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Chimeralike states in a minimal network of active camphor ribbons
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A chimeralike state is the spatiotemporal pattern in an ensemble of homogeneous coupled oscillators,
described as the emergence of coexisting coherent (synchronized) and incoherent (unsynchronized) groups. We
demonstrate the existence of these states in three active camphor ribbons, which are camphor infused rectangular
pieces of paper. These pinned ribbons rotate on the surface of the water due to Marangoni effect driven forces
generated by the surface tension gradients. The ribbons are coupled via a camphor layer on the surface of the
water. In the minimal network of globally coupled camphor ribbons, chimeralike states are characterized by
the coexistence of two synchronized and one unsynchronized ribbons. We present a numerical model, simulating
the coupling between ribbons as repulsive Yukawa interactions, which was able to reproduce these experimen-
tally observed states.
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I. INTRODUCTION

The study of ensemble dynamics of coupled oscillators has
been of wide interest across various disciplines of science. In
an ensemble, collective behavior of the oscillators gives rise to
fascinating phenomena like pattern formation [1–3], cluster-
ing [4,5], amplitude death [6,7], phase flip [8], swarming [9],
etc. Besides these, one of the key dynamics is the emergence
of synchronization [10], which is the rhythmical behavior of
two or more coupled oscillators. Synchronization has been
reported in a variety of chemical [5,11,12], physical [13–15],
and biological [16,17] systems. In 1975, Kuramoto presented
a model for synchronization of phase oscillators [18]. It was
then believed that the coupled identical oscillators could either
show a synchronized or an unsynchronized state [19].

However, in 2002, Kuramoto and Battogtokh found a
remarkable observation for identical phase oscillators [20].
They reported the emergence of coexisting coherent (syn-
chronized) and incoherent (unsynchronized) populations in
an ensemble of nonlocally coupled identical oscillators. Al-
though in the past similar coexistence had been reported in
some systems [21–24], Abrams and Strogatz were the first to
term this coexistence a chimera state [25]. Since then, chimera
states have been extensively studied both numerically [26–32]
and analytically [33,34].

After almost a decade, Tinsley et al. observed chimera
states in the experiments involving coupled Belousov-
Zhabotinsky oscillators [35]. In the same year, Hagerstrom
et al. found these patterns in coupled map lattices using a
liquid crystal spatial light modulator [36]. Recently, chimeras
have been experimentally realized in mechanical [37–39],
chemical [40], optoelectronic [41], and optical [42] oscilla-
tors. Furthermore, some aquatic mammals show chimeralike
features related to unihemispheric sleep [43], in which one
cerebral hemisphere sleeps while the other is awake. In
Ref. [19] a review of the development of chimera states on
both experimental and numerical fronts is undertaken.

The numerical investigations of chimera states have been
mostly performed on a large ensemble of coupled oscillators.
However, for practical purposes, it is crucial to know the min-
imum number of oscillators that can manifest chimera(like)
states. In 2016, Wojewoda et al. reported the emergence of a
chimera in an experimental setup of three coupled mechanical
oscillators [44], where two coherent (synchronized) and one
incoherent oscillators coexist. Recently, Awal et al. showed
numerically a system of only two coupled identical oscillators,
which can also support chimera states [45].

To enhance our understanding of the phenomenon in [43],
an experimental laboratory setup in the regime of active os-
cillators is a pertinent problem. Our work is dedicated to one
such study. We report the emergence of chimeralike patterns
in active rotors. An active rotor is a self-propelled camphor
ribbon, which is a rectangular piece of paper with camphor
infused in its matrix. The ribbon, when introduced on the
surface of the water, exhibits spontaneous motion. This mo-
tion is due to the surface tension gradient, caused by the
inhomogeneous distribution of the camphor layer around the
ribbon [46,47].

In 1860, Tomlinson reported an extensive set of obser-
vations involving the motion of camphor on the surface
of water [48] while Van der Mensbrugghe, in 1869, ex-
plained the mechanism of this motion [46]. For the last three
decades, the camphor system has been extensively studied
both experimentally and theoretically [49–55]. Camphor is a
promising candidate to study the active particles’ collective
behaviors such as jamming [4] and synchronization [56–59].
Recently, a camphor rotor was realized as a minigenerator of
electricity [60].

