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Nonlinear acoustic metamaterial for efficient frequency down-conversion
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Frequency conversion is one of the most important nonlinear wave phenomena that has been widely used in the
field of electromagnetic waves for changing signal frequencies. Recently, studies on frequency conversion have
been actively performed in the field of acoustics owing to its importance in nonlinear ultrasonic nondestructive
evaluation and directional speakers. However, acoustic frequency conversion presents relatively poor efficiency
owing to the small amplitudes of the converted frequencies and undesired intermodulation. Herein, we propose
an acoustic metamaterial to achieve an efficient frequency down-conversion of acoustic waves. Based on
background theory, we discovered that the amplitudes of the converted frequencies are inversely proportional
to the cube of the speed of sound. Accordingly, we amplify the converted frequency components by reducing
the effective speed of sound by coiling up space while suppressing undesired intermodulation by the Bragg gap.
Numerical simulation and analytical results show that efficient frequency down-conversion is possible using the
corresponding metamaterial. Additionally, dissipation due to viscosity and boundary layer effects is considered.
We expect our study results to facilitate research regarding acoustic frequency conversion.
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I. INTRODUCTION

Frequency conversion is a nonlinear wave phenomenon
that provides waves with the desired frequency from incident
waves having different frequencies. The most widely used
method in frequency conversion is to add a modulating wave
(with frequency f2) to an incident wave (with frequency f1)
in nonlinear media. Owing to the nonlinear effect, waves with
a frequency of f1 + f2 or | f1 − f2| can be generated. Hence,
by appropriately selecting the frequency of the modulating
wave f2, one can achieve the frequency conversion corre-
sponding to the frequency of f1 + f2 or | f1 − f2|. In general,
achieving the frequency of f1 + f2 is known as frequency up-
conversion, whereas that of | f1 − f2| is known as frequency
down-conversion. Because the desired frequency can be easily
and actively achieved, the frequency up- and down-conversion
has been widely used in the field of electromagnetic waves,
enabling various new techniques [1]. The radio frequency (rf)
→ intermediate frequency (i.f.) conversion of the superhetero-
dyne receiver is a representative example. In addition to rf
communication, frequency conversion has been widely used
in the telecommunications field, in applications such as radio
transmitters, television receivers, and optical modulators.

Based on advances in electromagnetic waves, research re-
garding frequency conversion has recently been expanded to
the field of acoustic waves, e.g., directional loudspeakers and
nondestructive evaluation [2–7]. As frequency conversion has
enabled the development of a new field in electromagnetic
waves, acoustic frequency conversion is expected to expand
the related field. However, unlike electromagnetic frequency
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conversion, significant technical barriers affecting acoustic
frequency conversion exist, as plotted in Fig. 1(a). The first
barrier is the small amplitude of the frequency-converted
waves. In general, the conventional acoustic media have a
small nonlinear parameter [8]. Hence, frequency conversion
with conventional acoustic media only provides a small num-
ber of converted waves. This is more critical for the frequency
down-conversion case, which is closely associated with vari-
ous applications such as directional loudspeakers. The second
barrier is undesired intermodulation, in which not only de-
sired frequency waves but also various undesired frequency
waves are generated by the frequency conversion. To achieve
efficient frequency conversion, undesired frequency waves
should be filtered out [4]. For nonlinear cases, the generated
undesired frequency waves may regenerate other undesired
frequency waves. Hence, signal processing, filtering unde-
sired frequency waves after the conversion, is insufficient;
suppression of the undesired frequency waves should be in-
troduced, although this is impossible with signal processing.

To overcome these barriers, recent progress in artificial
periodic structures, known as metamaterials, may be consid-
ered. Owing to the unit cell configuration of a metamaterial,
interesting wave phenomena [9–18] have been discovered that
have enabled various new wave devices. In fact, metamaterials
have been actively applied to nonlinear electromagnetic cases.
For instance, enhancing the nonlinear effect using slow waves
from metamaterials has been actively investigated [19–24].
By utilizing the metamaterial’s internal resonance or band
gap phenomenon [19,20], the wave’s group velocity can be
decelerated, causing the wave energy to be spatially com-
pressed. Consequently, the light-matter interaction becomes
more active, and the nonlinear effect can be improved by
using the metamaterials [19]. However, in acoustic waves,
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FIG. 1. Incident waves and transmitted waves for (a) normal duct, (b) metamaterial.

the nonlinear effect is governed by a completely different
equation compared with electromagnetic waves. Therefore, an
alternative metamaterial approach based on the acoustic non-
linear equation should be developed. In addition, because the
undesired intermodulation is not negligible for the acoustic
case as explained, this metamaterial approach should include
the suppression of undesired intermodulation.

Herein, an acoustic metamaterial that can overcome the
current technical barriers in acoustic frequency conversion
is proposed. As explained, that the acoustic nonlinear effect
is governed by a different equation compared with previous
studies regarding the electromagnetic nonlinear effect should
be considered. Therefore, we applied the Westervelt equation
[2,25], i.e., one of the general acoustic wave equations de-
scribing nonlinearities, to design the metamaterial. Using the
perturbation method [26], we discovered that the frequency
conversion was inversely proportional to the density and cube
of the wave speed of the nonlinear media. In other words, the
amplitude of the frequency-converted waves can be increased
using a nonlinear acoustic metamaterial whose wave speed
is extremely low but whose effective density is small. This
indicates that resonance-based metamaterials (whose effective
density goes to infinity when an extremely low wave speed
is achieved) are not preferred in acoustic frequency conver-
sion, unlike in electromagnetic cases. Therefore, we utilized
the previous idea of coiling up space [27–31], as shown in
Fig. 1(b), to overcome the first technical barrier.

In addition, the metamaterial shown in Fig. 1(b) is designed
to suppress the formation of undesired intermodulated waves.
As explained, various undesired frequency waves (such as
second-harmonic waves) are generated during frequency con-
version, and these waves may regenerate other undesired

waves. Hence, the formation of undesired waves should be
suppressed during frequency conversion, rather than filtering
them out after the conversion. To achieve this suppression,
we designed a metamaterial based on the periodic cavity duct
array, which is equivalent to a periodic LC circuit. In such
a configuration, the acoustic wave becomes a standing wave
at a certain frequency from which the Bragg gap is formed.
Hence, by controlling the cavity size, the metamaterial can
be designed to achieve a Bragg gap that can eliminate the
undesired frequencies; i.e., the undesired frequency waves can
be suppressed by the band gap.

