synchroniza-
tion on the nonlinear regime, it is able to improve the value of
the order parameter, in a similar fashion as in Ref. [21]. This
work considers the nonlinear Kuramoto-Sakaguchi model and
seeks to improve the number of nodes that fall into the recruit-
ment condition so as to achieve the same common oscillatory
frequency. The considered network class is the same as the
mentioned paper, as well as the statistics study.

We make use of the expression in Eq. (39) to tune the set of
�α for a given configuration of random �ω and study the effect
on the synchronization of the system for different values of
the coupling strength.

FIG. 5. Average order parameter, 〈r〉, as a function of the cou-
pling strength, K , for the linear [in panel (a)] and the nonlinear
[in panel (b)] Kuramoto-Sakaguchi (KS) model on regular random
graphs with homogeneous node degree si = 4 and N = 100 nodes.
Natural frequencies are obtained from a uniform random distribution
in the range ωi ∈ [−1, 1]. Each data point represents an average
over ten optimized configurations. We compare three types of tuning
for the set of frustration parameters, {αi}: the original Kuramoto
dynamics or αi = 0 ∀i (spotted continuous red line); type II [21] KS
dynamics with the frustration parameters set to sin(αi ) = −ωi/(Ksi )
if |ωi| < Ksi and sin(αi ) = ±1 otherwise (squared dashed green
line); and KS dynamics with the frustration parameters determined
by the derived linear approximation in Eq. (39) (squared discontinu-
ous purple line).

We consider two cases: the linear and the nonlinear model
with natural frequencies obtained from a uniform distribution
ωi ∈ [−1, 1].

From Fig. 5(a), the linear case of the Kuramoto-Sakaguchi
model [see Eq. (4)], our approach, derived from the analytic
expression of the linear approximation, advances the analytic
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tuning of frustration parameters suggested by Ref. [21]. This
is because they look for an enhancement in the number of
nodes that are oscillating at the same frequency, �, but they do
not worry about the exact values of the phases they achieve.
On the contrary, we assume nodes are already synchronized
(without setting the specific value of �, as they do) and we
look for the full synchronization state.

In Fig. 5(b), the linear tuning squared discontinuous purple
line) approaches the type II (squared dashed green line) tuning
in the case of the nonlinear Kuramoto-Sakaguchi model, even
for small values of the coupling strength. Hence, despite the
aim of our approach is not achieving frequency synchroniza-
tion, the obtained tuning of the frustration parameters helps
enhancing it as well. In principle this behavior is reminis-
cent of the so-called explosive percolation (see Ref. [24] and
references therein), since the transition to the synchronized
state is abrupt, as it happens in a first-order phase transition.
We are adjusting the phase-lag parameter as a response to
the frequencies, and then in some sense it is similar to the
original proposal in Ref. [25], the correlated degree-frequency
framework.

VII. CONCLUSIONS

The Kuramoto-Sakaguchi model adds to the original Ku-
ramoto model a homogeneous phase lag, α, between nodes
which promotes a phase shift between oscillators. We consider
a more general framework, in which the phase lag or the
frustration parameter, αi, is an intrinsic property of each node.
A very relevant question in oscillatory models is finding the
conditions of network synchronization. In the present work,
we bring forward a methodology not only to obtain the desired
synchronized state, but any convenient phase configuration
in the steady state, by means of a fine tuning of the phase
lag or frustration parameters, {αi}. We feature the analytical
solution of frustration parameters so as to achieve any phase
configuration, by linearizing the most general model. The
three intrinsic parameters of the nodes in the model, natural
frequencies, {ωi}, frustration parameters {αi}, and phases in
the steady state φ∗

i , are coupled by an equation that allows
to tune them for a desired configuration. While the set φ∗

i is
uniquely determined, the set αi has a continuous spectrum of
solutions.

A main result is that a given phase configuration can be
access via a continuous spectrum of frustration parameters,
i.e., one phase and one frustration parameter are left as free
parameters. The nodes we choose their values concerning
phase and frustration parameter, are named reference and
control nodes, respectively. Once the frustration parameters
are tuned so as to obtain the desired state, we define a cost
function to assess the overhead that the system requires to
achieve such parameters’ configuration. Among all possible
tuning solutions of {αi}, we request those which minimize
the cost to obtain them. We develop the analytical solution
of the cost function for the cases of symmetric configuration
and fully synchronized state and discuss them.

