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Nonlinear harmonic generation in two-dimensional lattices of repulsive magnets
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In this work, we provide experimental evidence of nonlinear wave propagation in a triangular lattice of
repulsive magnets supported by an elastic foundation of thin pillars, and we interpret all the individual features of
the nonlinear wave field through the lens of a phonon band calculation that precisely accounts for the interparticle
repulsive forces. We confirm the coexistence of two spectrally distinct components (homogeneous and forced) in
the wave response that is induced via second harmonic generation (SHG) as a result of the quadratic nonlinearity
embedded in the magnetic interaction. The detection of the forced component, specifically, allows us to attribute
unequivocally the generation of harmonics to the nonlinear mechanisms germane to the lattice. We show that the
spatial characteristics of the second harmonic components are markedly different from those exhibited by the
fundamental harmonic. This endows the lattice with a functionality enrichment capability, whereby additional
modal characteristics and directivity patterns can be triggered and tuned by merely increasing the amplitude of
excitation.
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In recent years, nonlinear periodic structures and acoustic
metamaterials have been extensively studied because of their
rich dynamical behavior and for their tunability and adaptivity
capabilities. A number of studies have focused on the prop-
agation of solitary waves and discrete breathers in a variety
of material systems, such as granular crystals [1–4], in which
different regimes of weak and strong nonlinearities can be se-
lected by controlling the magnitude of precompression, mag-
netic systems [5–7], and mechanical metamaterials [8–10].
Other notable works have explored metastructures equipped
with bistable or bucklable elements and exhibiting tuning and
energy harvesting functionalities [11–14].

Our attention here is on the opportunities for tunability
and functionality enrichment available in weakly nonlinear
systems, in which the nonlinear effects can be seen as a
perturbation of a baseline linear behavior. In systems with
cubic nonlinearity, the main manifestation of nonlinearity is
an amplitude-dependent correction of the dispersion relation,
which, in principle, enables shifting the branches frequency
cutoffs and the onset and width of band gaps via a simple
control of the excitation amplitude [15–18]. Recently, this
tuning effect has been employed to control edge states in
topological phononic lattices [19]. Another nonlinear effect
of great relevance is second harmonic generation (SHG); this
is the main signature of quadratic nonlinearity, which often
represents the dominant nonlinear contribution in many phys-
ical systems [17,20–28]. Harnessing harmonic generation in
nonlinear acoustic metamaterials has opened new doors for
a broad range of applications, including acoustic diodes and
switches [29,30], subwavelength energy trapping [25], and
adaptive spatial directivity [31]. The opportunity spectrum
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becomes even wider if we consider systems that feature si-
multaneously cubic and quadratic nonlinearities, where the
correction of the band diagram induced by the cubic nonlin-
earity affects indirectly the manifestation of SHG, providing a
secondary tuning capability, as recently shown in [32].

While SHG has been widely studied in weakly one-
dimensional nonlinear metamaterials and waveguides, the
investigation of its effects on the spatial characteristics of
nonlinear wave fields in two-dimensional (2D) metamaterials
has been more sporadic [26,31]. The phenomenon still lacks
a definitive experimental observation at amplitude levels that
are suitable for practical applications often involving point-
source excitations. A major challenge is that phase matching
conditions, which have been shown to be essential to harness
strong SHG signatures in mechanical structures [21,25], can-
not be effectively established in 2D structures subjected to
point excitations. In this work, we attempt to provide unequiv-
ocal experimental evidence of SHG triggered by point excita-
tions in a discrete system consisting of a 2D periodic network
of magnets supported by an elastic foundation of thin pillars.
The system can be interpreted as a practical realization of a
triangular lattice of particles with on-site potentials. We first
verify the existence of SHG in the spectrum of the response.
Here, the extraction and interpretation of a clear signature of
SHG is favored by the discrete nature of the magnetic system,
which features higher compliance and lower modal com-
plexity compared to structural lattices made of hard solids,
such as those used in past experimental efforts with simi-
lar objectives [31]. The compliance leads to the observation
of appreciable nonlinear signatures, within the bounds of
weak nonlinearity, even without the establishment of phase
matching conditions. Moreover, we experimentally confirm
that the second harmonic encompasses two contributions,
customarily referred to as the forced and homogeneous com-
ponents [24,26]. Finally, we show that the second harmonic
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FIG. 1. (a) Lattice specimen consisting of magnets supported by
thin beams in the interior (shown in the inset) and thick beams along
the boundary. The interior magnets are covered by reflective patches
of tapes to enhance the laser measurements. (b) Equivalent spring-
mass model of the lattice, showing the function of the pillars acting
as an elastic foundation. (c) Linear dispersion relation obtained from
the analytical model in [33], accounting for the effect of the static
interparticle repulsive forces. (d) Experimental setup.

features distinctive modal and spatial characteristics that are
markedly different from those of the fundamental harmonic.