In addition to the metamaterial design, detailed nonlinear
physics for the frequency down-conversion in the nonlinear
acoustic metamaterial has been investigated. Although the
idea of the coiling-up space and Bragg scattering has been
actively investigated, previous studies have generally focused
on linear acoustics. On the other hand, because the present
study mainly addresses the combined system of the nonlinear
acoustic frequency conversion and the acoustic metamaterial,
various related physics that were underused in the previous
linear cases were investigated. First, the effective parameter
of the coiling-up space metamaterial and Westervelt equation
were investigated to determine the detailed physics concern-
ing the frequency conversion. Based on our investigation, we
discovered that the coiling-up space exhibited an “increased
density effect,” which adversely affected the frequency con-
version. In addition, we discovered an important factor of “the
multifrequency Fabry-Perot resonance effect” in the nonlinear
acoustic metamaterial with frequency conversion. With these
physical findings, we established an equation that predicts the
amount of frequency conversion.
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The remainder of this paper is organized as follows. First,
the background theory of acoustic frequency conversion is
introduced. In the background theory, the second perturba-
tion solution is obtained using the perturbation method of
the Westervelt equation, assuming two waves of different fre-
quencies simultaneously incident on the nonlinear medium.
From the obtained solution, the main factors that can enhance
the frequency conversion are analyzed. Second, the design
process of the metamaterial is described. The design method
of metamaterials is introduced, and the nonlinear physics
concerning the metamaterial is investigated. Third, the nu-
merical validation of the designed metamaterial is described.
The performance of the metamaterial is validated by compar-
ing it with that of a normal duct. In addition, the numerical
simulation results are compared with the theoretical results.
Fourth, the effect of dissipation in the proposed metamaterial
is investigated. Finally, the conclusions are presented.

II. BACKGROUND THEORY OF THE ACOUSTIC
FREQUENCY CONVERSION

We begin with the Westervelt equation, i.e., the general
wave equation in nonlinear acoustics. The Westervelt equation
can be written as follows [2,24]:

�p − 1

c2
0

∂2 p

∂t2
+ δ

c4
0

∂3 p

∂t3
= − β

ρ0c4
0

∂2 p2

∂t2
, (1)

where � is the Laplacian defined as � = ∇2. In Eq. (1),
p, c0, δ, β, and ρ0 denote the pressure, wave speed,
sound diffusivity, nonlinearity coefficient, and density, re-
spectively. Assuming zero sound diffusion (δ = 0) and a
one-dimensional case, Eq. (1) can be reduced to

∂2 p

∂x2
− 1

c2
0

∂2 p

∂t2
= − β

ρ0c4
0

∂2

∂t2
p2. (2)

In Eq. (2), the left-hand side terms are the same as those in
the linear acoustic wave equation, whereas the right-hand side
term corresponds to the nonlinear part.

Among the various methods that could be used to solve
Eq. (2), the perturbation method is generally adopted. In the
perturbation approach, the perturbation is introduced with the
perturbation parameter ε.
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Based on the perturbation, the following equations for each
order of ε can be obtained.
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− 1
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...

εnorder :
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In weakly nonlinear media, where acoustic frequency con-
version typically occurs, the ε2 term and the higher-order
terms are significantly smaller than the ε0 and ε1 terms. There-
fore, the ε2 term and higher-order terms are generally ignored.
Consequently, the equations can be summarized by setting
ε = 1 as follows:

p(x, t ) = p(1) + p(2), (5a)

∂2 p(1)

∂x2
− 1

c2
0

∂2 p(1)

∂t2
= 0, (5b)
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c2
0
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= − β

ρ0c4
0

∂2(p(1) )2

∂t2
. (5c)

Next, we derive the solution for frequency conversion. To
achieve frequency conversion, we assume that two waves of
frequencies ω1 and ω2 and amplitudes A1 and A2 are actuated
from x = 0. This can be written as the boundary condition as
follows:

at x = 0, p = A1 sin ω1t + A2 sin ω2t . (6)

With this boundary condition, we consider the ε0th-order
equation shown in Eq. (5b). Here, it is clear that no nonlinear
part exists. Hence, the solution for p(1) in Eq. (5b) is exactly
the same as that of the linear case, which can be written as

p(1) = A1 sin (k1x − ω1t ) + A2 sin (k2x − ω2t ), (7)

where k1 and k2 are wave numbers defined as k1 = ω1/c0 and
k2 = ω2/c0, respectively. Regarding the ε1th-order equation,
Eq. (5c) can be rewritten by substituting Eq. (7) as follows:

∂2 p(2)

∂x2
− 1

c2
0

∂2 p(2)

∂t2

= −2βA2
1ω

2
1

ρ0c4
0

cos 2(k1x − ω1t )

− 2βA2
2ω

2
2

ρ0c4
0

cos 2(k2x − ω2t )

− βA1A2(ω1 + ω2)2

ρ0c4
0

cos[(k1 + k2)x − (ω1 + ω2)t]

+ βA1A2(ω1 − ω2)2

ρ0c4
0

cos[(k1 − k2)x − (ω1 − ω2)t].

(8)

For the solution of Eq. (8), one can consider the following
two solution forms.

p(2) = B1x sin 2(k1x − ω1t )

+ B2x sin 2(k2x − ω2t )

+ B3x sin[(k1 + k2)x − (ω1 + ω2)t]

+ B4x sin[(k1 − k2)x − (ω1 − ω2)t], (9a)

or
p(2) = B1t sin 2(k1x − ω1t )

+ B2t sin 2(k2x − ω2t )

+ B3t sin[(k1 + k2)x − (ω1 + ω2)t]

+ B4t sin[(k1 − k2)x − (ω1 − ω2)t]. (9b)

012212-3



GEUN JU JEON AND JOO HWAN OH PHYSICAL REVIEW E 103, 012212 (2021)

However, the solution form presented in Eq. (9b) diverges
as time progresses, which is physically inadmissible. Hence,
the solution for p(2) is assumed to exhibit the form shown in
Eq. (9a). Substituting Eq. (9a) into Eq. (8) yields the following
equations: It is noteworthy that because the entire equation is
complicated, we rearranged the equations with respect to the
frequency terms.

2ω1 terms:

4k1B1 cos 2(k1x − ω1t )

− 4k2
1B1x sin 2(k1x − ω1t )

+ 4ω2
1B1

c2
0

x sin 2(k1x − ω1t )

= −2βA2
1ω

2
1

ρ0c4
0

cos 2(k1x − ω1t ). (10a)
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2
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0
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c2
0
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= −βA1A2(ω1 − ω2)2

ρ0c4
0

cos[(k1 − k2)x − (ω1 − ω2)t].

(10d)

Equation (10) can be further reduced by introducing wave
dispersion relations k1 = ω1/c0 and k2 = ω2/c0 as follows.

2ω1 terms:

4B1ω1

c0
cos 2(k1x − ω1t ) = −2βA2

1ω
2
1

ρ0c4
0

cos 2(k1x − ω1t ).

(11a)

2ω2 terms:

4B2ω2

c0
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2ω
2
2
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(11b)
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cos[(k1 − k2)x − (ω1 − ω2)t].

