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Crumpling an elastoplastic thin sphere
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The phenomenon of crumpling is common in nature and our daily life. However, most of its properties, such
as the power-law relation for pressure versus density and the ratio of bending and stretching energies, as well
as the interesting statistical properties, were obtained by using flat sheets. This is in contrast to the fact that
the majority of crumpled objects in the real world are three-dimensional. Notable examples are car wreckage,
crushed aluminum cans, and blood cells that move through tissues constantly. In this work, we did a thorough
examination of the properties of a crumpled spherical shell, hemisphere, cube, and cylinder via experiments and
molecular-dynamics simulations. Physical arguments are provided to understand the discrepancies with those
for flat sheets. The root of this disparity is found to lie less in the nonzero curvature, sharp edges and corner, and
open boundary than in the dimensionality of the sample.
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I. INTRODUCTION

The squeezing of an object occurs quite often in daily life,
e.g., crumpling a piece of paper or crushing an aluminum can.
We all know that wrinkled paper consists mainly of ridges and
vertices, whereas a squeezed can or a virus exhibits dents and
buckling on its surface [1]. Similar deformation patterns can
also be observed on a polymer gel that undergoes extensive
swelling [2]. In spite of this obvious difference in the shape of
deformation, most research has been dedicated to studying the
former, i.e., flat sheets [3–6]. Many interesting properties have
been reported. Among them are (i) the size R of a crumpled
sheet versus applied pressure P obeys a power-law relation
with an exponent independent of thickness t and original size
R0 [7–11], but varying with Young’s modulus Y [12,13]. (ii)
As R decreases, ordered domains of layers are formed in the
interior [14], and this change of morphology is intimately
correlated with the breakdown of a power law, which is re-
placed by a universal behavior where different data sets can
be mapped onto a master curve [13]. (iii) Another property is
energetic scaling, including the ratio of stretching and bending
energies Eb/Es = 5 and the storage energy E (�) ∝ �1/3 for
a ridge of length � [15,16]. (iv) In addition to comparing
the buildup of stiffness from crumpling to repeated folding,
Deboeuf et al. [17] found a similar analogy pertaining to how
a layer number increases with compaction, a view that was
confirmed by later studies [18,19]. (v) Friction [20] affects the
relaxation process of a crumpled flat sheet, and the degree of
wrinkling on a curved surface determines its friction [21].

In Secs. II–VI we revisit the crumpling of a spherical thin
shell via experiments and molecular-dynamics (MD) simu-
lations. To clarify whether the source of the new properties
comes from the nonzero curvature, the fact that the sample is
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three-dimensional, or even the existence of an open boundary,
we also studied the behavior of a crumpled hemisphere, cube,
and cylinder in Sec. VII. A conclusion and discussions are
presented in the final section.

II. SAMPLE AND EXPERIMENTAL SETUP

In previous experiments [12,13], high-density polyethy-
lene (PE) films and aluminum foils were often used. But
both are hard to come by in the form of a uniform sphere
without sutures. Finding a suitable sample turned out to be
the first major obstacle we had to overcome. It was only after
several unsuccessful attempts that we were left to resort to
homemade paper shells and polyvinyl chloride (PVC) balls.
Pulp was prepared by cutting A4 paper of 80 gsm into pieces
and adding them to a blender with water. We then spread
the pulp uniformly on several strainers and baked them in an
oven at 300 oC for 15 min. Finally, two of these hemispheres
were combined and superglued into a ball. Our samples are
characterized by Y ∼ 9.42 ± 0.40 GPa, yield strain ∼0.737 ±
0.050, and arithmetic average roughness [22] 0.0445 mm. To
determine the degree of uniformity, we measured the thick-
ness by a caliper at several locations along the edge of the
hemisphere. The error �t was kept below 0.005 mm for
t = 0.22 mm. For comparison, we also tested another more
elastic material, i.e., PVC balls with Y ∼ 3.38 ± 0.51 MPa.
Unlike Polycarbonate//Polydimethylsiloxane (PC/PDMS) in
Ref. [23], there is little adhesion for the surface of our paper
shell. To make sure our sample is reliable, we ran a parallel
test on flat paper sheets made of the same pulp. Both me-
chanical and statistical properties are consistent with previous
results [12,13,16]. Data can be found in the supplemental
material (SM) [24].