A key result is the solution to the minimization cost prob-
lem: For the case of symmetric configuration, the nodes which
are to be set as control nodes are those whose degree is
the weighed median of the sample, with a weight equal to

the inverse of its degree. On the other hand, for the case
of fully synchronized state, control nodes are those whose
natural frequency is the weighted median of the sample, with a
weight equal to the inverse of its degree. An extensive analysis
of several cases is done in the text and a detailed example
of a toy network is provided. We highlight the connection
made with the nonlinear Kuramoto-Sakaguchi model. Despite
our analysis being based on the linear version of the model,
we show that the proposed parameters’ tuning is also able
to enhance frequency synchronization, as done in Ref. [21].
We stress the fact that the question “among all the possible
solutions, which is the one that makes the system achieve
a particular phase configuration with the minimum required
cost?” is of particular relevance when we consider the plausi-
ble real nature of the system. If a real system needs to access a
particular phase configuration, which may be associated with
a singular function, then it will tend to minimize the effort or
cost to do so. Further work can be done within this framework
by doing real experiments on measuring the energy needed to
access a particular configuration. Moreover, other nonlinear
oscillatory models can be analyzed and compared with the
Kuramoto-Sakaguchi model.

Other questions regarding the model are left open. We have
considered the coupled trio of natural frequencies-frustration
parameters-steady state phases. A natural extension to this
would be to inspect the possibility to also tune the weights of
the network edges in order to access a particular configuration.
The higher dimension of the latter with respect to the vectors
of parameters would require further assumptions about the
model or the network structure, such as positive weights or
particular distributions or topologies. Another research venue
would be to consider the effect of removing a node of the
network and the {αi} set needed to minimize the effect on the
removal on the whole network.

Despite we provide the analytical solution to the opti-
mal choice of parameters in order to minimize the cost of
achieving both the symmetric and the fully synchronized con-
figurations, the access to all nodes’ parameters requirement
may not be feasible in real-world networks. Our methodol-
ogy is quite general and the optimization procedure refers
to a set of parameters to be tuned. In particular, a finite
subset of nodes with accessible phase-lag parameter could
be chosen (the choice could be restricted to any subset of
nodes), holding all other nodes unaltered. This would provide
a nonoptimal global condition but a restricted and approxi-
mated one that could deal with a subset of available nodes.
A meaningful analysis would be to identify which subset
of nodes is the one that enables to get a closest approxi-
mate solution, and relate those nodes with their topological
properties, although this question is beyond the goal of
this work.
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APPENDIX A: STEP-BY-STEP DERIVATION OF THE EXAMPLE

Consider the network in Fig. 1, with its Laplacian matrix:

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

4 −1 −1 −1 0 0 −1
−1 2 −1 0 0 0 0
−1 −1 2 0 0 0 0
−1 0 0 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 1

−1 0 0 0 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

We develop the equation step by step:

∑
j

Li jθ
∗
j = ωi

K
− 〈ω〉

K
+ 〈αs〉 − αisi ∀i

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

4 −1 −1 −1 0 0 −1
−1 2 −1 0 0 0 0
−1 −1 2 0 0 0 0
−1 0 0 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 1

−1 0 0 0 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

θ∗
0

θ∗
1

θ∗
2

θ∗
3

θ∗
4

θ∗
5

θ∗
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω0−〈ω〉
K

ω1−〈ω〉
K

ω2−〈ω〉
K

ω3−〈ω〉
K

ω4−〈ω〉
K

ω5−〈ω〉
K

ω6−〈ω〉
K

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

6
7 − 1

7 − 1
7 − 1

7 − 1
7 − 1

7 − 1
7− 1

7
6
7 − 1

7 − 1
7 − 1

7 − 1
7 − 1

7− 1
7 − 1

7
6
7 − 1

7 − 1
7 − 1

7 − 1
7− 1

7 − 1
7 − 1

7
6
7 − 1

7 − 1
7 − 1

7− 1
7 − 1

7 − 1
7 − 1

7
6
7 − 1

7 − 1
7− 1

7 − 1
7 − 1

7 − 1
7 − 1

7
6
7 − 1

7− 1
7 − 1

7 − 1
7 − 1

7 − 1
7 − 1

7
6
7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

4 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 2 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 2 0
0 0 0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α0

α1

α2

α3

α4

α5

α6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω0−〈ω〉
K

ω1−〈ω〉
K

ω2−〈ω〉
K

ω3−〈ω〉
K

ω4−〈ω〉
K

ω5−〈ω〉
K

ω6−〈ω〉
K

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 24
7

2
7

2
7

2
7

2
7

2
7

2
7

4
7 − 12

7
2
7

2
7

2
7

2
7

2
7

4
7

2
7 − 12

7
2
7

2
7

2
7

2
7

4
7

2
7

2
7 − 12

7
2
7

2
7

2
7

4
7

2
7

2
7

2
7 − 12

7
2
7

2
7

4
7

2
7

2
7

2
7

2
7 − 12

7
2
7

4
7

2
7

2
7

2
7

2
7

2
7 − 12

7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α0

α1

α2

α3

α4

α5

α6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

If we set all natural frequencies to the same value: ωi = ω ∀i:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