(11d)

Consequently, coefficients B1, B2, B3, and B4 in Eq. (9a)
can be obtained as follows:

B1 = −βA2
1ω1

2ρ0c3
0

, B2 = −βA2
2ω2

2ρ0c3
0

,

B3 = −βA1A2(ω1 + ω2)

2ρ0c3
0

, B4 = βA1A2(ω1 − ω2)

2ρ0c3
0

(12)

and p(2) can be obtained from Eq. (12) as

p(2) = − βA2
1ω1x

2ρ0c3
0

sin 2(k1x − ω1t )

− βA2
2ω2x

2ρ0c3
0

sin 2(k2x − ω2t )
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sin[(k1 − k2)x − (ω1 − ω2)t].

(13)

Consequently, the acoustic waves propagating through a
nonlinear medium with two incident waves of frequencies ω1

and ω2 can be written as

p(x, t ) = p(1) + p(2)

= A1 sin(k1x − ω1t )

+ A2 sin(k2x − ω2t )

− βA2
1ω1x

2ρ0c3
0

sin 2(k1x − ω1t )

− βA2
2ω2x

2ρ0c3
0

sin 2(k2x − ω2t )

− βA1A2(ω1 + ω2)x

2ρ0c3
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sin[(k1 + k2)x − (ω1 + ω2)t]

+ βA1A2(ω1 − ω2)x
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0

sin[(k1 − k2)x − (ω1 − ω2)t].

(14)
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Equation (14) suggests the following important points:
First, it is clear that the frequency-converted waves have an
amplitude proportional to the acoustic nonlinear coefficient
β, whereas it is inversely proportional to the density ρ0 and
cube of the wave speed c3

0. This shows that the previously
known “slow wave” phenomenon observed around the locally
resonant metamaterial is not suitable for acoustic frequency
conversion. Because the phenomenon involves an infinite
density value, we must additionally consider the density to
achieve a high-efficiency frequency conversion.

In addition, Eq. (14) shows that various frequency com-
ponents are generated. Here, not only the frequency down-
conversion wave (with frequency of ω1 − ω2), but also other
waves (with frequencies of ω1 + ω2, 2ω1, and 2ω2) are gen-
erated. However, their amplitudes exhibit the same behavior,
i.e., all of them are proportional to β and inversely propor-
tional to ρ0 and c3

0. This indicates that undesired frequency
waves cannot be suppressed by tailoring the material prop-
erties, and the suppression of the undesired frequency waves
should be performed based on different physics.

III. ACOUSTIC METAMATERIAL FOR
FREQUENCY CONVERSION

The previous theoretical analysis indicated two important
points that should be considered to achieve effective acoustic
frequency conversions. First, nonlinear media with an ex-
tremely low wave speed but without an extremely high density
are required. In addition, undesired frequency waves, includ-
ing second-harmonic waves, should be effectively suppressed.
How can we solve these issues using acoustic metamaterials?

In previous studies regarding nonlinear electromagnetics,
almost flat wave dispersion branches around the band gap
of photonic crystals or internal resonance metamaterials have
been used to achieve extremely low wave speeds. However,
for acoustic cases, these approaches are not desirable be-
cause the density is involved with the frequency conversion.
Although the use of internal resonance acoustic metama-
terials may provide extremely low wave speeds, as in the
electromagnetic case, the effective density of the internal reso-
nance acoustic metamaterial is known to diverge to an infinite
value around the resonance frequency, which is undesirable in
acoustic frequency conversion. Moreover, frequency conver-
sion involves multiple frequencies, and the use of flat group
velocity around a very narrow frequency range in phononic
crystals or internal resonance metamaterials is unsuitable.

Therefore, we used the concept of the coiling-up space pro-
posed in [27], which can control the effective properties and
wave speed for a broad frequency range. This can be achieved
by introducing a mazelike structure. Because acoustic waves
are scalar fields, waves propagate inside the mazelike structure
without any dispersion. Hence, the effective wave speed can
be decelerated significantly by the mazelike structure. Using
these characteristics, the acoustic coiling-up space concept
has been successfully applied to achieve high refractive in-
dices, high impedances, double negativity, near-zero densities,
and sound entrapment [27–31]. Furthermore, we applied the
concept of coiling-up space to improve the frequency conver-
sion effect using an extremely low wave speed, based on the
Westervelt equation.

FIG. 2. (a) Unit cell of metamaterial and design concept of unit
cell; (b) mode shape of unit cell.

In addition to the coiling-up space that amplifies the non-
linear effect, we used the concept of the Bragg gap to suppress
the generation of undesired frequencies. To utilize the Bragg
gap phenomenon, an acoustic cavity was placed inside the
mazelike structure. Owing to the acoustic cavity, a standing
wave was formed at a certain frequency from which a Bragg
gap was formed. Hence, the generation of undesired fre-
quencies can be suppressed by adjusting the geometry of the
cavity to generate the Bragg gap, which includes the undesired
frequencies. It is noteworthy that the band gap can also be
achieved based on other physics such as internal resonance.
However, the Bragg gap was considered in this study because
the frequency conversion involved multiple frequencies, and
hence a broad stop band was required.

Figure 2 shows the final metamaterial design based on the
investigations above. As shown, our metamaterial comprised
an acoustic cavity surrounded by a mazelike structure. Here,
the mazelike structure provides an extremely low wave speed,
whereas the cavity provides a Bragg gap that suppresses un-
desired frequencies. In addition, the number of unit cells is
properly chosen to enhance the frequency conversion, which
will be explained later. Hence, the acoustic frequency conver-
sion can be improved significantly.

In the above explanations, the design approach is roughly
introduced with the well-known physics of linear meta-
materials. However, because the main topic, frequency
down-conversion, is a nonlinear phenomenon, the detailed
physics of the proposed metamaterial should be studied first.
In particular, we would like to focus on the increased density
effect, and the multifrequency Fabry-Perot resonance effect,
which cannot be found in linear cases.

A. Effect of coiling-up space on frequency conversion

To investigate the physics of the frequency conversion in-
side the coiling-up space, we consider the following frequency
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FIG. 3. (a) Boundary conditions for eigenfrequency analysis and
size of unit cell; (b) the numerically calculated wave dispersion
curve.

down-conversion example. Based on the incident acoustic
wave of the frequency f1 = 100 Hz, our goal is to add mod-
ulating acoustic waves of the frequency f2 = 70, 80, and
90 Hz to achieve frequency down-conversions of 30, 20, and
10 Hz, respectively. As a nonlinear medium, air with density
ρ = 1.204 kg/m3, speed of sound c = 343 m/s, and nonlinear
coefficient β = 1.2 was considered [4]. It is noteworthy that
in a nonlinear system, the effective properties change as the
wave’s amplitude changes [32–34]. However, if the amplitude
is sufficiently small, the effective properties are almost the
same as in the linear case, regardless of the amplitude. Here,
we used the amplitude of 5 kPa, which is sufficiently small so
that the effective parameters are almost the same as the linear
case and almost unaltered as the amplitude changes. The dis-
persion curve of the metamaterial, calculated by considering
the nonlinear effect, is shown in Fig. 3(b). It is clear that the
proposed metamaterial has a band gap from 107 to 206 Hz,
which can effectively suppress the undesired frequencies gen-
erated during the frequency conversion.