To achieve the effect of three-dimensional (3D) crum-
pling, we wrap the sample using condoms and connect it to
the outside of a high-pressure chamber, shown in Figs. 1(a)
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FIG. 1. Panels (a) and (b) show the high-pressure chamber where
the yellow cube indicates a steel tube that connects the sample to the
outside. Photos (c) and (d) show craters with a circular and polygonal
boundary in the early and late states of a crumpled shell.

and 1(b), filled with nitrogen gas and with a leakage rate of
maximum 71.7 mL/h. The crumple process is continued up
to a pressure of 120 psi. The condom serves two purposes.
First, a membrane will not crumple in high-pressure gas due
to the lack of pressure difference. To achieve this, the condom
functions as a boundary to separate the injected nitrogen gas
from the sample inside. The interior of the condom is kept at
the standard pressure by connecting a 6-mm-diam PE tube to
the exterior of the pressure chamber. Why not use the much
cheaper plastic wrap? Ambient pressure tends to intensify the
local structure of the crumpled ball and render its surface
increasingly thorny. The excellent toughness of the condom
against piercing became its advantage. Since the thickness of
a condom is less than the radius of most compact balls, the
error that the condom might cause to the estimation of the
latter is negligible. The surface tension of a condom is likely
to prevent it from slipping because the volume of a crumpled
ball at 120 psi is still five to six times larger than the initial
volume of a condom.

III. MECHANICAL RESPONSE

In the early days when a high-pressure chamber was
designed to replace human hands for the study of three-
dimensional crumpling [12], we noticed that a crumpled ball
tends to deviate from a spherical shape in addition to the afore-
mentioned spikes and deep valleys on its surface. Although
less accurate at calibrating the crumple force, hand-crumpled
sheets [9,25] are now believed to produce reasonably correct
mechanical response by taking the mean of many measure-
ments.

For our crumpled ball, the radius R is determined by
averaging over the cross sections from three perpendicular
directions [12]. As shown in Fig. 2(a), the relations between
dimensionless pressure P/Y and R/R0 for pulp and PVC balls
are qualitatively similar in that they can be separated into
three regimes [26]. To compare with flat sheets, we tried
to fit R/R0 > 0.80 by a power law, P/Y ∼ (R/R0)−α with
α ∼ 4.6. In this Regime 1, shallow craterlike indentations

FIG. 2. The relation between P/Y and R/R0 for a compressed
spherical shell from experiments and simulations is plotted in (a) and
(b), respectively. Vertical lines signalize the boundary between differ-
ent regimes. The power law in Regime 1 is fit with exponent α ∼ 4.6
and 11 for pulp and PVC balls in (a), compared to α ∼ 4.78 for blue
squares in (b). The pressure for PVC balls was divided by 1000 in
order to fit in panel (a).

with a smooth rim appear on the surface, as in Fig. 1(c). With
further crumpling, the shell size shrinks and craters increase
in number. The originally separated craters start to touch each
other and their shape distorts and becomes polygonlike, which
is revealed in Fig. 1(d). In this Regime 2, the response curve
is flattened in Fig. 2(a), breaking away from power-law be-
havior. As R/R0 < 0.50, a third kind of behavior is observed
where the curve suddenly bends upward. We analogize this
final Regime 3 to the behavior of a flat sheet [13] in a similarly
compact state. However, as shown in Fig. 2(a) and unlike flat
sheets, different data sets cannot be collapsed onto a master
curve.