We have performed experiments on the minimal network of
three coupled camphor ribbons. These ribbons were placed on
a triangular geometry. The camphor layer around one ribbon
interacts with the camphor layer around other ribbons, which
leads to the chemical coupling between the ribbons [56,58].
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FIG. 1. Sketch of the side view (left) and camera view (right)
of the experimental setup for three camphor ribbons placed on the
surface of the water in a triangular geometry. The red thin wires
represent the needles.

Furthermore, in triangular geometry, each ribbon is uniformly
coupled to its nearest neighbors, which results in a global
coupling between ribbons.

In the literature, the term “chimera” has been used for both
identical [25] and nonidentical [61], nonlocally coupled phase
oscillators. Furthermore, in Ref. [40] the terms “chimera” and
“chimeralike” have been used for homogeneous and nonho-
mogeneous globally coupled oscillators, respectively. In real
experiments, it is impossible to prepare identical oscillators.
Hence, throughout the paper, we use the term “chimeralike”
to describe the coexistence of synchronized (coherent) and
unsynchronized (incoherent) dynamics of oscillators.

A simulation model of three point particles interacting
through a repulsive Yukawa potential [62] is presented. This
model was able to reproduce the experimentally observed
chimeralike states qualitatively.

This paper is divided into four sections: experiments (Sec.
II), the numerical model (Sec. III), discussion (Sec. IV), and
conclusions (Sec. V). Furthermore, Sec. II is divided into
two subsections that describe the experimental methods and
preparation (Sec. II A) and the results (Sec. II B). Similarly,
Sec. III is divided into two subsections describing the numer-
ical model (Sec. III A) and the simulation results (Sec. III B).

II. EXPERIMENTS

A. Method and preparation

Figure 1 shows a schematic diagram of the side (left) and
camera (right) views of the experimental setup. We performed
experiments in a sliced inverted rectangular pyramid shaped
glass container. The dimensions of the lower and upper rect-
angles of the container were 30 × 20.5 and 34.5 × 25 cm2,
respectively, while the height was 4.2 cm. This container was
placed inside a plexiglass enclosure to prevent air drafts from
interfering with the dynamics of the system. The room tem-
perature for all the experiments was set in the range 25.2 ◦C
± 0.7 ◦C. The relative humidity lay between 41% and 46%. A
high-speed video camera (GoPro Hero-4, frame rate 120 Hz,
720 p resolution) was installed inside the glass box to record
the dynamics of rotators.

For the pivots, we fixed three thin needles (red in Fig. 1),
in a regular triangular geometry, on an aluminum sheet which
was painted black. Each side of the triangle was equal to
4.2 cm, and the three needles were placed at each of the
three vertices. We placed the aluminum sheet fitted with pivots

inside the glass container, which was later filled with 1200 mL
of water (MilliQ).

Preparation of camphor ribbons. From a clean A4 size
paper sheet, three rectangular ribbons with dimensions of
2.0 × 0.5 cm2 were cut. The ribbons were kept black in color
with a white circular region at one end to aid with the motion
tracking of the rotators. A hole was made with a needle at
the other end of each paper ribbon. A 3.0 M solution of lab-
oratory grade camphor in ethanol was prepared. One hundred
microliters of this solution were poured onto each ribbon. The
ribbons were left in the poured solution for 60 s and were
then subsequently left to dry in the air for 600 s. Finally, the
ribbons were pivoted on the thin needles and were placed on
the surface of the water to observe their rotational motion.

The white dots on the ribbons (see the video in the Sup-
plemental Material [63]) were tracked. This tracking and data
analysis was performed in a MATLAB interface, using the
particle tracking code by Blair and Dufresne [64], which is
based on algorithms developed by Crocker and Grier [65]. The
positions of the tracked dots are (xi, yi ), where i = 1, 2, 3. For
brevity, we will refer to the positions of these white dots as the
positions of the ribbons themselves throughout the paper.

B. Results

Three ribbons placed on the triangular geometry can show
two main configurations: (1) when all three ribbons are ro-
tating in the same direction and (2) when two of the ribbons
are rotating in the same direction and one is rotating in the
opposite direction. We denote a pair of corotating (rotating in
the same direction) and counterrotating (rotating in the oppo-
site direction) ribbons as + and −, respectively. Hence, we
label configuration 1 as + + + and configuration 2 as + − −,
− + −, and − − +, which are identical configurations except
for the different positions of the counterrotating pair [59].