The specimen used for our tests, shown in Fig. 1(a), con-
sists of an array of pillars arranged to form a triangular lattice
occupying a half-hexagonal domain. Each pillar in the interior
lattice consists of a magnetic ring (Grade N42, with 1/4
inch outer diameter, 1/16 inch inter diameter and 1/8 inch
thickness) inserted at the tip of a slender aluminum beam
(1/16 inch in diameter) whose other end is plugged into an
acrylic base through a drilled hole. For the exterior pillars,
the magnets are simply glued to the tips of thick beams (1/4
inch in diameter) also plugged into the base and featuring
large bending stiffness to effectively establish fixed boundary
conditions along the contour of the hexagonal domain. The
magnets are arranged to experience side-by-side repulsive
interactions in their own plane, and each magnet is initially in
equilibrium under the action of the self-balancing static forces

exerted by its neighbors. The configuration guarantees that,
for the amplitudes of interest for this study, the motion of the
magnets remains confined within the plane of the lattice. This
setup is imported and adapted from a previous experimental
effort, in which we used this platform to characterize the
linear response of lattices of magnetically interacting particle
systems [33]. By means of those experiments, we were able
to demonstrate a series of nonintuitive effects induced on the
lattice dispersive properties by the static interparticle repul-
sive forces. In this work, we leverage these key results as a
precious guideline for the nonlinear investigation.

As shown in Fig. 1(b), the system is modeled as a triangular
spring-mass lattice in which each node is connected to ground
through a flexural spring that captures the elastic foundation
effect of the supporting beam. The in-plane repulsive interac-
tion between neighboring magnets is modeled as a nonlinear
spring featuring an inverse power law f (r) = βr−α , with
α = 4.5824 and β = 1.6209 × 10−10. Here, the parameters
have been obtained by fitting the force-displacement relation
between two magnets acquired experimentally through a mi-
crometer equipped with a highly sensitive load cell (details
available in the Supplemental Material of [33]). The spring
constant of the flexural springs in the foundation is taken as
the equivalent flexural stiffness of a cantilever beam with the
cross sectional and material properties of the pillar, and found
to be k f = 19.6757 N/m. As for the other parameters, m =
7.07 × 10−4 kg is the mass of each magnet and L0 = 0.01 m
is the initial spacing between two nodes in the lattice. In [33],
we have shown that the repulsive forces between pairs of
magnets provide a twofold contribution to the linear stiffness
of the lattice. Specifically, the band diagram can be obtained
by solving the following eigenvalue problem:

[−ω2M + D(k)]φ = 0 (1)

where ω = 2πν is the angular frequency, k is the wave vector,

M = [m 0
0 m

] is the mass matrix, and

D(k) = 2
3∑

l=1

{ fr (L0)el ⊗ el [cos(k · Rl ) − 1]}

+ 2
3∑

l=1

{
f (L0)

L0
(I − el ⊗ el )[cos(k · Rl ) − 1]

}
+ K f

(2)

is a wave-vector-dependent stiffness matrix that already
incorporates Bloch conditions, where R1 = L0e1 =
L0[1 0]T , R2 = L0e2 = L0[1/2

√
3/2]T , and R3 = L0e3 =

L0[−1/2
√

3/2]T are the lattice vectors. In Eq. (2), the first
term is the conventional stiffness matrix for a generic 2D
spring-mass system, where fr (L0) is the first derivative of
the repulsive force f (r) evaluated at the initial internodal
spacing L0. The second term is an additional stiffness
contribution stemming from the static repulsive forces that
is uniquely germane to two-dimensional configurations.

Finally, K f = [k f 0
0 k f

] captures the stiffness of the elastic

foundation. The solution of Eq. (1) yields the band diagram
plotted in Fig. 1(c). As expected, the band diagram is fully
gapped at low frequencies as a result of the elastic foundation,

012213-2



NONLINEAR HARMONIC GENERATION IN … PHYSICAL REVIEW E 103, 012213 (2021)

(a) (b)

(ξ , ν)

(2ξ , 2ν)

FIG. 2. Normalized amplitude spectra of the experimental responses for tone-burst excitations at 50 Hz. (a) Response to low-amplitude
excitation, showing the fundamental harmonic activating both shear and longitudinal modes (red solid curves). (b) Response to high-amplitude
excitation, showing two distinct signatures at the second harmonic (i.e., 100 Hz), confirming the existence of both homogeneous and forced
components of the nonlinearly generated harmonic. The white curves represent all the possible spectral points that can be activated by the
forced component.

and we observe the two canonical acoustic branches, the
first dominated by shear mechanisms and the second by
longitudinal mechanisms.