IV. SIMULATIONS

In conjunction with experiments, we performed simu-
lations to investigate the distributions of strains and their
associated energies. The Weeks-Chandler-Anderson potential
[27] is used to model the excluded volume of each lattice point
in our simulations [11,28]. It defines the length unit σ and
the energy unit ε. We follow the convention of previous sim-
ulations [11,16,28,29] by adopting a hexagonal lattice with
mean spacing L0 = 1.0σ . As discussed in Refs. [30–32], it is
generally not possible to arrange lattice points regularly on
a spherical surface. We have thus checked that defects with
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five or seven neighbors are less than 2% to safeguard the
credibility of simulation. But will these defects completely
alter the distribution of strains or dominate them? To reassure
ourselves, we measured the stored energy in any crater that
contains defects and compared it to that of a normal one.
It turns out that their magnitudes are comparable [24]. A
similar geometric defect also occurs when we simulate the
cube and cylinder-zigzag boundaries at some edges, as shown
in Sec. VII. Their number is controlled to be less than 0.5%.

Crumpling is effectuated by reducing radius R of an impen-
etrable wall. The effective thickness t of a shell is calculated
from kb/ks = 3t2/32, where kb and ks denote the bending and
stretching moduli [16]. We study t ranging between 0.73 and
1.46σ by varying ks from 104 to 2 × 104ε/σ 2. Different ma-
terials are simulated by varying ks, while keeping kb/ks fixed.
Young’s modulus is defined as ks/t . The elastic energy com-
prises stretching, Es = ks(L − L0)2/2, and bending energies,
Eb = kb(θ − θ0)2/2, where L is the length between adjacent
beads, θ is the angle spanned by three consecutive beads along
a lattice direction, and θ0 is the equilibrium angle. Plasticity
is included by halving the magnitude of kb beyond a yield
angle |θ − θ0| of 10◦ [33]. The compression rate is set to τv =
−0.001(m/ε)−1/2, where m is the mass of the bead. All simu-
lations are performed using LAMMPS version 16Mar18 [34].

Simulation results are presented in Fig. 2(b), where ks,
τv , R0, and t are varied. The curves show similar trends to
Fig. 2(a). We find that a faster τv , a smaller R0, or an increase
in t demands a stronger pressure to reach the same crumpled
state R/R0. Note that a larger P is also called for when the
hardness is increased. A smaller shell can be viewed as a
shorter spring that needs a higher pressure to crumple.

The exponent α was found to increase as the shell becomes
larger, thinner, or softer. The same effect is also found for
more plasticity and a slower τv . Overall, the shell data give
α = 4.22–5.01, which is smaller than 6 for a flat sheet in
simulation [11,28], 6.2 for a flat sheet made of our pulp, 7.1
for aluminum foil, and 12.0 for HDPE [13]. More information
can be found in the SM. It is worth remembering that the
validity of the power law is judged by the range of P that
experimentalists control, not R. However, the fact that P in
Fig. 2 is still less than one order and its R-squared value is
less than 0.6 casts doubt on the assertion of a power law. We
were obliged to investigate this issue since it is a renounced
property for flat sheets.

Overall, a compression pressure about 1.5 times higher
than that for a flat sheet of similar size is required for
shells. Experiments and simulations agreed that the regime
boundaries in Fig. 2 occur earlier than flat sheets [13]. Repre-
sentative snapshots and cross-sections for Regimes 1, 2, and 3
are given in Fig. 3. From (a)–(c) we see that craters gradually
encounter each other and their indentations deepen. Finally,
the hollowed ball becomes more compact, as shown by (d)–
(i). Note that radial and azimuthal distributions in (j) and (k)
reveal an inhomogeneous morphology even at R/R0 = 0.3.