In the smallest network of three ribbons, chimeralike states
(CLSs) were observed. The evidence for the emergence of
these states is shown in Figs. 2 and 3 for the + + + con-
figuration (Video 1 in the SM [63]). The temporal evolution
of the x and y positions in Fig. 2 is plotted for 20 s. However,
we present the phase plots in Fig. 3 for 100 s. Both temporal
evolution [Figs. 2(a) and 2(b)] and the phase plots [Figs. 3(a)
and 3(b)] show that the x(x1, x2) and y(y1, y2) positions of the
first and second camphor ribbons are synchronized (refer to
Fig. 1 for ribbon number). Phase plots of the x(x2, x3) and
y(y2, y3) positions of the second and third [Figs. 3(c) and
3(d)] camphor ribbons clearly indicate the unsynchronized
dynamics between the ribbons. Similarly, Figs. 3(e) and 3(f)
show the unsynchronized dynamics of both the x(x1, x3) and
y(y1, y3) positions of the first and third camphor ribbons.

In addition to a CLS, we have observed an unsynchronized
state (US), a state where no ribbon pair is synchronized. Typ-
ically, a CLS emerged after a US. Moreover, these two states
appeared to be robust across different experimental runs. But
the time and duration for which a CLS emerges varied across
different set of experiments.

Furthermore, both configurations + + + and + − −
(− + −, − − +) were observed. After some initial transient
dynamics, the ribbons settle down into one of the two configu-
rations. The initial fluctuations decide the configuration of the
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FIG. 2. The temporal evolution of (a) x and (b) y positions of
the camphor ribbons for the + + + configuration. The red dotted,
magenta dashed, and black solid lines correspond to the first, second,
and third camphor ribbons, respectively, in both (a) and (b). Ribbon
number is mentioned in Fig. 1.

network. But once that choice is made, the ribbons stay in the
same configuration for the whole duration of the experiment.

III. SIMULATIONS

A. Model

We consider the camphor ribbons as point particles of unit
mass. The point particles are constrained to move along a
circle of unit radius. Furthermore, we considered that the
center of each circle represents the respective pivot for each
ribbon in the experiments.

Three point particles were placed in a triangular geometry
with the centers of their respective circles at (0,0), ( l

2 ,
√

3
2 l ),

and (l, 0) for the first, second, and third point particles. Let
(ri, θi ) denote the position of the ith (i = 1, 2, 3) particle
with respect to the origin (0,0). In the Cartesian coordinate
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FIG. 3. The phase plots of the x and y positions of the three
camphor ribbons for the + + + configuration. (a) and (b) The phase
plots of the x(x1, x2) positions and y(y1, y2) positions of the first
and second ribbon pairs. (c) and (d) The phase plots of the x(x2, x3)
positions and y(y2, y3) positions of the second and third ribbon pairs.
(e) and (f) The phase plots of the x(x1, x3) positions and y(y1, y3)
positions of the first and third ribbon pairs. For ribbon number,
see Fig. 1. (x1, x2) and (y1, y2) are synchronized (coherent), while
(x2, x3), (y2, y3), (x1, x3), and (y1, y3) are unsychronized (incoher-
ent). This shows the emergence of chimeralike states in the network.

system, the positions of the first, second, and third particles
are (cos θ1, sin θ1), (cos θ2 + l

2 , sin θ2 +
√

3
2 l )), and (cos θ3 +

l, sin θ3), respectively.
The point particles interact through a repulsive Yukawa po-

tential. We choose this potential to mimic the experimentally
observed repulsive and distance dependent coupling between
the ribbons [56]. For a distance ri j (t ) between the point
particles, the form of the Yukawa potential at any time t is
V (ri j (t )) = e−Kri j (t )

ri j (t ) , where K is inversely related to the range

of the potential. The force due to this potential is e−Kri j (t )

ri j (t )2 [1 +
Kri j (t )]. Furthermore, we assume the radial component of
the Yukawa force is balanced by the pivot constraint force.
Therefore, only the tangential component of the force acts and
determines the dynamics of the particles:

FT (t )1 = e−kr12(t )

r3
12(t )

[1 + kr12(t )]
{

sin [θ1(t ) − θ2(t )] + l sin
[
θ1(t ) − π

3

]}

+ e−kr13 (t )

r3
13(t )