4 −1 −1 −1 0 0 −1
−1 2 −1 0 0 0 0
−1 −1 2 0 0 0 0
−1 0 0 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 1

−1 0 0 0 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

θ∗
0

θ∗
1

θ∗
2

θ∗
3

θ∗
4

θ∗
5

θ∗
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 24
7

2
7

2
7

2
7

2
7

2
7

2
7

4
7 − 12

7
2
7

2
7

2
7

2
7

2
7

4
7

2
7 − 12

7
2
7

2
7

2
7

2
7

4
7

2
7

2
7 − 12

7
2
7

2
7

2
7

4
7

2
7

2
7

2
7 − 12

7
2
7

2
7

4
7

2
7

2
7

2
7

2
7 − 12

7
2
7

4
7

2
7

2
7

2
7

2
7

2
7 − 12

7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α0

α1

α2

α3

α4

α5

α6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Now we choose R = 0 and C = 1, i.e., all φi = θi − θ0 and κi = αi − α1:
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Let us write explicitly the change of variables:⎛
⎜⎜⎜⎜⎜⎜⎜⎝

4 −1 −1 −1 0 0 −1
−1 2 −1 0 0 0 0
−1 −1 2 0 0 0 0
−1 0 0 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 1

−1 0 0 0 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

φ∗
0 = 0
φ∗

1
φ∗

2
φ∗

3
φ∗

4
φ∗

5
φ∗

6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 24
7

2
7

2
7

2
7

2
7

2
7

2
7

4
7 − 12

7
2
7

2
7

2
7

2
7

2
7

4
7

2
7 − 12

7
2
7

2
7

2
7

2
7

4
7

2
7

2
7 − 12

7
2
7

2
7

2
7

4
7

2
7

2
7

2
7 − 12

7
2
7

2
7

4
7

2
7

2
7

2
7

2
7 − 12

7
2
7

4
7

2
7

2
7

2
7

2
7

2
7 − 12

7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

κ0

κ1 = 0
κ2

κ3

κ4

κ5

κ6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−12
7 α1
2
7α1
2
7α1
2
7α1
2
7α1
2
7α1
2
7α1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If we look carefully at Eq. (A1), we see that although the left-hand side and the right-hand side matrices are both singular, the
first one has both column and row sums equal to zero, while the second one has only column sum equal to zero. This is reflected
in the additional constant term that appears when doing the change of variables regarding αi, which can be written as:

bi =
∑

j

[M · Ds]i j 
= 0 in general. (A1)

We can choose whatever row to remove from either sides. We choose row 0:⎛
⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0
−1 2 0 0 0 0
0 0 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 1
0 0 0 0 −1 2

⎞
⎟⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎜⎝

φ∗
1

φ∗
2

φ∗
3

φ∗
4

φ∗
5

φ∗
6

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

4
7

2
7

2
7

2
7

2
7

2
7

4
7 − 12

7
2
7

2
7

2
7

2
7

4
7

2
7 − 12

7
2
7

2
7

2
7

4
7

2
7

2
7 − 12

7
2
7

2
7

4
7

2
7

2
7

2
7 − 12

7
2
7

4
7

2
7

2
7

2
7

2
7 − 12

7

⎞
⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎝

κ0

κ2

κ3

κ4

κ5

κ6

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎜⎝

2
7α1
2
7α1
2
7α1
2
7α1
2
7α1
2
7α1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

In this situation, we can solve for the set �̃κ:⎛
⎜⎜⎜⎜⎜⎝

κ0

κ2

κ3

κ4

κ5

κ6

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

4
7

2
7

2
7

2
7

2
7

2
7

4
7 − 12

7
2
7

2
7

2
7

2
7

4
7

2
7 − 12

7
2
7

2
7

2
7

4
7

2
7

2
7 − 12

7
2
7

2
7

4
7

2
7

2
7

2
7 − 12

7
2
7

4
7

2
7

2
7

2
7

2
7 − 12

7

⎞
⎟⎟⎟⎟⎟⎟⎠

−1

·

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0
−1 2 0 0 0 0
0 0 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 1
0 0 0 0 −1 2

⎞
⎟⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎜⎝

φ∗
1

φ∗
2

φ∗
3

φ∗
4

φ∗
5

φ∗
6

⎞
⎟⎟⎟⎟⎟⎠ −

⎛
⎜⎜⎜⎜⎜⎜⎝

2
7α1
2
7α1
2
7α1
2
7α1
2
7α1
2
7α1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Which leads to the result:

⎛
⎜⎜⎜⎜⎜⎝

κ0

κ2

κ3

κ4

κ5

κ6

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2α1+3φ1+φ3+3φ6

4
3(φ1−φ2 )

2
2φ1−φ2−2φ3+φ4

2
2φ1−φ2+φ3−2φ4+φ5

2
2φ1−φ2+φ4−2φ5−φ6

2
2φ1φ2+φ5−2φ6

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (A2)

Note that κ1 = 0 and φ0 = 0.