V. ENERGETIC RESPONSE

The energetic competition can be studied by Eb/Es against
R/R0 in Fig. 4(a). The curve shows three characteristic
behaviors: a dip in Regime 1, a mount in Regime 2, and a

FIG. 3. The exterior of a simulated crumpled shell with R0 = 80,
t = 1.46, 0.1τv , and ks = 104 is shown in plots (a)–(c) as R/R0 =
0.95, 0.76, and 0.3. Plots (d)–(f) show the great-circle cross-section
of (a)–(c) [35]. Segments are painted with the same color if their
inclination angle is within ±22.5◦. Photos in (g)–(i) show the real
sample. Density distribution is plotted in plots (j) and (k) with bin
size (0.02, 0.05π ) along the x, y, and z axes and the azimuthal
direction at radius 8, 15 when R/R0 = 0.3.

descent in Regime 3. As crumpling starts, the rim gets bigger
while craters remain shallow. It leads to a decrease in the ratio
because the dominant energy on the rim is Es, which grows
linearly with perimeter �; see Fig. 4(b). As the crater number
increases and saturates, the system enters Regime 2. Further
crumpling deepens the craters and causes an increase in Eb

that is proportional to the base area; see Fig. 4(c). As a result,
Eb/Es increases. When the crumpled shell becomes compact
in Regime 3, there is no more space for the base area to extend.
This explains why Es regains its importance and renders a
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FIG. 4. Plot (a) shows Eb/Es vs R/R0 for a sphere with different
R0, t , τv , ks, and plasticity, where the label follows that of Fig. 2(b).
Plots (b) and (c) show the contour maps for Es and Eb from sim-
ulations for R0 = 40, t = 1.46, τv , and ks = 104 at R/R0 = 0.75,
which just enters Regime 2. The yellow circle highlights a crater
where Es is concentrated at the perimeter, while energy stored in
the base area consists mainly of Eb. Plot (d) is fit by a linear line
to reveal E (�) ∝ �γ . The inset shows that γ increases from 1.08 to
1.94 as R/R0 decreases from 0.8 to 0.5 for R0 = 80, t = 1.46, τv , and
ks = 104. The code can be found in [36].

drop in Eb/Es. Note that an exception is observed in Fig. 4(a)
when the dip in Regime 1 disappears for a very thin shell.
According to the relation t ∼ (kb/ks)1/2, a small t signifies a
stiff ks. Thus, it is easier to promote Eb in the deformation,
which causes the dip to vanish.

Figure 4(a) also tells us that, as the shell gets thinner, big-
ger, harder, or with more plasticity, the transition to Regime
2 tends to happen earlier, since these properties favor a small
and large number of craters. This causes craters to bump into
each other earlier. A thin shell can also advance the transition
to Regime 3, but a smaller and softer shell or a slower τv is
required to achieve it. The transition happens earlier because
neighboring layers can more easily line up and form ordered
domains, which phase is a precursor to Regime 3. Generally
speaking, Fig. 4(a) shows that the evolution of Eb/Es with R
for a spherical shell is more complicated than that for a flat
sheet [16].

Let us now investigate how the storage energy, E (�) =
Eb + Es, of a crater increases with its perimeter �. The results
for Regime 1 in Fig. 4(d) can be fit by E (�) ∼ �γ with γ ≈ 1,
compared to 1/3 in the same regime for a flat sheet. One way
to understand why γ < 1 in the latter case is that all ridges

FIG. 5. Plots (a) and (b) show simulation (gray triangle) and
experimental results (blue circle and red square) for �̄ and N vs
R/R0. They imply that N �̄2 remains roughly constant in plot (c).
Plot (d) shows the power law for N� vs R for R0 = 43 mm and
t = 0.46 mm. Plot (e) indicates that α vs β does not follow a linear
relation.

exhibit vertices at both ends. So when we double the length
of a ridge, no extra energy is required for the vertices whose
number remains at two instead of four. In contrast, the rims
of craters form a closed loop and are devoid of such vertices.
As the system enters Regime 2, craters bump into each other
and the smooth rims are turned into polygons. This indicates
that crater-crater interactions can no longer be neglected. This
breakdown of circular shape, formally called the Pogorelov
state [37,38], is consistent with the prediction by Gomez et al.
[39]. The power-law fitting becomes difficult and leads to
large error bars as a result of crater-crater interactions.