Based on the metamaterial design, the metamaterial’s
effective properties were calculated by considering the nonlin-
ear effect to investigate the physics associated with frequency
conversion in the coiling-up space. The metamaterial’s ef-
fective properties, including its extremely low effective wave
speed by the mazelike structure, were verified using the trans-
fer matrix method (see the detailed process in Appendix A)

FIG. 4. (a) Effective sound speed; (b) effective density of meta-
material calculated by transfer matrix method.

[35,36]. The proposed acoustic metamaterial’s effective sound
speed and effective density, calculated using the transfer ma-
trix method, are shown in Fig. 4. An analysis of the calculated
results shows that the effective sound speed decreased signif-
icantly compared with the original sound speed (343 m/s), as
shown in Fig. 4(a), which has been reported previously. By
contrast, the effective density of the metamaterial increased
significantly, as shown in Fig. 4(b). The effective density was
approximately 100 kg/m3, whereas the original air density
was 1.024 kg/m3.

This suggests that, unlike our initial expectation, the
coiling-up space does not always enhance the frequency con-
version. One may assume that the coiling-up space causes the
wave to remain longer inside, thereby enhancing the nonlinear
effect. However, as shown in Fig. 4(b), the coiling-up space
not only exhibits a low wave speed, but also an increased
density effect. As shown in Eq. (14), the increased density
effect adversely affected the frequency conversion. Hence,
the performance of the coiling-up space metamaterial for
frequency conversion was worse than expected. This will be
demonstrated based on numerical simulation results in the
next section. In addition, this finding suggests that the fre-
quency conversion effect can be further enhanced if a method
that can reduce the effective density of the coiling-up space is
available.

Nevertheless, the resulting frequency conversion is ex-
pected to improve when using the designed metamaterial.
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Because the amplitude of the converted frequency is inversely
proportional to the density, an increase in the effective den-
sity decreases the amplitude of the frequency down-converted
wave. However, because the amplitude of the converted fre-
quency is inversely proportional to the cube of the wave speed,
the decrease in the wave speed can significantly increase
the frequency conversion. In addition, because the effective
material properties are applicable for broad frequencies, the
proposed metamaterial is suitable for enhancing the frequency
down-conversion, which involves multiple frequencies.

B. Effect of multifrequency Fabry-Perot resonance
of metamaterial system

In general, it is almost impossible to avoid the Fabry-
Perot resonance in metamaterial structures. In previous linear
metamaterials, only a single frequency has been considered in
the Fabry-Perot resonance. However, in the current research,
various frequency components are involved so that multifre-
quency Fabry-Perot resonance should be considered.

First, it is obvious that the Fabry-Perot resonance at
the incident frequencies, ω1 and ω2, affects the frequency
conversion—although the incident waves are actuated with
the amplitudes of A1 and A2, their amplitudes can be changed
due to the Fabry-Perot resonance inside the metamaterial so
that the overall frequency conversion can be altered.

In addition to the incident frequencies, the Fabry-Perot
resonance at the frequency-converted wave, |ω1 − ω2|, also
affects the frequency conversion. To explain this, let us revisit
Eq. (2), the Westervelt equation again. Comparing Eq. (2)
with the linear acoustic equation, it can be seen that the
nonlinear equation can be considered as the linear acoustic
equation with distributed nonlinear monopole source. In other
words, the frequency conversion can be seen as the linear
wave propagation with distributed nonlinear monopole source
having the frequency of |ω1 − ω2|. Considering that wave
generated by the distributed wave source is largely enhanced
by the Fabry-Perot resonance, it can be concluded that the
Fabry-Perot resonance at the frequency-converted wave also
affects the frequency conversion. In summary, the amount of
the frequency-converted wave from the acoustic metamaterial
can be predicted as

βA1A2(ω1 − ω2)l

2ρ0c3
0

W1W2W3. (15)

where W1, W2, and W3 are the transmission ratio calculated
from the Fabry-Perot resonance at the frequencies of ω1,
ω2 and |ω1 − ω2| respectively. Also, l is the metamaterial’s
length.

In the metamaterial design, the number of the metama-
terial’s unit cell, 10 unit cells, is properly chosen with the
Fabry-Perot resonance effect. Considering that the Fabry-
Perot resonance takes place when the metamaterial length
becomes nλ/2 (n is an integer) [37], it is convenient to use
the supercell approach with the whole metamaterial system
in the simulation, 10 unit cells, as a unit cell. With this
supercell approach, the frequencies where the Fabry-Perot
resonance takes place become the same as the frequencies
corresponding to the 
 and χ points, as shown in Fig. 5(a).
Accordingly, the metamaterial is designed to have the Fabry-

FIG. 5. (a) Dispersion curve calculated by considering the entire
metamaterial as one supercell and (b) transmission rate according to
frequency.

Perot resonance at the considered incident frequencies, 100,
90, 80, and 70 Hz. The effect of the Fabry-Perot resonance
can be clearly seen from Fig. 5(b), which plots the wave
transmission ratio, i.e., the ratio of the transmitted wave’s
amplitude and the incident wave’s amplitude. It is noteworthy
that it would be best to additionally consider the Fabry-Perot
resonance at the frequency-converted waves, |ω1 − ω2|, in the
metamaterial design. However, as can be seen in Fig. 5(b), the
effect of the Fabry-Perot resonance is not very significant at
low-frequency ranges so that we only considered the incident
waves in the design. Nevertheless, in predicting the amount
of the frequency-converted waves, the Fabry-Perot resonance
at the frequency-converted waves is also considered as in
Eq. (15).

C. Numerical validation of the acoustic metamaterial

Using the numerical method, the performance of the meta-
material was validated by comparing the numerical results
of the normal duct with the results of the metamaterial. The
numerical simulation models of the normal duct and meta-
material are shown in Fig. 6. As shown in Fig. 6(b), the
metamaterial simulation model comprised 10 unit cells.

Numerical simulations of the normal duct and metamate-
rial were performed under the same conditions. In both cases,
a pressure wave was actuated at the left end and the radiation
condition was applied to the right end. The transmitted wave
was measured at the right end, where the radiation condition
was applied. Because our focus was on the acoustic frequency
conversion, both the incident and modulating waves were
actuated simultaneously. Based on the boundary and actuating
conditions, a time-transient wave simulation was performed.
Inside the duct and metamaterial, nonlinear acoustic air with
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FIG. 6. The numerical simulation model, boundary conditions, and simulation results of incident wave and transmitted wave where f1 =
100 Hz, f2 = 80 Hz for (a) normal duct, and (b) metamaterial.

density ρ = 1.024 kg/m3, speed of sound c = 343 m/s, and
nonlinear coefficient β = 1.2 was considered. The numeri-
cal simulations were performed for three cases, where the
frequency of the incident wave ( f1) was 100 Hz and the
frequencies of the modulating wave ( f2) were 90, 80, and
70 Hz.