[1 + kr13(t )]{sin [θ1(t ) − θ3(t )] + l sin θ1(t )}, (1)
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FT (t )2 = e−kr21(t )

r3
21(t )

[1 + kr21(t )]
{

sin [θ2(t ) − θ1(t )] − l sin
[
θ2(t ) − π

3

]}

+ e−kr23(t )

r3
23(t )

[1 + kr23(t )]
{

sin [θ2(t ) − θ3(t )] + l sin
[
θ2(t ) + π

3

]}
, (2)

FT (t )3 = e−kr31(t )

r3
31(t )

[1 + kr31(t )]{sin [θ3(t ) − θ1(t )] − l sin θ3(t )}

+ e−kr32(t )

r3
32(t )

[1 + kr23(t )]
{

sin [θ3(t ) − θ2(t )] − l sin
[
θ3(t ) + π

3

]}
. (3)

The equations governing the dynamics of the ith point
particle having natural frequency �i are

θ̇i(t ) = ωi(t ), i = 1, 2, 3, (4)

ω̇i(t ) = FT (t )iri(t ) − C[ωi(t ) − �i], i = 1, 2, 3, (5)

where the second term in Eq. (5) for ω̇i quantifies the tendency
of the rotator to go to its autonomous frequency �i if there are
no other rotators.

In the experiments, the force experienced by the ribbons
does not diverge even at small separations. To incorporate
this in the model, we have put a maximum bound (FT )max on
the magnitude of the total force experienced by each particle
[right-hand side of Eq. (5)].

B. Results

We have simulated Eqs. (4) and (5) using the Runga-Kutta
fourth-order method with a time step of 10−4. During the
simulations, the first 1000 time units were discarded as tran-
sients. The system was evolved for the next 1000 time units.
The data for these 1000 time units were analyzed, and the
corresponding plots for the + + + configuration are shown
in Figs. 4 and 5.

We believe that one can, at best, create quasi-identical
ribbons experimentally. Hence, an intrinsic heterogeneity in
the ribbons will always be present. To reflect this heterogene-
ity, in simulations, a slight mismatch in the range [0–0.1], is
introduced in the autonomous angular frequencies �i of the
point particles. The value of the initial phase θi and �i was
chosen randomly. The initial value of ωi was kept equal to its
respective autonomous angular frequency �i.

Unlike experiments, here, the initial direction of the rota-
tion of the point particle is not decided randomly. We choose
the direction of rotation by setting the sign of �i at the start
of the simulations. The configuration + + + was achieved
by keeping the signs of all the �i the same. The other con-
figuration, i.e., − + − (+ − −, − − +), can be obtained by
reversing the sign of one of the �i.

The value of ri for i = 1, 2, 3 was set to be one unit.
The parameters l , K , C, and (FT )max were kept constant
at 4.0, 1.5, 0.5, and 0.3 units respectively, throughout the
simulations.

Figure 4 shows the temporal evolution of the x [xi =
cos(θi )] and y [yi = sin(θi )] positions of all three particles
placed in a triangular geometry, while the corresponding
phase plots are presented in Fig. 5. Both figures indicate the

emergence of CLSs in the simulations where the x(x1, x3) and
y(y1, y3) positions of only the first and third point particles are
synchronized. In contrast, the other two pairs remain unsyn-
chronized. Similarly, we have successfully observed the CLS
for the other configuration present in this network.

The likelihood of finding a CLS depends upon the initial
values of �i [66]. In addition, it was found that regardless
of the initial phases, if the autonomous frequencies remained
optimally chosen, CLS was observed. Some initial conditions
produced only USs. Hence, the point particles performed only
either chimeralike or unsynchronized dynamics.
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FIG. 4. For the + + + configuration, the temporal evolution of
the (a) x[xi = cos(θi )] and (b) y[yi = sin(θi )] positions of the point
particles placed in a triangular geometry. In both (a) and (b) red
dotted, black solid, and magenta dashed lines correspond to the first,
second, and third point particles, respectively. Particle number is the
same as the ribbon number mentioned in Fig. 1.