We now proceed to investigate the nonlinear response. The
experimental setup, shown in Fig. 1(d), involves around a 3D
scanning laser Doppler vibrometer (SLDV, Polytec PSV-400-
3D) used to experimentally capture the in-plane response of
the lattice. Specifically, we measure the in-plane components
of the velocity vector of each magnet in the interior of the
lattice. The specimen is excited in the vertical direction by
a force applied to the center magnet of the bottom layer [as
indicated by the red dot in Fig. 2(a)] through a Bruel & Kjaer
Type 4809 shaker, powered by a Bruel & Kjaer Type 2718
amplifier. The excitation is prescribed as a five-cycle tone
burst with carrier frequency ν0 = 50 Hz. First, we prescribe
a low-amplitude excitation to elicit a linear response of the
specimen. With this reference excitation, we measure the
amplitude of the vertical velocity at the excitation point to
be equal to 0.03524 mm/s. In Fig. 2(a), we plot the color
map of the normalized spectral amplitude obtained via 2D
discrete Fourier transform (2D-DFT) in space and time of
the horizontal components of the spatio-temporal response,
sampled along one lattice vector [i.e., along the green line
shown in Fig. 1(a)]. Here, and in all the subsequent spectral
amplitude plots, we normalize the spectral amplitude by its
maximum value in dB.

At this point, we progressively raise the amplitude of ex-
citation, up to a level where the measured amplitude of the
vertical velocity at the excitation point reaches 0.4004 mm/s,
which is one order of magnitude larger than the reference
case (see Movie S1 in the Supplemental Material [34] for the
actual displacement field, which can be appreciated even by
naked-eye inspection). We plot the corresponding normalized
spectral amplitude map in Fig. 2(b), in which we increase
the lower bound of the color bar to filter out some spurious
features and improve visualization. In both figures, we su-

perimpose the �-M portion of the linear dispersion branches
(red curves) obtained via Bloch analysis of the equivalent lat-
tice model and periodically extended to the second Brillouin
zone. The white curves denote the parametric locus of the
2ξ -2ν(ξ ) pairs, i.e., the spectral points that feature simulta-
neously twice the frequency and twice the wave number of
the acoustic phonons at the fundamental harmonic (ξ, ν(ξ )).
Here ξ is the nondimensional wave number defined as ξ =
kL0, where k is the wave number along the �-M direction.
The 2ξ -2ν(ξ ) points represent the frequency–wave-number
pairs that can be displayed by the forced component of a
nonlinearly generated second harmonic. Since these pairs do
not live on any dispersion branch (and therefore do not con-
form to any mode of the linear system), their activation is
conditional upon the nonlinear generation of harmonics. In
other words, the phonons that live on these curves must be
generated through nonlinear mechanisms that are intrinsic to
the lattice and cannot be merely induced by a component of
the excitation with a 2ν frequency content, as such a com-
ponent would also necessarily result in the activation of the
linear dispersion branch(es) available at that frequency. This
consideration provides a powerful tool to distinguish with
absolute certainty the manifestation of nonlinearly generated
harmonics from the signatures of high-frequency components
that may be embedded by default in the excitation signal (for
example due to nonlinearities in the signal generation and
amplification). In essence, the ability to capture the forced
response is the the most robust detector of nonlinearity in the
lattice. As expected, in Fig. 2(a) we observe that the main
spectral contribution is located at the prescribed frequency
(ν0 = 50 Hz), where both the shear and longitudinal modes
are activated, with no appreciable signature at the second
harmonic (2ν0 = 100 Hz). In contrast, in the spectrum of
the nonlinear response [i.e., Fig. 2(b)] we recognize two
additional spectral signatures at the second harmonic. The
one overlapping the longitudinal branch corresponds to the
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FIG. 3. Snapshots of the wave fields experimentally acquired by laser scans at six successive time instants, showing distinct spatial patterns
at the different harmonics. (a) Total wave field. (b) Wave field filtered at ν0, highlighting the fundamental harmonic. (c) Wave field filtered at
2ν0, highlighting the second harmonic. The two harmonics feature complementary directional characteristics, thus exposing the functionality
enrichment that is achieved by triggering a nonlinear response.

homogeneous component, while the one that lies precisely
on the white curve is unequivocally identified as the forced
component.