The time-domain raw data measured at both ends of the
normal duct and metamaterial were converted into the fre-
quency domain by fast Fourier transform (FFT). The time-
and frequency-domain data, measured in a simulation where
f1 was 100 Hz and f2 was 80 Hz, are shown in Figs. 6(a)
and 6(b), respectively. The sampling time was set to 1.5 s.
As shown in Fig. 6, the time required for the wave to reach
the right end of the normal duct was much shorter than
that required for the metamaterial case. This means that the
metamaterial had an extremely low wave speed, as desired.
Analyzing the frequency domain data, we observed the effect
of the low effective sound speed on the amplitude of the

frequency down-converted wave. Comparing the transmitted
wave data of the normal duct and metamaterial in the fre-
quency domain, we verified that the amplitude of 20 Hz,
corresponding to the frequency down-converted wave, was
significantly amplified in the metamaterial case.

The overall results of the numerical simulations are shown
in Fig. 7. The results shown in Figs. 7(a)–7(c) are the
frequency-domain data of the transmitted wave when the fre-
quency of the incident wave ( f1) is 100 Hz and the frequencies
of the modulating wave ( f2) are 90, 80, and 70 Hz, respec-
tively. As shown in Fig. 7, the frequency down-converted
wave of the normal duct is too small to be distinguished from
the ambient noise, whereas the frequency down-converted
wave of the metamaterial is clearly distinguishable. In other
words, the amplitudes of 10, 20, and 30 Hz, which correspond
to the frequency down-converted wave of each simulation,
were amplified significantly in the metamaterial. It is note-
worthy that in Fig. 7, the amplitudes of the frequency
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FIG. 7. The numerical simulation results of transmitted waves in normal duct and metamaterial for f1 = 100 Hz and f2 = (a) 90, (b) 80,
and (c) 70 Hz.

down-converted waves increased with the frequency. This is
because the amplitude of the converted frequency is propor-
tional to the converted frequency in the acoustic frequency
conversion, as shown in the second perturbation solution of
the background theory, Eq. (14).

As shown in the high-frequency region in Fig. 7, the
amplitudes of the undesired frequency components, i.e., the
frequency up-converted wave and the second-harmonic wave,
decreased in the metamaterial rather than in the normal duct.
According to theory, the amplitudes of the frequency up-
converted wave and the second-harmonic wave must increase
as the effective speed of sound decreases. However, as shown
in Fig. 7, they were suppressed by the Bragg gap. In con-
clusion, the numerical results show that the efficiency of the
frequency down-conversion improved by the acoustic meta-
material, which amplified the frequency down-converted wave
and suppressed undesired waves such as the second harmon-

ics and the frequency up-converted wave, which may cause
undesired intermodulation.

Based on the results, we verified the physics of the meta-
material. In the normal duct case, the analytically calculated
amplitudes of the frequency down-conversion agreed well
with the numerical results in the normal duct (the analyt-
ical results for 10, 20, and 30 Hz were 25.2, 51.84, and
75.68 Pa, whereas the numerical results were 25.218, 50.435,
and 75.653 Pa). On the other hand, in the metamaterial case,
the numerically measured amplitudes of the frequency down-
conversion were 264.8, 558.4, and 760.7 Pa for 10, 20, and
30 Hz, respectively. If we ignore the two major effects, “the
increased density effect” and “the multifrequency Fabry-Perot
resonance effect,” the analytically predicted amplitudes of
the frequency down-conversion are calculated as 25 645.3,
51 290.5, and 76 935.8 Pa for 10, 20, and 30 Hz cases, re-
spectively, which are largely different from the numerically
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FIG. 8. The numerical simulation results of transmitted waves in
metamaterial for f1 = 100 Hz and f2 = 85, 75 Hz.

measured values. On the other hand, if two effects are con-
sidered as in Eq. (15), the analytically predicted amplitudes
will be 258.048, 515.121, and 785.294 Pa for the 10, 20, and
30 Hz cases, respectively, which are much closer to the numer-
ically calculated results. This strongly validates that both the
increased density effect and the multifrequency Fabry-Perot
resonance effect are important in the frequency conversion
with nonlinear metamaterials.

To further support the multifrequency Fabry-Perot reso-
nance effect, additional simulations are performed for two
cases—the first case has the incident waves at 100 and 85 Hz,
and the second case, at 100 and 75 Hz. It is noteworthy that
both 100 Hz is near to the Fabry-Perot resonance frequency
while 85 and 75 Hz are near to the Fabry-Perot antireso-
nance frequencies when the transmission rates are 0.7709 and
0.8348. From the results plotted in Fig. 8, it can be clearly
seen that the Fabry-Perot resonance significantly affects the
frequency down-conversion—it can be seen that the incident
waves of the Fabry-Perot antiresonance frequencies (75 and
85 Hz, respectively) are largely decreased compared to the
incident wave of the Fabry-Perot resonance frequency (100
Hz). Obviously, the decrease adversely affects the frequency-
converted waves corresponding to |ω1 − ω2| so that their
amplitudes are decreased. If the effect of the Fabry-Perot
resonance is ignored as in Eq. (14), the analytical calculation
yields the amount of the frequency conversion as 428.397
and 713.995 Pa, which are largely different from the numer-
ically calculated results of 342.2 and 553.7 Pa. However, if
the Fabry-Perot resonance is considered as in Eq. (15), the
analytic prediction will be 319.452 and 558.852 Pa, which
agree well with the numerical results.

Table I shows the analytically predicted and numerically
calculated frequency-converted waves for various cases con-

sidered in this work. As shown in Table I, Eq. (15) can
well predict the frequency-converted wave, validating the in-
creased density effect and the multifrequency Fabry-Perot
resonance effect reported here.

IV. EFFECT OF DISSIPATION

In metamaterials, the dissipation effect cannot be ne-
glected, particularly when a coiling-up space is applied, as
in current acoustic metamaterials [38]. Moreover, because the
nonlinear effect is involved in the current metamaterial, one
may argue that the effect of dissipation may alter the nonlinear
effect, causing other undesired nonlinear phenomena to occur.
Therefore, wave dissipation in nonlinear acoustic metamateri-
als will be analytically and numerically investigated herein.