012214-4



CHIMERALIKE STATES IN A MINIMAL NETWORK OF … PHYSICAL REVIEW E 103, 012214 (2021)

-1 -0.5 0 0.5 1
x

1

-1

-0.5

0

0.5

1

x 2

(a)

-1 -0.5 0 0.5 1
y

1

-1

-0.5

0

0.5

1

y 2

(b)

-1 -0.5 0 0.5 1
x

2

-1

-0.5

0

0.5

1

x 3

(c)

-1 -0.5 0 0.5 1
y

2

-1

-0.5

0

0.5

1
y 3

(d)

-1 -0.5 0 0.5 1
x

1

-1

-0.5

0

0.5

1

x 3

(e)

-1 -0.5 0 0.5 1
y

1

-1

-0.5

0

0.5

1

y 3

(f)

FIG. 5. For the + + + configuration, the phase plots of the x
[xi = cos(θi )]and y [yi = sin(θi )] positions of the three point par-
ticles. (a) and (b) The phase plots of the x(x1, x2) and y(y1, y2)
positions of the first and second point particles. (c) and (d) The
phase plots of the x(x2, x3) and y(y2, y3) positions of the second and
third point particles. (e) and (f) The phase plots of the x(x1, x3) and
y(y1, y3) positions of the first and third point particle. For particle
number, see Fig. 1. (x1, x3) and (y1, y3) are synchronized (coher-
ent), while (x2, x3), (y2, y3), (x1, x2), and (y1, y2) are unsychronized
(incoherent).

IV. DISCUSSION

When a camphor infused ribbon touches the water sur-
face, camphor molecules diffuse and form a layer around
the ribbon. Any initial inhomogeneity in the distribution of
this layer results in a net surface tension gradient around the
ribbon and hence rotation of the pinned camphor ribbon. The
initial direction of rotation of the ribbon, i.e., clockwise or
counterclockwise, is decided randomly. Moreover, once the
ribbon starts to rotate in a particular direction, it sustains that
direction of rotation, unless perturbed externally. Therefore,
the network of three ribbons maintains its initial configura-
tion, i.e., + + + or + − − (− + −, − − +) throughout the
experiment.

The camphor layer around one ribbon interacts with the
camphor layer around the other two ribbons. This exchange
of camphor molecules leads to the chemical coupling between

the camphor ribbons. The strength of the coupling is distance
dependent [56] and is repulsive.

The chimeralike states in our experiments on globally
coupled rotors are different from the relay synchronization
states, where two remote and not directly connected (coupled)
oscillators are synchronized [67]. Furthermore, it is worth
mentioning that the camphor ribbons have a finite life span
on the surface of the water. There are two main factors for the
slowdown and eventual death of the ribbons. First, as time pro-
gresses, the camphor molecules diffused onto the surface of
the water from the ribbon cause the fluidic surface to become
saturated with camphor. This saturation leads to a decrease in
the surface tension gradient and hence a reduced force on the
ribbons. Second, ribbons lose their infused camphor due to the
finite sublimation rate of camphor at room temperature [47].
This slowdown of ribbons eventually leads to the destabiliza-
tion of the chimeralike state. Nevertheless, a CLS is relatively
stable in comparison to the timescale of the lifetime of the
rotational motion. Furthermore, this slowdown of the ribbons
is not accounted for in the minimal numerical model involving
repulsive Yukawa type interactions. Nonetheless, the simula-
tions reproduced the experimental findings qualitatively.

We believe that our simple experimental setup showing the
emergence of chimeralike states in a minimal network of three
active oscillators is an interesting contribution to the study of
nonlinear aspects of active matter. In the future, one could
extend this study in a star network, where the central hub
controls the dynamics of the ribbons present at the periphery.
To elucidate the phenomenon in [43], where unihemispherical
sleep in some mammals was observed, perhaps an experi-
mental setup of two subpopulations of active camphor entities
interacting via a fluidic medium could be designed.

V. CONCLUSIONS

We performed experiments on a minimal network of three
chemically coupled active oscillators, i.e., camphor ribbons.
The camphor ribbons, placed on a triangle, were symmetri-
cally coupled with their nearest neighbors via the camphor
layer. In this experimental setup, small chimeralike states
emerged, which are characterized by the coexistence of a
coherent (synchronized) pair and two incoherent (unsynchro-
nized) pairs of the camphor ribbons. These spatiotemporal
patterns are robust across different experiments. We have
formulated a point particle model mimicking the coupling
between the ribbons as repulsive Yukawa interactions. The
numerical simulations qualitatively reproduced the experi-
mentally observed states.
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