VI. STATISTICAL PROPERTIES

Now we return to the case of a sphere. Figures 5(a) and
5(b) shows the evolution of the mean length �̄ and number N
of rims in Regime 1. The simulation results are consistent with
experiments at revealing two scaling relations: N ∼ (R/R0)−5

and �̄/R0 ∼ (R/R0)2.5. When combined, they predict N �̄2 ≈
const, as in Fig. 5(c), which property is similar to a flat sheet
except the latter exhibits smaller exponents at −2 and 1 [16].
There is an important relation between α and the exponent β

related to layer number, N� ∼ (R/R0)−β for flat sheets [18].
Both are measured and plotted in Figs. 5(d) and 5(e) for paper
shells and simulated shells. They do not seem to follow the
linear relation in flat sheets [18]. We believe this is because α

only exists for R/R0 > 0.76 when there is just a single layer.
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FIG. 6. The mechanical response and energetic ratio Eb/Es from simulations are shown for an elastic crumpled hemisphere with R0 = 80
in (a) and (b). The same properties are also determined for a cube with L0 = 80 and R0 ≡ √

3L0/2 ∼ 69 in (c) and (d), an open cube in (e)
and (f), and a cylinder with transverse radius r0 = 30, length �0 = 70, and R0 ≡ √

(r0)2 + (�0/2)2 ∼ 46 in (g) and (h)—all without plasticity.
Unless otherwise stated, the compression rate in the simulation is set at τv . For contrast, consistent experimental results are shown in the
insets of (a), (c), (e), and (g). The characterization of the hemisphere is R0 = 45 mm, t = 0.81 mm, and Y ∼ 9.42 ± 0.40 GPa; the cube is
L0 = 70 mm, t = 0.1 mm, and Y ∼ 0.18 ± 0.05 GPa; and the cylinder is r0 = 40 mm, �0 = 70 mm, and Y ∼ 0.18 ± 0.05 GPa.

It does not overlap with the vast regime of R/R0 < 0.5 where
β is determined.

By using the scaling relations in Figs. 5(a) and 5(b), stor-
age energy E ∝ N �̄γ can be rewritten as E ∝ R

5γ

2 −5. Since
E must increase with decreasing R, γ < 2 is required to
avoid absurdity. Pressure is then obtained as P ∝ R

5γ

2 −8,
which prediction can be checked by Fig. 2. Power-law fitting
gives α = 4.6/4.78, which corresponds to γ = 1.36/1.28 for
experiments/simulation. The fact that γ falls within 1 and 2
is consistent with the bound determined independently by the
inset of Fig. 4(d).

The evolution of γ can be understood by realizing that
there are two contributors to E (�), i.e., Erim and Ebase. Being
proportional to �, Erim dominates Ebase ∝ �2 when � is small
and increases as crumpling proceeds in Regime 1. In contrast,
Regime 2 favors Ebase because it is characterized by a close
pack of craters that can only grow in base area, but not the
circumference. This completes our arguments for Fig. 4(d).

Armed with the knowledge of Figs. 4(b) and 4(c), we are
in a better position to discuss the origin of the dip in Fig. 4(a).
Separating the input to E (�) from the base and rim informs
us that Eb/Es ∝ Ebase/Erim ∝ � ∼ R2.5. Easy differentiation
gives d (Eb/Es )

d (R/R0 ) ∼ R1.5 with a positive coefficient. This explains
why there is a dip.