First, the effect of wave dissipation in nonlinear acoustics
is analytically investigated to determine whether the dissi-
pation may generate other undesired nonlinear phenomena.
Sound dissipation is caused by various loss mechanisms such
as viscosity, heat conduction, and boundary layer effects.
Among them, assuming an adiabatic process, dissipations due
to viscosity and boundary layer effects are generally con-
sidered as dominant factors, whereas other loss mechanisms
are typically neglected. In this section, both loss mechanisms
and nonlinear effects are considered to determine how the
dissipation effects alter the nonlinear effects. Following the
procedures provided in Appendix B, the nonlinear acoustic
equation, including both viscosity and nonlinearity, is ex-
pressed as

�p − 1

c2
0

∂2 p

∂t2
= − β

ρ0c4
0

∂2 p2

∂t2

− 1

ρ0c2
0

(
4

3
μ + μB

)
�

∂ p

∂t
. (16)

In Eq. (15), p, c0, β, μ, and μB denote the pressure, wave
speed, nonlinearity coefficient, shear viscosity coefficient, and
bulk viscosity coefficient, respectively. Comparing Eq. (16)
with the lossless nonlinear acoustic equation in Eq. (2), it is
clear that the only difference in the lossy nonlinear equation
in Eq. (16) is the addition of the lossy term, �(∂ pd/∂t ).
In other words, the loss effect does not affect the nonlinear
term, ∂2 p2

d/∂t2. Hence, it is clear that the dissipation does not
alter the nonlinear effect and does not provide any undesired
nonlinear phenomena.

However, owing to the effect of dissipation, the amplitudes
for each frequency wave decayed as they propagated. Consid-
ering that the high-frequency waves are more vulnerable to the

TABLE I. The analytically predicted and numerically calculated amplitudes of frequency down-converted waves.

Transmission rate (Fabry-Perot resonance) Amplitude

Freq ( f1 − f2) W1 W2 W3 Analytical Numerical

10 Hz 0.9673 0.9784 0.9547 258.048 Pa 264.8 Pa
15 Hz 0.9673 0.7709 1 319.452 Pa 342.2 Pa
20 Hz 0.9673 1 0.9286 515.121 Pa 558.4 Pa
25 Hz 0.9673 0.8348 0.9693 558.852 Pa 553.7 Pa
30 Hz 0.9673 0.9605 0.9865 785.294 Pa 760.7 Pa
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FIG. 9. The numerical simulation results of transmitted waves in metamaterial without and with dissipation for f1 = 100 Hz and f2 = (a)
90, (b) 80, and (c) 70 Hz.

dissipation effect, the frequency down-converted wave having
the lowest frequency will be the least affected wave; i.e., the
relative amount of the frequency down-converted wave will
increase owing to the dissipation. Consequently, one can ex-
pect that the dissipation effect will not degrade the frequency
down-conversion; moreover, the dissipation will be beneficial
because other waves are effectively dissipated.

Next, we discuss the wave simulation. It might be ideal
to perform experiments; however, owing to the lack of
available actuators that can actuate sufficiently large am-
plitudes with two different frequencies simultaneously, we
performed numerical simulations instead, using COMSOL

MULTIPHYSICS, a commercial finite element method (FEM)
program. To consider the viscosity and nonlinearity, as in
Eq. (16), the linearized Navier-Stokes module was used with
a domain source, where μ = 1.846 × 10−5 [kg m−1 s−1] and
μB = 1.5 × 10−5 [kg m−1 s−1] were used as the shear and
bulk viscosity coefficients of air at room temperature, respec-
tively [39]. Dissipation due to boundary layer effects was
also considered by applying the no-slip condition to the wall.
The other settings, except the dissipation, were the same as
in the previous simulation. The numerical simulation results
considering dissipation are shown in Fig. 9. The results shown
in Fig. 9, which were obtained by the FFT of the measured
data, are plotted in the frequency domain. Here, the frequency
of the incident wave ( f1) was 100 Hz, and the frequencies of
the modulating wave ( f2) were 90, 80, and 70 Hz, respectively.
As shown in Fig. 9, the amplitudes of the incident waves
( f1) and modulating waves ( f2) corresponding to the funda-
mental waves attenuated significantly owing to dissipation.
In addition, the frequency up-converted waves ( f1 + f2) and
second-harmonic waves (2 f1, 2 f2) almost dissipated. By con-
trast, the amplitudes of the frequency down-converted waves
(| f1 − f2|) were not significantly attenuated. This is due to
the characteristics of dissipation and frequency conversion.
According to theory, dissipation by viscosity is proportional to
the square of the frequency, and that dissipation by boundary
layer effects is proportional to the square root of the frequency.
Therefore, attenuation by dissipation is insignificant for the
frequency down-converted wave, as explained earlier.

It is interesting that the frequency-converted waves have
larger amplitudes for lossy cases, as shown in Fig. 9. This

is because the acoustic wave speed is decreased by the no-
slip condition. In the proposed metamaterial, the acoustic
wave propagating inside the metamaterial can be considered
as the acoustic waves inside a duct. Inside the duct, fluid
particles adjacent to the wall do not oscillate because of the
no-slip condition. If the fluids are inviscid, then the particle
can slip over the wall, and boundary layer effects can be
neglected [40]. However, for viscous fluids in which viscosity
loss is considered, the particle oscillation decreases from its
amplitude in the mainstream to zero at the wall (this effect
is known as the boundary layer effect). Consequently, the
wave inside the metamaterial is decelerated (this can be veri-
fied by numerical simulations, where the wave’s arrival time
is delayed for the lossy case). Accordingly, the frequency
down-conversion occurs more frequently. Consequently, the
frequency down-conversion is significantly enhanced owing
to the no-slip condition, as shown in Fig. 9. It is noteworthy
that other types of damping, such as the viscous effect, do
not enhance the frequency conversion because they do not
decelerate the wave speed.

Based on the numerical simulation results, it was veri-
fied that the dissipation effect was insignificant, and that the
frequency down-converted waves were not dissipated signif-
icantly. In addition, the dissipation effect did not adversely
affect the frequency down-conversion. The performance of the
proposed metamaterial was valid even when dissipation was
considered. In this study, the frequency down-conversion was
considered such that the cavity had a band gap encompassing
f1 + f2; however, the same idea is applicable to the frequency
up-conversion case by designing the band gap to encompass
the frequency of | f1 − f2|.

V. CONCLUSIONS

Herein, we proposed an acoustic metamaterial for ef-
ficient frequency down-conversions. Based on the second
perturbation solution obtained from the Westervelt equation,
we discovered that the amplitude of the frequency down-
converted wave was inversely proportional to the cube of the
speed of sound. In addition, we discovered that the unde-
sired intermodulation generated from frequency up-converted
waves and harmonics can serve as noise. To achieve both
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FIG. 10. Numerical simulation model for transfer matrix method to obtain effective properties of metamaterial.

the amplification of the frequency down-converted wave
and the suppression of undesired intermodulation, we de-
veloped an acoustic metamaterial based on the coiling-up
space and Bragg gap. The Bragg gap suppresses the unde-
sired intermodulation by preventing the propagation of the
frequency up-converted waves and harmonics, whereas the
coiling-up space amplifies the amplitude of the frequency
down-converted waves by decreasing the effective speed of
sound. Furthermore, we found the increased density effect
and the multifrequency Fabry-Perot resonance effect in the
nonlinear frequency conversion of the acoustic metamaterial.
Numerical and analytical investigations demonstrated that the
efficiency of the frequency down-conversion improved when
the proposed metamaterial was used. In addition, further in-
vestigation showed that dissipation did not adversely affect
the performance of the proposed metamaterial. Considering
that frequency conversion is affected by the small amplitude
of the converted frequency and undesired intermodulation,
the results presented herein would be useful for frequency
conversion in acoustics.
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APPENDIX A: TRANSFER MATRIX METHOD