The spectral maps presented in Fig. 2 also provide insight
in the different modal makeups of the fundamental and second
harmonics. The fundamental harmonic blends both shear and
longitudinal (S and P) modes, activated at comparable ampli-
tude level (with an expected preference for the S mode due to
the higher compliance of the shear mechanisms), resulting in
a hybrid polarization. At the second harmonic, the response
also comprises two distinct contributions. The first, activated
by the homogeneous component, involves the excitation of the
P mode in a higher-frequency and shorter-wavelength regime,
and is therefore dominated by longitudinal characteristics.
The second is the forced component, whose polarization is
predominantly dictated by the shear characteristics of the
fundamental harmonic that drives it, but does not conform
to any linear modes per se. In essence, the response at the
second harmonic also features a blend of distinct modal char-
acteristics. The relative participation of these components in
the response is, however, different and not exclusively con-
trolled by the modal landscape at 2ν. We can characterize this
result as an instance of modal enhancement, whereby the non-
linear activation of the second harmonic induces additional
modal attributes to the response, perturbing the original modal
makeup of the linear response.

The vibrometer scan also allows exploring the manifesta-
tion of SHG on the spatial pattern of the wave response. In
Fig. 3, we plot six snapshots of the propagating wave field
using the vertical components of the measured velocities. In
Fig. 3(a), we show the total wave field, encompassing fun-
damental and second harmonics, while in Figs. 3(b) and 3(c)
we isolate the filtered components at ν0 and 2ν0, respectively.
The wave fields reveal spatial complementarity between the
predominantly vertical directivity of the second harmonic and
the quasiisotropic pattern of the fundamental harmonic. This
result indicates that nonlinearity is responsible for a directivity
enrichment.

To highlight separately the spatial contributions of the
homogeneous and forced components, we subject the last
snapshot of the wave field filtered at 2ν0 [last frame in
Fig. 3(c)] to 2D-DFT in space. The resulting k-space nor-
malized spectrum is plotted in Fig. 4(a). For comparison, we
repeat the exercise for a linear wave field obtained with a
low-amplitude excitation prescribed directly at 2ν0 [Fig. 4(e)],
whose normalized spectrum is shown in Fig. 4(b). In Fig. 4(a),
we identify two distinct spectral signatures at the second
harmonic (appearing with their mirror counterparts due to
the symmetry of the wave field and the folding operations
involved in the 2D-DFT). The dominant component, inscribed
by magenta boxes, is consistent with the spectrum of the linear
wave field excited directly at 2ν0 [i.e., Fig. 4(b)], and is there-
fore interpreted as the homogeneous component. On the other
hand, the secondary contribution, inscribed by amber boxes,
which is unique to the nonlinear response, must be interpreted

(a)

(c) (d)

(b)

(e)

FIG. 4. k-plane normalized amplitude spectra of (a) the filtered
second harmonic of a nonlinear response and (b) a linear wave
field excited directly at 2ν0. (c) and (d) Filtered wave fields of
the forced and homogeneous components inscribed in amber and
magenta boxes, respectively. (e) Linear wave field used to obtain the
spectrum shown in (b).
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as the forced response. By zeroing out the two signatures,
one at a time, and carrying out an inverse 2D-DFT of the
remainder, we can filter out the separate wave fields of the
two components, as shown in Figs. 4(c) and 4(d), respectively.
Clearly, the pattern in the magenta box of Fig. 4(d), which
exhibits longitudinal behavior, is reminiscent of the wave field
in Fig. 4(e), further supporting, from a spatial perspective,
the notion that the homogeneous component conforms to the
linear response that would be observed in the lattice if the
excitation were prescribed directly at 2ν0. The other, shown in
Fig. 4(c) and corresponding to the forced component, displays
a more dispersive spatial pattern. It is worth emphasizing
again that, while it is possible that the homogeneous compo-
nent may be in part triggered by nonlinearities extrinsic to the
mechanical system and due, for instance, to harmonics buried
in the excitation signal, the forced component is uniquely
germane to the SHG established within the structure.

In summary, we have experimentally characterized the
nonlinear wave response of a two-dimensional lattice of re-
pulsive magnets on an elastic foundation. First, we have
documented the onset of SHG, separately pinpointing the
two components of the second harmonic. Then, we have

shown the functionality of modal enhancement achieved in
the nonlinear response through SHG. Moreover, we have
documented the directivity differences between the comple-
mentary spatial characteristics of the homogeneous and forced
nonlinear components. Magnetic lattice prototypes emerge
from this study as ideal platforms for the experimental ob-
servation of nonlinear wave phenomena. On one hand, their
compliance is conducive to response amplitudes that are at
least one order of magnitude larger than what is achievable
in hard solid specimens, thus approaching the advantages
of soft material specimens without their pitfalls in terms of
damping. On the other hand, their discrete nature results in
low modal complexity, compared to a structural lattice, thus
facilitating a clear identification of all the relevant spectral
components.
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