VII. HEMISPHERE, CUBE, AND CYLINDER

After revealing that many crumpling properties for a flat
sheet cannot be directly applied to a sphere, we need to ask
ourselves whether the difference derives from the curvature
and/or dimensionality. Furthermore, other characterizations,
such as the sharp edges and corners of a cube and open bound-
ary, may also come into the equation. So further investigations
are needed. The first sample we test is a hemisphere whose
mechanical response turns out to be qualitatively similar to
that of a full sphere except that Regime 1 is shortened even
more, as shown in Fig. 6(a). This result is consistent with

Fig. 1 in Ref. [40] for PDMS and the finite-element method.
The extra knowledge of Eb/Es in Fig. 6(b) allows us to iden-
tify two distinct behaviors, Regimes 2 and 3. As expected,
the open boundary of the hemisphere makes it easier to bend
and thus renders Eb/Es almost two times higher than that of a
sphere for the same compaction. As far as qualitative behavior
is concerned, the open boundary appears to be irrelevant.
Before eliminating it as a crucial factor, we need to smash a
cubic cube with and without an open cap. As demonstrated by
Figs. 6(c) and 6(d) and Figs. 6(e) and 6(f), the mechanical and
energetic responses are more similar to those of a sphere than
a flat sheet. However, aside from the qualitative resemblance,
traces of artifact due to the sharp corners can be detected in the
first bump for Eb/Es, independent of whether the cube is open.
With the aid of simulation, we are able to correlate the occur-
rence of the second bump, which is shared by Fig. 4(a) for the
sphere, with the timing when deformations start to overlap or
the incipient of interaction among deformations. Contrast for
a real and simulated crumpled cube is provided by the photos
in the SM [24]. Finally, a cylinder is crumpled out of curiosity.
Imagine a Pringles cube. It sits between a sphere and a cube
in that its surface exhibits a nonzero curvature only along the
lateral direction; the result are shown in Figs. 6(g) and 6(h).
Two bumps in Eb/Es are again obtained and caused, respec-
tively, by the circular edges and the interaction between the
extended deformations from both edges. Gathered from the
above evidence that the mechanical and energetic responses
of a hemisphere, a cube with or without a cap, and a cylinder
are qualitatively similar to those of a sphere, we can conclude
that the geometry of enclosure is the most important factor
when distinguishing the crumpling of a 3D object and a flat
sheet.

VIII. CONCLUSION AND DISCUSSIONS

In conclusion, we have examined and confirmed via exper-
iments and MD simulations that the mechanical and energetic
properties of a crumpled sphere, a hemisphere, a cube, and
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a cylinder can be very different from those of a flat sheet,
which have been extensively studied in the past. Our studies
led us to conclude that the discrepancy derives mainly from
the dimensionality of the sample before crumpling, rather than
the existence of a nonzero curvature or/and an open boundary.
The nature of deformation in two- and three-dimensional ob-
jects is drastically different: ridges and vertices versus craters.
In contrast to the monotonically increasing ridge number and
the decreasing ridge length, we observed that both the perime-
ter and the number of craters for a stereoscopic object increase
initially with compaction, but they begin to decrease upon
entering Regime 2 when the craters become so distorted that
they cease to be discernible. The time at which (i) craters
change their shape from circular to polygonal as they bump
into one another coincides with two other observations: (ii)
the power laws break down for P versus R and E versus �, and
(iii) Eb/Es increases suddenly. These relations can be derived
for flat sheets by minimizing Eb + Es around a single isolated
ridge [15]. Therefore, observations (ii) and (iii) can be viewed
as an indication that the ridge-ridge interactions can no longer
be ignored [16]. We believe that the same physics happens
here and provides a causal link between observation (i) and
observations (ii) and (iii).

In contrast to ridges, each crater consists of two
components—a rim and a base. Their dominant forms of po-

tential energy are very different, i.e., stretching and bending,
respectively. The change in morphology, i.e., the spon-
taneous emergence of ordered domains in Regime 3, is
found to be correlated with the sudden drop in the ratio of
bending/stretching energies. Unlike flat sheets, mechanical
and energetic responses depend sensitively on detailed param-
eters, such as the compression rate and the thickness, size,
hardness, and degree of plasticity of the material. But what
about friction, which has been proven to be critical for relax-
ation? To answer this question, we also ran simulations with
friction, which turns out not to be crucial for the crumpling
process of shells.
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