The transfer matrix method is used to calculate the effec-
tive properties of the nonlinear acoustic metamaterial [35].
The measurement values required for the transfer matrix
method are obtained by the time-harmonic numerical simu-
lation. The numerical simulation model is shown in Fig. 10.
As shown in Fig. 10, the numerical simulation model consists
of additional ducts and the unit cell of the proposed acous-

tic metamaterial. In the case of the boundary conditions, a
pressure wave is actuated at the left end of the model and
the radiation condition is applied at the other end to prevent
a reflected wave. To measure the pressures required for the
transfer matrix method, three measurement points located at
x1, x2, and x3 respectively, are set in the additional duct sec-
tion. The pressures measured at each measurement point are
denoted as P1, P2, and P3 in Fig. 10. The measured pressures
are the superpositions of incident and reflected plane waves,
so that complex pressures, P1, P2, and P3, can be expressed in
terms of the coefficients I , R, and T as

P1 = (Ie− jkx1 + Rejkx1 )e jωt , (A1)

P2 = (Ie− jkx2 + Rejkx2 )e jωt , (A2)

P3 = (T e− jkx3 )e jωt , (A3)

where k represents the wave number. Rewriting Eqs. (A1)–
(A3) with respect to the coefficients I , R, and T yields

I = j(P1e jkx2 − P2e jkx1 )

2 sin k(x1 − x2)
, (A4)

R = j(P2e− jkx1 − P1e− jkx2 )

2 sin k(x1 − x2)
, (A5)

T = P3e jkx3 . (A6)

Now, consider the transfer matrix which relates the sound
pressures and normal acoustic particle velocities on the left
and right surfaces of the metamaterial shown in Fig. 10. The
transfer matrix is expressed as[

PL

VL

]
=

[
T11 T12

T21 T22

][
PR

VR

]
, (A7)

where P is the exterior sound pressure and V is the exte-
rior normal acoustic particle velocity. Also, the subscripts
R and L indicate that the variable is measured at the right
and left surface of the metamaterial, respectively. Considering
the cross-sectional area of duct S1 as shown in Fig. 10, the
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pressures and the particle velocities on the two surfaces of the
metamaterial are expressed in terms of the coefficients I , R,
and T as

PL = I + R, (A8)

VL = S1
I − R

ρ0c
, (A9)

PR = T e− jkd , (A10)

VR = S1
T e− jkd

ρ0c
, (A11)

where ρ0 is the fluid density, c is the sound speed, and S1 is the
cross-section area of the extended duct. Thus, when the coef-
ficients I , R, and T for the incident, reflected, and transmitted
waves are known, the pressures and the particle velocities
on the two surfaces of the metamaterial can be determined.
However, Eq. (A7) and Eqs. (A8)–(A11) are not enough to
retrieve the transfer matrix since only two equations can be
obtained while four unknowns, T11, T12, T21, and T22, should
be calculated. Thus, two additional equations are required to
solve the transfer matrix elements. Those equations can be
obtained by using reciprocal nature. The reciprocity requires
that the determinant of the transfer matrix should be unity
[35,36]. Additionally, for symmetrical systems, T11 is equal
to T22. Thus, two more equations are given as

T11 = T22, (A12)

T11T22 − T12T21 = 1. (A13)

By combining Eq. (A7) and Eqs. (A12) and (A13), the
transfer matrix elements can be derived in terms of the pres-
sures and the particle velocities on the two surfaces of the
metamaterial as

T11 = PRVR + PLVL

PLVR + PRVL
, (A14)

T12 = P2
L − P2

R

PLVR + PRVL
, (A15)

T21 = V 2
L − V 2

R

PLVR + PRVL
, (A16)

T22 = PRVR + PLVL

PLVR + PRVL
. (A17)

As transfer matrix elements are known, effective properties
of the metamaterial can be calculated. From the classical
acoustics, the acoustic media with the thickness d and cross-
sectional area of S2 are given as[

T11 T12

T21 T22

]
=

[
cos ked jρece sin ked/S2

jS2 sin ked/ρece cos ked

]
, (A18)

where ke is the wave number and ρece is the characteristic
impedance of the acoustic media. Therefore, the wave num-
ber and characteristic impedance can be calculated from the
components of the transfer matrix as

ke = 1

d
cos−1T11, (A19)

or

ke = 1

d
sin−1√−T12T21, (A20)

ρece =
√

T12/T21. (A21)

As ke and ρece are determined, effective properties of the
metamaterial, such as effective sound speed and effective den-
sity, can be easily calculated as

ce = ωd/sin−1
√

−T12/T21, (A22)

ρe =
√

T12/T21/ce. (A23)

APPENDIX B: THEORETICAL INVESTIGATION
OF DISSIPATION WITH NONLINEARITY

Sound dissipation is caused by various loss mechanisms
such as viscosity, heat conduction, boundary layer effects,
etc. Among them, assuming an adiabatic process, dissipations
due to viscosity and boundary layer effects are generally con-
sidered as dominant factors while other loss mechanisms are
usually neglected. In this section, an acoustic wave equation
will be derived with both loss mechanisms and nonlinear
effects to figure out how the dissipation effects change the
nonlinear effects. To this end, three equations—continuity,
state, and momentum equations–are required. Before deriving
detailed equations, acoustic variables such as pressure, den-
sity, and velocity are expressed with the time-averaged terms
and dynamic fluctuating terms as

p = p0 + pd , (B1)

ρ = ρ0 + ρd , (B2)

u = u0 + ud , (B3)

where subscript 0 and d indicate time-averaged term and
dynamic fluctuating term, respectively. Generally, the time-
averaged velocity is set to be zero as u0 = 0 so that

u = ud . (B4)

Based on Eqs. (B1)–(B3), the continuity equation is con-
sidered first. Considering the nature of continuity, it is obvious
that the continuity equation does not change whether the sys-
tem is nonlinear or lossy. Therefore, the well-known acoustic
continuity equation is used here as

∂ρd

∂t
+ ρ0∇ · ud = pd

ρ0c4
0

∂ pd

∂t
− 1

c2
0

ud · ∇pd . (B5)

In the same manner, the state equation, which relates pres-
sure and density, is affected by the acoustic media’s material
property. Thus, the equation is largely affected by the non-
linear effect. According to the Westervelt equation, the state
equation for nonlinear media is given as [25]

ρd
∼= pd

c2
0

[
1 − (β − 1)

pd

ρ0c2
0

]
. (B6)

012212-13



GEUN JU JEON AND JOO HWAN OH PHYSICAL REVIEW E 103, 012212 (2021)

As can be seen in Eq. (B6), the effect of nonlinearity is con-
sidered in the state equation, but the loss effect has nothing to
do with it. This is quite obvious since the loss is not related to
the density-pressure relationships—it only dissipates energy
and decreases the amplitude.