Consider the following configuration:

�̃φ(R=0) = (0.1, 0.2, 0.25,−0.2,−0.1, 0.0).

In this case:

�̃κ(C=1) = (0.1375 − α1/2,−0.15,−0.35, 0.275, 0.0,−0.05).

Note the definition κi ≡ αi − αC ⇒ αi = κi + αC .
If we choose αC = 0 ⇒ αi = κi, then we can include the

value of the control node C = 1:

�̃α = (0.1375, 0.0,−0.15,−0.35, 0.275, 0.0,−0.05).
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FIG. 6. For the network in Fig 1, phases obtained after tuning
the set of frustration parameters to the symmetric configuration (four
distinct symmetries).

Alternatively, we can choose whatever value we need re-
garding the control node. For instance, if αC = α1 = 0.1:

�̃α = (0.1875, 0.1,−0.05,−0.25, 0.375, 0.1, 0.05)

and the phases configuration is the same, as shown in Fig. 6.

APPENDIX B: MATHEMATICAL SOLUTION OF THE
COST OPTIMIZATION PROBLEM AND INTUITIVE

INSIGHTS

In order to gain a more intuitive understating of the analyt-
ical expression and solution of the considered cost function,
we consider the analysis of the continuous case.

1. Symmetric configuration case

Considering the symmetric configuration case and choos-
ing αC = 0, the continuous optimization problem can be
written as

∂eT (C)

∂sC
= ∂

∂sC
|αh|

N−1∑
i

∣∣∣∣1 − sC

si

∣∣∣∣
= |αh|

N−1∑
i

sgn(sC − si )

si
. (B1)

Equation (B1) is based on the function

f (x) =
∣∣∣a − x

a

∣∣∣ a, x > 0, (B2)

which is depicted in Fig. 7 for different values of a and the
sum of all of them. Regardless of the set of ai values, the
sum function

∑
i f (x, ai ) (see the example in the black line

in Fig. 7), is a concave function and has a unique minimum,
which corresponds to one of the ai values.

In order to assess the value of ai where the minimum is
located, we compute the derivative of Eq. (B2):

df (x)

dx
= sgn(x − a)

a
, (B3)

FIG. 7. Three examples of the general function f (x) = | a−x
a |,

with a = 2, a = 3 and a = 4, and the resulting sum of them.

and, hence, d
∑

i f (x, ai )/dx = ∑
i sgn(x − ai )/ai, which is

depicted in Fig. 8. Notice that, despite the derivative of the
function is not defined at the values x = ai, the derivative
changes its sign when moving from x < 3 to x > 3 and hence,
the minimum is located at this value of ai.

To conclude, Eq. (B1) behaves equivalently as the function
defined in Eq. (B2) and hence, displays only one minimum,
which is achieved at the si where there is a change of sign in
the derivative.

Alternatively and as explained in the main text, we can
understand the minimization problem as part of a general
framework. The minimization of Eq. (B1) is equivalent to the
minimization of the absolute value of the relative error:

N−1∑
i

∣∣∣∣1 − sC

si

∣∣∣∣ =
N∑
i

∣∣∣∣ sC − si

si

∣∣∣∣ =
N∑
i

|Ei|. (B4)

FIG. 8. Derivative of the function f (x) = | 2−x
2 | + | 3−x

3 | + | 4−x
4 |

defined in Fig. 7. Red dashed line at y = 0.
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The general problem can be written as [23]:

min
d

N∑
i=1

wi|xi − d| ; d > 0

with the solution:

d = xm where m ≡ min

{
i

∣∣∣∣
i∑

k=1

wk �
n∑

k=i

wk

}

i ∈ {1, . . . , n}. (B5)

In other words, the d value that minimizes Eq. (B5) corre-
sponds to the weighted median of the variable x, or the 50%
weighted percentile.

(a) Weighted median. For n distinct ordered elements
x1, x2, ..., xn with positive weights w1,w2, . . . ,wn,

the weighted median is the element xk satisfying
min{i| ∑i

k=1 wk � ∑n
k=i wk}

Therefore, the solution is given by xk , the value such that
the sum of the weights at each side of the pivot, k, are as even
as possible.

Our problem is a special case of the discrete weighted
medians with weights 1/si, which are a special case of the
medians of a measure.

Following the example provided in Fig. 7, {x} = {2, 3, 4}
and {w} = {1/2, 1/3, 1/4}.

The weighted median is achieved for k = 2, corresponding
to x2 = 3 and weight w2 = 1/3 as 1/2 + 1/3 = 5/6 > 1/3 +
1/4 = 7/12. Conversely, if we let k = 1, and hence x1 = 2
and w1 = 1/2, the condition on the weights will not be true:
1/2 ≯ 1/2 + 1/3 + 1/4.
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