On the other hand, the momentum equation, which is
closely related to the energy, is dominated by the loss effect
rather than the nonlinear effect. The momentum equation for
lossy acoustic media is given as [40]

ρ
Du
Dt

+ ∇p =
(

4

3
μ + μB

)
∇(∇ · u) − μ∇ × ∇ × u, (B7)

where μ and μB denote shear viscosity coefficient and bulk
viscosity coefficient. Here, the material derivative is defined
as

D

Dt
= ∂

∂t
+ u · ∇. (B8)

With Eq. (B8), Eq. (B7) can be rewritten as

(ρ0 + ρd )

[
∂ud

∂t
+ (ud · ∇)ud

]
+ ∇(p0 + pd )

=
(

4

3
μ + μB

)
∇(∇ · ud ) − μ∇ × ∇ × ud . (B9)

Equation (B9) can be more simplified by using the plane
wave relationship as [41]

ρd
∂ud

∂t
= −∇

(
p2

d

2ρ0c2
0

)
, (B10)

and the identities of (ud · ∇)ud = ∇(u2
d/2) and ∇ × ∇ ×

u = ∇(∇ · u) − �u. Accordingly, Eq. (B9) is simplified as

ρ0
∂ud

∂t
+ ∇pd + ∇

(
ρ0 + ρd

2
u2

d − p2
d

2ρ0c2
0

)

=
(

1

3
μ + μB

)
∇(∇ · ud ) + μ�ud . (B11)

Here, we are considering a small nonlinearity case so that
the dynamic fluctuation terms are not large. Thus, the third-
order fluctuating term ∇(ρd u2

d/2) can be omitted as

ρ0
∂ud

∂t
+ ∇pd + ∇

(
ρ0

2
u2

d − p2
d

2ρ0c2
0

)

=
(

1

3
μ + μB

)
∇(∇ · ud ) + μ�ud . (B12)

As a result, the continuity, momentum, and state equations
for nonlinear acoustic media with loss can be summarized as

∂ρd

∂t
+ ρ0∇ · ud = pd

ρ0c4
0

∂ pd

∂t
− 1

c2
0

ud · ∇pd , (B13)

ρ0
∂ud

∂t
+ ∇pd + ∇

(
ρ0

2
u2

d − p2
d

2ρ0c2
0

)

=
(

1

3
μ + μB

)
∇(∇ · ud ) + μ�ud ,(B14)

ρd
∼= pd

c2
0

[
1 − (β − 1)

pd

ρ0c2
0

]
. (B15)

Now, let us combine all three equations to derive the
nonlinear acoustic equation with loss. First, differentiating
Eq. (B13) with respect to time gives

∂2ρd

∂t2
+ ρ0

∂

∂t
(∇ · ud ) = ∂

∂t

(
pd

ρ0c4
0

∂ pd

∂t
− 1

c2
0

ud · ∇pd

)
.

(B16)

Also differentiate both sides in Eq. (B14) as

ρ0∇ ·
(

∂ud

∂t

)
+ �pd + �

(
ρ0

2
u2

d − p2
d

2ρ0c2
0

)

=
(

1

3
μ + μB

)
�(∇ · ud ) + μ∇ · �ud (B17)

or, from �(∇ · u) = ∇ · �u,

ρ0∇ ·
(

∂ud

∂t

)
+ �pd + �

(
ρ0

2
u2

d − p2
d

2ρ0c2
0

)

=
(

4

3
μ + μB

)
�(∇ · ud ). (B18)

Subtracting Eq. (B16) from Eq. (B18) yields

�pd − ∂2ρd

∂t2
+ �

(
ρ0

2
u2

d − p2
d

2ρ0c2
0

)

+ ∂

∂t

(
pd

ρ0c4
0

∂ pd

∂t
− 1

c2
0

ud · ∇pd

)

=
(

4

3
μ + μB

)
�(∇ · ud ). (B19)

Also, substituting Eq. (B15) into Eq. (B19) yields

�pd − ∂2

∂t2

[
pd

c2
0

− (β − 1)
p2

d

ρ0c4
0

]
+ �

(
ρ0

2
u2

d − p2
d

2ρ0c2
0

)

+ ∂

∂t

(
pd

ρ0c4
0

∂ pd

∂t
− 1

c2
0

ud · ∇pd

)

=
(

4

3
μ + μB

)
�(∇ · ud ). (B20)

Equation (B20) can be rearranged as

�pd − 1

c2
0

∂2 pd

∂t2
= (1 − β )

1

ρ0c4
0

∂2 p2
d

∂t2
+ �p2

d

2ρ0c2
0

− ρ0

2
�u2

d

− pd

ρ0c4
0

∂2 pd

∂t2
+ ∂

∂t

(
1

c2
0

ud · ∇pd

)

+
(

4

3
μ + μB

)
�(∇ · ud ). (B21)
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Here, we will use the following equations to simplify
Eq. (B21) [25]:

pd

ρ0c4
0

∂2 pd

∂t2
= 1

2ρ0c4
0

∂2 p2
d

∂t2
, (B22)

ud · ∇pd = −ρ0

2

∂u2
d

∂t
. (B23)

From Eqs. (B22) and (B23), Eq. (B21) can be rewritten as

�pd − 1

c2
0

∂2 pd

∂t2
= (1 − β )

1

ρ0c4
0

∂2 p2
d

∂t2
+ �p2

d

2ρ0c2
0

− ρ0

2
�u2

d

− 1

2ρ0c4
0

∂2 p2
d

∂t2
− ρ0

2c2
0

∂2u2
d

∂t2

+
(

4

3
μ + μB

)
�(∇ · ud ). (B24)

Also, one can rearrange the right-hand side terms with the
following equations [25]:

�u2
d = 1

c2
0

∂2u2
d

∂t2
, (B25)

�pd = 1

c2
0

∂2 pd

∂t2
. (B26)

As a result,

�pd − 1

c2
0

∂2 pd

∂t2
= ∂2

∂t2

[
(1 − β )

p2
d

ρ0c4
0

− ρ0

c2
0

u2
d

]

+
(

4

3
μ + μB

)
�(∇ · ud ). (B27)

Finally, the following equations can further simplify the
equations [25]:

u2
d =

(
1

ρ0c0
pd

)2

, (B28)

∇ · ud ≈ − 1

ρ0

∂ρd

∂t
, (B29)

ρd = pd

c2
0

. (B30)

As a result, Eq. (B27) leads to

�pd − 1

c2
0

∂2 pd

∂t2
= − β

ρ0c4
0

∂2 p2
d

∂t2

− 1

ρ0c2
0

(
4

3
μ + μB

)
�

∂ pd

∂t
. (B31)

Equation (B31) is a final form of acoustic equation that
includes both viscosity and nonlinearity.
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